The present application claims priority under 35 U.S.C. §119 to Chinese Patent Application No. 201220427107.0; filed Aug. 27, 2012 the entire disclosure of which is incorporated by reference herein.
The present invention relates to the technical field of a cable connector, and more particularly to a waterproof cable connection system.
In mobile communication base station or indoor coverage systems, connectors are indispensable for the transmission of high-frequency signal and power. Such connectors are usually connected to either annular corrugated cable or helically corrugated cable. Because conventional connectors are both under threaded connection and are structurally split, the conventional connectors cannot ensure lasting, good and stable connection of cable conductors. In addition, water seepage during the use of the connector could affect its application effect, and cause damage to equipment.
Therefore, there remains a need for a cable connector that ensures a stable and positive connection of the cable conductors and provides overall environmental protection.
Accordingly, the present invention provides an integrated compression connector that comprises a housing that has opposing first and second ends. The housing supports a pin and the pin is supported by an insulator disposed in the housing. The pin includes an elastic end for engaging a cable conductor. A threaded sleeve is externally coupled to the housing at the first end thereof. A cable clamp is externally coupled to the housing at the second end thereof. The cable clamp is configured to clamp to a corrugated outer conductor of a cable, wherein the housing engages the cable clamp in an interference fit to form an integrated structure. In one embodiment, the corrugated outer conductor of the cable is helically corrugated.
The present invention also provides an integrated compression connector that comprises a main housing that has opposing first and second ends. The main housing supporting a pin. The pin is supported by an insulator disposed in the main housing. The pin includes an elastic end for engaging a cable conductor. A threaded sleeve is externally coupled to the main housing at the first end thereof. A secondary housing is externally coupled to the main housing at the second end thereof. A cable clamp is received in the secondary housing. The cable clamp is configured to clamp to a corrugated outer conductor of a cable, wherein the main housing engages the secondary housing in an interference fit to form an integrated structure. In one embodiment, the corrugated outer conductor of the cable is an annular corrugated conductor.
Other objects, advantages and salient features of the invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring to
The main housing 18 preferably engages the cable clamp 20 in an interference fit and is preferably installed coaxially with the pin 16. A first O-shaped ring 22 may be arranged between the threaded sleeve 12 and the housing 18 to provide a seal to prevent entrance of water. A second O-shaped ring 24 may be arranged between the housing 18 and the cable clamp 20 to provide another seal. A flat O-shaped ring 26 may be arranged within the cable clamp 20 for preventing water from flowing into the connector along the cable C. The main housing 18 is preferably made of metal.
To assemble the connector 10 of this embodiment to the cable C (
For assembly of the connector in this embodiment, the cable C that is properly wire-stripped and clamped to the connector in the same manner as discussed above, so that the cable C is not easily disengaged from the connector. The housing 18 again moves toward the cable clamp 20 to engage the cable clamp 20 in an interference fit. In addition, when the front housing 40 and the rear housing 42 are joined, the open end of the front housing 40 encloses the open end of the rear housing 42 such that elastic expansion deformation is generated, thus achieving the effect of a sealing connection therebetween. In this embodiment, the rear housing 42 is in threaded engagement with the cable clamp 20 and the sealing ring 44 is disposed within the end of the rear housing 42 so that the sealing ring 44 is pressed tightly when the rear housing 42 is screwed down, thereby forming a waterproof structure.
As in the embodiment above, the elastic nature of the end 32 of the pin 16 allows for clamping of the internal conductor of the cable C. Meanwhile, the main housing 18 of the connector 10 and the cable clamp 20 are integrally structured through the interference fit therebetween such that rapid, stable and reliable installation of the cable C is realized by pressing the outer conductor of the cable C tightly through the cable clamp 20. The connector of this embodiment is also sealed by the front rubber housing 40 and the rear plastic housing 42. Different types of front rubber housings, such as threaded or smooth, etc., may be used according to different interface forms of the equipment.
For the assembly of the compression connector 10′ in this embodiment, a properly prepared cable C is inserted thru the end of the secondary housing 50 so that the cable passes through the inner bore of the cable clamp 20′ and the lug boss 52 therein is embedded in a valley of the outer corrugated conductor 60′ of the cable C. The connector 10′ is clamped to the cable C by pressing and clamping the clamp 20′ directly on the outer corrugated conductor, so that the cable C is not easily disengaged from the connector. In the process of the clamping of cable C, the main housing 18′ is moved towards the cable clamp 20′ and the secondary housing 50 until the main housing 18′ is received in the secondary housing 50 in an interference fit to form the integrated structure. As with the previous embodiment, the elastic nature of the pin 16 combined with interference fit between the main housing 18′ and the secondary housing 50 results in an integral structure, allowing for rapid, stable and reliable installation of the cable by pressing the outer conductor 60′ of the cable tightly through the cable clamp 20′ and the secondary housing 50.
To assemble the compression connector of this embodiment, the cable C, that is properly wire-stripped, is inserted in via the secondary housing 50 so that the cable C passes through the inner bore of the cable clamp 20′ and the lug boss 52 of the cable clamp 20′ is embedded in a first valley of the cable C, as described above. In the process of clamping the cable C, the housing 18′ is moved towards the cable clamp 20′ and the secondary housing 50, to form an interference fit with secondary housing 50. In addition, when the front housing 40 and the rear housing 42 are joined, the open end of the front housing 40 encloses the open end of the rear housing 42 such that an elastic expansion deformation is generated, thus achieving the effect of sealing connection. The rear housing 42 is in threaded connection with the secondary housing 50, so that the sealing ring 44 disposed within the end of the rear housing 42 is pressed tightly while the rear housing 42 is screwed down, thereby forming a waterproof structure.
While particular embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201220427107.0 | Aug 2012 | CN | national |