1) Field of the Invention
The present invention relates to improvements in rotary compressor systems particularly adapted to provide clean dry compressed gas at a discharge point therefrom.
2) Description of Related Art
There is increasingly a need to provide moisture free pressurized gas or air. Such moisture free pressurized gas or air is normally achieved by using various forms of gas or air drying equipment including refrigeration driers, however, such driers are expensive and complicated. The objective therefore is to provide in a simplified and inexpensive way, a rotary compressor system capable of providing clean dry compressed gas.
Accordingly, the present invention provides a rotary compressor system utilising a liquid therein, said rotary compressor system including a driven rotary compressor unit adapted to receive gas to be compressed, a separator vessel arranged to receive compressed gas and entrained liquid from said compressor unit and for collecting said liquid therein, means for returning said liquid to a lower pressure zone of said compressor unit and to a moisture absorber, compressed gas flow leaving a separation zone of said separator vessel being passed to the moisture absorber to be contacted by a flow of said liquid whereby moisture in said compressed gas flow is transferred to said liquid.
According to a further aspect, the present invention provides a rotary compressor system utilising a liquid therein, said rotary compressor system including a driven rotary compressor unit adapted to receive gas to be compressed, a separator vessel arranged to receive compressed gas and entrained liquid from said compressor unit and for collecting said liquid therein, means for returning said liquid to a lower pressure zone of said compressor unit and to a moisture absorber, compressed gas flow leaving a separation zone of said separator vessel being passed through a first cooler means to condense at least a proportion of moisture carried by said compressed gas to be collected and discharged from said compressed gas flow prior to said compressed gas flow being passed to the moisture absorber to be contacted by a flow of said liquid whereby said compressed gas flow is further dried with moisture in said compressed gas being transferred to said liquid.
The liquid referred to in the aforesaid paragraphs is often a lubricant but does not necessarily need to be.
Further preferred features and aspects of this invention may be found in the annexed patent claims which are hereby made part of this specification and from the following description given in relation to the accompanying drawings, in which:
As illustrated in
The compressed gas flow leaving the separator vessel 13 is conveniently cooled in a gas cooler device 19 such that at least a portion of the moisture is cooled, condensed, collected and drained away at 20 from the system. The cool humid compressed gas flow is then passed via line 21 to an absorption column 22 where a shower of cool dry liquid is falling. As the compressed gas flow passes upwardly through this shower, moisture is absorbed into the liquid flow conveniently originating via diverting a portion of the liquid flow in line 15 through a line 23 and thereafter passing same through a further liquid cooler 24 prior to delivering same to the absorption column 22. In an alternative arrangement the diverted flow might be after the cooler 16 with or without further cooling. In this embodiment, the liquid is preferably of the type which is hydrophilic in nature, that is it will absorb moisture to some degree. Glycol based liquids including lubricants are useful for this purpose and may include such liquid lubricants as Ingersoll Rand's ULTRA™ type coolant and Kuba-Summit's SUPRA™ type coolant.
The liquid falls to the bottom of the absorber column 22 where it is collected and conveniently passed via line 25 back to line 15 or some other lower pressure region of the compressor circuit including the compressor unit 10. This liquid flow then mixes with the main liquid flow where it is heated and the absorbed moisture flashes into vapour. This vapour is subsequently condensed in the gas after cooler device 19 and at least partially drained away at 20.
The cool dry compressed gas flow leaving the absorption column 22 passes through a final filter means 26 so that no droplets of coolant can escape with the clean dry compressed gas discharge at 27. The filter means 18 and 26 may typically be of the coalescent type. Conveniently liquid purge lines 28, 29 are operatively associated with each of the filter means 17 and 26 to return any collected liquid back to a lower pressure portion of the compressor system such as the compressor unit 10 itself. Further possible changes to the system may include integrating the absorption column 22 into the separator vessel 13 whereby a secondary vessel is not required. Alternatively, the absorption column 22 might be integrated into the air receiver tank (not shown).
The integrated compressor drier described in the foregoing with reference to
A small amount of dry air is removed from the discharge line 27 and is passed via line 30 via an orifice 31 to a stripper 32. This dry compressed gas is expanded through the orifice 31 to atmospheric pressure which further dries the gas. This ultra dry gas then passes upwardly through a failing shower of liquid in the stripper 32 and removes moisture and further dries the liquid passing through the stripper 32. The gas is then passed through line 33 back to the inlet of the compressor 10. Ultra dry liquid drops to the bottom of the stripper 32 where it is pumped by pump 34 via line 35 to the top of the absorber column 22. This ultra dry liquid falls through the absorber column removing moisture from the compressed gas, before returning via line 36 back to the compressor 10.
In a modification of the embodiment shown in
During intermittent operation of the compressor system, it is possible that the liquid temperature in the separator vessel 13 may not reach an optimum temperature before the compressor 10 shuts down. To eliminate this problem, an electrical heating element or coil 43 might be installed in the liquid pool in the base of the vessel 13. Power supply to the heating element 43 might optionally be controlled by a thermostatically operated switch 44 as shown in
In yet another preferred embodiment of the present invention as shown in
The description of the embodiments set out above generally describe a counter flow contact arrangement for the liquid flow and the compressed gas flow in the absorber column 22. The nature of the stripper column 32 may be generally similar to that of the absorber column 22. However, counter flow arrangements are not essential to the performance of this invention. Any generally known arrangements for contacting a liquid flow with a pressurized gas flow could be used although it may be apparent to those skilled in the art that some arrangements will work better than others. One potential alternative configuration is a simple cross-flow absorber as shown schematically in FIG. 5.
For smaller machines where a relatively high moisture content is acceptable, parallel flow absorber constructions are acceptable. One such possible arrangement is shown in FIG. 7. In this embodiment, air from the moisture trap 20 enters one leg of a T-piece 60 with dry cool liquid entering the other leg. Liquid travels along the wall of a hose/pipe 61 forming an absorber 22. The hose or pipe 61 may be straight, serpentine or coiled and it has sufficient length to promote good mixing of the liquid and compressed gas and to ensure the moisture in the gas is absorbed into the liquid. At the end of the hose/pipe 61, a liquid separator 62 is provided essentially similar to the moisture trap 20, but which removes liquid droplets (together with any contained moisture) from the compressed gas. This liquid/moisture is returned to the compressor 10 or any lower pressure part of the compression circuit via line 63. If desired a filter means such as a coalescent type filter may be incorporated into the liquid separator 62 or in the discharge line 27 therefrom. Dry compressed gas without liquid then may be discharged via a minimum pressure valve 18 and line 27.
The difficulty with all cross-flow and parallel flow absorber systems is that the driest oil does not necessarily contact the driest compressed gas. In a counter flow absorber system, compressed gas with a degree of moisture content enters at the bottom and as the gas rises, the gas successively contacts drier and drier liquid whereby at the discharge point, the gas is contacting the most dry or totally dry liquid. In a parallel flow absorber, the most dry liquid contacts the gas with the greatest moisture content at the start of the drying process and at the end of the process, the gas is contacting liquid with the greatest moisture content. This effect may be reduced by increasing the liquid flow rate relative to the gas flow rate. By pushing more liquid through the absorber, the increase in the liquid moisture content on a percentage basis is reduced, but unfortunately there is an upper limit to how much liquid can be injected into the absorber. As the liquid must be cooled, if too much liquid is injected, good absorption and low RH use is achieved but the discharge temperature of the compression 10 falls (as more heat is' lost through the cooler). A lower discharge temperature means that less moisture is removed in the separator 13, and so, in this condition, the moisture content of the liquid entering the absorber is too high. This problem may be overcome or at least minimized by the addition of a small extra heat exchanger or recuperator 64 as shown in FIG. 8.
As shown in
In all embodiments described thus far, the liquid is returned to the screw at a convenient point in the casing of compressor 10. By this means no gas is wasted and the specific energy consumption is good. It is also possible to return the liquid to the inlet of the compressor, maintaining a liquid seal in the absorber by a float valve. A pump may also be used to pump liquid directly from the absorber to the separator. This pump can be of conventional design or an ejector.
A still further possible embodiment of a compressor system according to this invention is illustrated in FIG. 9. In this arrangement, moist gas enters into the bottom of the absorber 22 at 21. The gas then flows upwardly contacting falling dry liquid injected via line 35. Moisture is absorbed by the liquid from the gas, thereby drying the gas. Wet liquid is transferred via line 65 under action of the compressed gas to the stripper 32 where it enters at the top. The stripper 32 conveniently operates at a lower pressure than the absorber 22 and wet liquid flows downwardly within the stripper 32. Dry compressed gas leaves the absorber 22 via a minimum pressure valve 18 and line 27 after conveniently passing through a filter 66 to remove any droplets of liquid therefrom. Part of the dry compressed gas is bled from the discharge 27 via line 30 into the stripper 32. This dry gas rises through the stripper 32, drying the liquid removing moisture before exiting via filter 67 and is discharged to atmosphere at 68. Dry liquid is collected at the bottom of the stripper 32 and pumped via pump 34 to the top of the absorber 22 via line 35. The pump 34 may be any conventional pumping means as discussed on earlier embodiments including a gas driven pump of the type described with reference to FIG. 3. In this latter arrangement the gas driven pump may replace orifice 31 as illustrated. A drier 69 of the configuration shown in
Energy usage efficiencies may be improved by utilizing a configuration as shown in FIG. 10. Referring to
Heat supplied to the heater 73 may be by electric means or may utilize heat from a compressor by passing hot compressed gas or liquid through the heater 73 acting as a heat exchanger. As shown in
Most compressors of this general type are filled with a spin-on liquid filter 6 which has an outer can 80 and an inner paper (or similar) filter element 81. Liquid to be filtered enters the head 82 at 83 and passes directly into the can 80. It then passes through the filter element 81 before leaving at 84.
It will of course be appreciated that the compressor systems as described in the foregoing may be built as an integral construction including the compressor 70 and the drier 69 on a common support base, structure a platform or alternatively they could be built respectively on different support platforms or structures.
Number | Date | Country | Kind |
---|---|---|---|
PQ6829 | Apr 2000 | AU | national |
PQ9997 | Sep 2000 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTAU01/00403 | 4/10/2001 | WO | 00 | 10/11/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0177528 | 10/18/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2494644 | Clement | Jan 1950 | A |
2955673 | Kennedy et al. | Oct 1960 | A |
3226948 | Alderson et al. | Jan 1966 | A |
4055403 | Strauss | Oct 1977 | A |
4375977 | Honerkamp et al. | Mar 1983 | A |
4406589 | Tsuchida et al. | Sep 1983 | A |
4553906 | Boller et al. | Nov 1985 | A |
4642033 | Boller | Feb 1987 | A |
4898599 | Settlemyer | Feb 1990 | A |
5033944 | Lassota | Jul 1991 | A |
5053126 | Krasnoff | Oct 1991 | A |
5302300 | Porri | Apr 1994 | A |
5487769 | Hutchinson et al. | Jan 1996 | A |
5492461 | Kitchener et al. | Feb 1996 | A |
5797980 | Fillet | Aug 1998 | A |
5993522 | Huang | Nov 1999 | A |
6156102 | Conrad et al. | Dec 2000 | A |
6267560 | Charron | Jul 2001 | B1 |
6616719 | Sun et al. | Sep 2003 | B1 |
20030037679 | Kitchener | Feb 2003 | A1 |
20030106431 | Kitchener | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
1798546 | Feb 1993 | SU |
Number | Date | Country | |
---|---|---|---|
20030037679 A1 | Feb 2003 | US |