Integrated condenser and compressor system

Information

  • Patent Grant
  • 10589598
  • Patent Number
    10,589,598
  • Date Filed
    Wednesday, March 9, 2016
    8 years ago
  • Date Issued
    Tuesday, March 17, 2020
    4 years ago
Abstract
Disclosed is an integrated compressor system configured to be integrated with existing air conditioning systems. The integrated compressor system generally includes a mounting assembly, a first compressor and a valve. The mounting assembly can be mounted directly on a condenser of an existing air conditioning system. The first compressor and the valve are mounted directly on the mounting assembly. The valve has a first valve inlet, a second valve inlet and a valve outlet. When assembly and integrated with an existing AC system, the first valve inlet is fluidly coupled to a compressor outlet of the first compressor, the second valve inlet is fluidly coupled to a compressor outlet of the compressor of existing AC system, and a valve outlet is fluidly connected to a condenser inlet of the condenser.
Description
FIELD OF THE INVENTION

The present invention generally relates to a system configured to be integrated with an existing air conditioning system. More particularly, the present invention relates to an integrated compressor system including a compressor, a valve, and a mounting assembly, and configured to be integrated with an existing or modified condenser of an air conditioning system used in vehicles.


BACKGROUND

Currently, many existing vehicle heating, ventilation, and air conditioning (HVAC) systems have only one compressor driven by the engine of the vehicle. These HVAC systems cannot be operated and thus cannot provide a comfortable environment for drivers and passengers when the engine of the vehicle is off. In response to the needs of the transportation industry and the regulations governing the amount of time that a driver may spend behind the wheel, it is very desirable to have an HVAC system with multiple compressors connected to different power sources, for example, one powered by the engine and one powered by an electric source. Such an HVAC system can provide a comfortable environment for drivers and passengers when the engine of the vehicle is on as well as when it is off.


Integrating an electrically driven system into the existing engine driven system addresses some of these issues, but raises others. For example, many of the components of an existing engine driven HVAC system are located within the engine compartment, and, therefore, integration of an additional compressor into the existing vehicle HVAC system is difficult as there is limited space within an engine compartment for an additional compressor.


Given the above, there is a need in the art for a combined engine/electrically driven HVAC system that addresses the abovementioned issues.


The information disclosed in this Background section is provided for an understanding of the general background of the invention and is not an acknowledgement or suggestion that this information forms part of the prior art already known to a person skilled in the art.


SUMMARY

Various aspects of the present invention provide an integrated compressor system configured to be integrated with existing air conditioning systems.


In one embodiment, the integrated system of the present invention comprises a mounting assembly, a first compressor and a valve. The mounting assembly is configured to be mounted directly on a condenser of an existing air conditioning system. The first compressor is configured to compress a refrigerant and comprise a compressor inlet and a compressor outlet. The first compressor is mounted or to be mounted directly on the mounting assembly. In a preferred embodiment, the first compressor is an electric compressor. The valve is also mounted or to be mounted directly on the mounting assembly. The valve comprises a first valve inlet fluidly coupled to the compressor outlet of the first compressor, a second valve inlet configured to be fluidly coupled to a compressor outlet of a second compressor, and a valve outlet to be fluidly connected to a condenser inlet of the condenser.


In another embodiment, the integrated system of the present invention comprises a condenser, a mounting assembly, a first compressor and a valve. The condenser has a condenser inlet. The mounting assembly is configured to be mounted directly on the condenser. The first compressor is configured to compress a refrigerant and comprise a compressor inlet and a compressor outlet. The first compressor is mounted or to be mounted directly on the mounting assembly. In a preferred embodiment, the first compressor is an electric compressor. The valve is also mounted or to be mounted directly on the mounting assembly. The valve comprises a first valve inlet fluidly coupled to the compressor outlet of the first compressor, a second valve inlet configured to be fluidly coupled to a compressor outlet of a second compressor, and a valve outlet to be fluidly connected to a condenser inlet of the condenser.


In some embodiments, the mounting assembly comprises one or more mounting brackets directly and fixedly coupled to the condenser. In some embodiments, the mounting assembly further comprises a valve mounting assembly configured to hold the valve and a compressor mounting assembly configured to hold the first compressor. In an embodiment, the valve mounting assembly and the compressor mounting assembly are directly and fixedly coupled to the condenser or one or more mounting brackets of the mounting assembly. In another embodiment, the valve mounting assembly and the compressor mounting assembly are directly and fixedly coupled to both the condenser and one or more mounting brackets of the mounting assembly.


In some embodiments, the mounting assembly comprises a variety of components such as brackets, spacers or rings. In an embodiment, some or all of these components are pre-assembled together for example by mechanical fastening, brazing, O-ring type sealing, welding or made together by casting. In another embodiment, all or most of these components are separate and not pre-assembled.


The integrated system of the present invention have other features and advantages that will be apparent from or are set forth in more detail in the accompanying drawings, which are incorporated herein, and the following Detailed Description, which together serve to explain certain principles of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present application and, together with the detailed description, serve to explain the principles and implementations of the application.



FIG. 1A illustrates a secondary compressor and a condenser.



FIG. 1B illustrates mounting brackets of the condenser of FIG. 1A.



FIG. 2 illustrates an integrated system mounted on a condenser in accordance with some embodiments of the present invention.



FIGS. 3A and 3B are perspective and back view of a compressor in accordance with some embodiments of the present invention.



FIG. 4 is a top view of an integrated system in accordance with some embodiments of the present invention.



FIGS. 5A and 5B illustrate refrigerant flow in an integrated system in accordance with some embodiments of the present invention.



FIGS. 6A and 6B illustrate exemplary valves of an integrated system in accordance with some embodiments of the present invention.



FIGS. 7A-7C are partially disassembled perspective view, front view and side view, illustrating an integrated system comprising a first exemplary mounting assembly in accordance with some embodiments of the present invention.



FIGS. 8A-8E are assembled top-front perspective view, disassembled perspective view, assembled back perspective view, top view and front view, illustrating the first exemplary mounting assembly coupled to a condenser in accordance with some embodiments of the present invention.



FIG. 9 illustrates a valve mounted on the first exemplary mounting assembly in accordance with some embodiments of the present invention.



FIGS. 10A-10E are assembled side perspective view, assembled top-front perspective view, assembled back perspective view, front view and back view, illustrating an integrated system comprising a second exemplary mounting assembly in accordance with some embodiments of the present invention.



FIGS. 11A and 11B are front and back perspective views, illustrating some components of the second exemplary mounting assembly in accordance with some embodiments of the present invention.



FIGS. 12A-12C are front, assembled perspective and disassembled perspective views, illustrating some components of the second exemplary mounting assembly in accordance with some embodiments of the present invention.



FIG. 13 is a partially disassembled perspective view, illustrating a valve mounted on the second exemplary mounting assembly in accordance with some embodiments of the present invention



FIG. 14 is a schematic diagram illustrating an exemplary integration of the system with an existing air conditioning system.





DETAILED DESCRIPTION

Reference will now be made in detail to implementations of the present application as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts. Those of ordinary skill in the art will realize that the following detailed description of the present application is illustrative only and is not intended to be in any way limiting. Other embodiments of the present application will readily suggest themselves to such skilled persons having benefit of this disclosure.


In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementations, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.


Many modifications and variations of this disclosure can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.


Embodiments of the present invention are described in the context of systems integrated or to be integrated with existing air conditioning (AC) systems, and in particular, in the context of systems integrated or to be integrated with condensers of existing AC systems used in vehicles. The vehicle can be a car, a van, a truck, a bus, a trailer, or any other vehicle or machines such as off-highway/agriculture/mining equipment that includes an HVAC system.



FIGS. 1A and 1B show a condenser 102 of an existing vehicle HVAC system and a conventional secondary compressor 104. The condenser 102 usually includes two mounting brackets 124, 126. Because of the size, shape and weight of the conventional secondary compressor, it is very difficult, if not impossible, to mount the conventional secondary compressor onto the condenser.


To solve this and/or other problems, the present invention provides a mounting assembly, a first compressor and a valve. The first compressor is configured to be mounted onto a condenser, such as an existing or modified condenser of an AC system used in vehicles. The valve is configured to allow a refrigerant compressed by the first compressor or by a second compressor (e.g., a compressor of an existing AC system) to pass into the condenser. The mounting assembly is configured to mount the first compressor and the valve to the condenser. Preferably, the mounting assembly is mounted directly or configured to be mounted directly to the condenser, and the first compressor and the valve are mounted directly on the mounting assembly. As used herein, the term “directly” refers to a configuration, in which two components are in physical contact with each other.



FIG. 2 illustrates an integrated system in accordance with some embodiments of the present invention. As shown, the system of the present invention comprises a mounting assembly 106, a first compressor 108 and a valve 110. The first compressor 108 comprises a compressor inlet and a compressor outlet. The valve 110 comprises a first valve inlet 166, a second valve inlet 168, and a valve outlet 170. In a preferred embodiment, the mounting assembly 106 is configured to be mounted directly on a condenser 102, such as an existing or modified condenser of an AC system mounted in the engine compartment of a vehicle. The first compressor 108 and the valve 110 are mounted or configured to be mounted directly on the mounting assembly 106. When assembled, the first valve inlet 166 is fluidly coupled to the compressor outlet 172 of the first compressor 108. In some embodiments, the valve 110 and the first compressor 108 are configured such that the first valve inlet 166 is directed connected to the compressor outlet 172 of the first compressor 108. In some embodiments, the system of the present invention further comprises a first refrigerant tube 112 connecting the compressor outlet 172 of the first compressor 108 to the first valve inlet 166 of the valve 110. In some embodiments, to ensure the strength of the connection, the system of the present invention further comprises one or more fittings 162 (e.g., brass fittings for tight slim-line seal) or one or more brackets 164 (e.g., steel or copper mounting brackets) as illustrated in FIG. 7A.


When integrated with an existing AC system, the second valve inlet 168 is fluidly coupled to a compressor outlet of a second compressor 116 (e.g., a compressor of the existing AC system as illustrated in FIG. 14), and the valve outlet 170 is to be fluidly connected to a condenser inlet 174 of the condenser 102. In some embodiments, the system of the present invention further comprises a second refrigerant tube 114 for connecting the valve outlet 168 of the valve to the condenser inlet 174 of the condenser 102. In some embodiments, the system of the present invention is integrally made or manufactured with the condenser 102. In some embodiments when the system is integrated with an air-conditioning system used in vehicles, the second compressor (e.g., the existing compressor of the air-conditioning system) is driven (e.g., belt-driven) by the engine of the vehicle and can be used to compress the refrigerant when the engine of the vehicle is on (i.e., when the engine is running).


Preferably, the first compressor 108 is an electric compressor and is operated independently from the second compressor. When used in vehicles, the first compressor 108 can be used to compress a refrigerant when the engine of the vehicle is off, for example, before a driver or passenger enters into the vehicle or when the engine is off. It can also be used to compress a refrigerant when the cooling demand is below the cooling capacity of the exciting AC system to reduce energy consumption and operation cost.


In some embodiments, the system of the present invention can operate up to 2 hours, 3 hours, 4 hours and 5 hours, and provide power up to 3500 BTU/hr, 4500 BTU/hr, or 5500 BTU/hr. The system is relatively small and fits most of AC systems. In some embodiments, for example, as those illustrated in FIGS. 3-4, the largest cross-sectional dimension of the first compressor is less than 3.5 inches, less than 4 inches, less than 4.5 inches or less than 5 inches. The system, without the condenser, weighs about 15 lbs.


In some embodiments, to facilitate mounting of the first compressor, the first compressor 108 comprises one or more mounting brackets 122 attached (e.g., by welding) to a wall of the first compressor. By way of illustration, FIGS. 3A and 3B illustrate two essentially U-shaped mounting brackets 122 with substantially the same contour as the outer circumference of the first compressor. The mounting brackets 122 are configured to be coupled to the mounting assembly 106.


The valve 110 (As illustrated in FIG. 2) is generally a check valve with at least two inlets and at least one outlet. The first valve inlet 166 is fluidly coupled to the compressor outlet 172 of the first compressor 108. When integrated with an existing AC system, the second valve inlet 168 is fluidly coupled to the compressor outlet of the second compressor 116 (e.g., the compressor of the existing AC system in FIG. 14), and the valve outlet 170 is fluidly connected to the condenser inlet 174 of the condenser 102. Any suitable check valves, including but not limited to magnetic valves, spring-load valves, electronic solenoid valve, and electronic stepper valves, can be used. By way of illustration, FIG. 6A shows a magnetic valve and FIG. 6B shows a spring-load valve. In some embodiments, a magnetic valve is preferred because it performs better in a vertical orientation, has fewer parts, and is less prone to failure.


By design, a valve can be held in an open, closed, or any particular position, for example, by a magnetic force or a spring. Once a valve is selected and connected to the system, operation (e.g., movement) of the valve generally depends on the direction of the flow, and more particularly, the flow pressure. By way of illustration, FIGS. 5A and 5B illustrate an exemplary movement of the valve 110. As shown, when the second compressor (e.g., the engine driven compressor of the existing AC system) is on, the compressed refrigerant from the second compressor pushes the valve downward, in some cases against the magnetic force if a magnetic valve is used or against a spring if a spring-load valve is used, and opens a manifold 136 for the compressed refrigerant from the second compressor to pass through and flow to the condenser 102. When the second compressor is off and the first compressor is on, the compressed refrigerant from the first compressor pushes the valve upward, and opens up the manifold 136 for the compressed refrigerant from the first compressor to pass through and flow to the condenser 102. It should be understood that the terms “downward” or “upward” are used to describe features of the exemplary embodiments with reference to the positions of such features as displayed in the figures. The valve is not necessarily oriented vertically either in the integrated system or after the system has been integrated with an existing AC system.


Generally, as illustrated in FIGS. 7B and 10A, the mounting assembly 106 is configured to be coupled with the condenser 102, the valve 110, and the first compressor 108. In many cases, the mounting assembly 106 includes one or more mounting brackets, a valve mounting assembly 130 and a compressor mounting assembly 132. Preferably, the one or more mounting brackets are configured to be coupled directly and fixedly to the condenser 102. The valve mounting assembly 130 is configured to hold the valve, and the compressor mounting assembly 132 is configured to hold the first compressor 108. The mounting assembly or some components of the mounting assembly can be pre-assembled (e.g., by O-ring type sealing, brazing, welding, mechanical fastening such as clamping, bolting, riveting, hinging) or integrally made (e.g., by casting or molding). Each individual component of the mounting assembly can also be made separately and assembled on site when coupling the system to an existing AC system.


For example, FIGS. 7-9 illustrate an integrated system of the present invention that includes a first exemplary mounting assembly, in which some components of the first exemplary mounting assembly are pre-assembled. As shown, the first exemplary mounting assembly comprises one or more mounting brackets, a valve mounting assembly 130 and a compressor mounting assembly 132. In some embodiments where the condenser 102 comprises an upper mounting bracket 124 and a lower mounting bracket 126, the one or more mounting brackets comprise a middle mounting bracket 128 directly and fixedly coupled to the condenser 102. Preferably, the middle mounting bracket 128 is configured to be substantially the same as the upper and lower mounting brackets of the condenser 102 and to be disposed between the upper and lower mounting brackets of the condenser 102. In the illustrated embodiments, the middle mounting bracket 128 is directly and fixedly coupled to an edge of the condenser 102 and extruded from the edge of the condenser 102. In particular, the middle mounting bracket 128 is directly and fixedly coupled to a middle portion of the edge of the condenser 102 between the upper mounting bracket 124 and the lower mounting bracket 126 of the condenser 102. In some embodiments, in addition to the middle mounting bracket 128, the mounting assembly comprises additional or optional mounting brackets.


In some embodiments where the condenser 102 does not comprise an upper mounting bracket or a lower mounting bracket, or where the condenser 102 is a component of the system of the present invention, the mounting assembly comprises a plurality of mounting brackets directly and fixedly coupled to the condenser 102, for example, to an edge of the condenser 102 and extruded from the edge of the condenser 102 as shown in the figures. In some embodiments, the plurality of mounting brackets comprises an upper mounting bracket 124, a middle mounting bracket 128 and a lower mounting bracket 126. Preferably, the upper mounting bracket is directly and fixedly coupled to an upper portion of the edge of the condenser 102. The middle mounting bracket 128 is directly and fixedly coupled to a middle portion of the edge of the condenser 102. The lower mounting bracket 126 is directly and fixedly coupled to a lower portion of the edge of the condenser 102.


The valve mounting assembly 130 is configured to hold the valve. Preferably, the valve mounting assembly 130 is directly and fixedly coupled to the edge of the condenser 102 or the upper mounting bracket, or coupled to both of the edge of the condenser 102 and the upper mounting bracket.


In some embodiments, the valve mounting assembly 130 is configured to comprise one or more or all of the following: (i) a plurality of spacers 134 directly and fixedly coupled to the edge of the condenser 102; (ii) a manifold 136 directly and fixedly coupled to one or more of the spacers 134; (iii) a first bracket 138 directly and fixedly coupled to the upper mounting bracket 124, at least one spacer, or both the upper mounting bracket 124 and at least one spacer; (iv) a plurality of machined rings configured to increase the strength of the valve mounting assembly 130 and to facilitate positioning and sealing of the valve, wherein the plurality of machined rings includes a first ring 142 directly and fixedly coupled to the first bracket 138 and a second ring 144; (v) a plurality of cylindrical pipes comprising one or more of the following: a first cylindrical pipe 158 fixedly coupled to the first ring 142, a second cylindrical pipe 140 fixedly coupled to the second ring 144, and a third cylindrical pipe or rod 159; (vi) a stamped PC 156 disposed blow the first cylindrical pipe 158; and (vii) a junction PC 139 directly and fixedly coupled to one or more of the following: the second cylindrical pipe 140, the third cylindrical pipe or rod 159, the first bracket 139, and one or more of the plurality of the spacers. Sizes, shapes, positions, and interconnections of these components are configured in accordance with the valve, the condenser, or the available space, and can be varied as required by the specific vehicle and HVAC system constraints. In some embodiments, some of these components are welded together or formed as a single casting. In some embodiments, all of these components are welded together or formed as a single casting.


In some embodiments, the valve mounting assembly 130 comprises additional or optional components, such as fasteners, spacers, seals, washers, structural supports or the like, to enhance the strength of the valve mounting assembly 130, to allow alternative arrangement of the valve mounting assembly 130 or the like.


The compressor mounting assembly 132 is configured to hold the first compressor 108. In a preferred embodiment, the compressor mounting assembly 132 is directly and fixedly coupled to one or more of the following: the condenser 102 such as an edge of the condenser, the middle mounting bracket 128, and the lower mounting bracket 126. In some embodiments, the compressor mounting assembly 132 comprises one or more of the following: (i) a second bracket 146 directly and fixedly coupled to one or more of the condenser 102 such as an edge of the condenser, the middle mounting bracket 128 and the lower mounting bracket 126; (ii) a U-shaped bracket 148 directly and fixedly coupled to the second bracket 146 and configured to accommodate the compressor; and (iii) a mechanism for reducing vibration. In some embodiments, the second bracket 146 is a L-shaped bracket. Like the valve assembly, in some cases, the second bracket 146 is pre-assembled (e.g. welded) to the middle mounting bracket 128 or the lower mounting bracket 126 or both. In some embodiments, the U-shaped bracket 148 is pre-assembled (e.g. welded) to the second bracket 146.


The U-shaped bracket 148, including its shape, size and material of which it is made, is configured or selected in accordance with the first compressor 108. In some embodiments, it is made an extrusion process and then cut and formed to shape. In some embodiments, the U-shaped bracket 148 is made with holes, cuts, slots, or the like, for coupling with the one or more mounting brackets 122 welded onto the wall of the first compressor. In such embodiments, the mechanism for reducing vibration comprises a plurality of rubber vibration mounts 154 that couple the one or more mounting brackets welded onto the wall of the first compressor to the U-shaped bracket 148 of the compressor mounting assembly 132.



FIGS. 10-13 illustrate an integrated system of the present invention including a second exemplary mounting assembly, in which all or most of the components of the second exemplary mounting assembly are separate and not pre-assembled (e.g., not welded together). As shown, the second exemplary mounting assembly comprises one or more mounting brackets, a third bracket 150, a valve mounting assembly 130 and a compressor mounting assembly 132. Like the one or more mounting brackets of the first exemplary mounting assembly, in some embodiments where the condenser 102 comprises an upper mounting bracket 124 and a lower mounting bracket 126, the one or more mounting brackets of the second exemplary mounting assembly comprise a middle mounting bracket 128 directly and fixedly coupled to the condenser 102. In some embodiments, in addition to the middle mounting bracket 128, the second exemplary mounting assembly comprises additional or optional mounting brackets to enhance the strength or assist in fixation of the mounting assembly on the condenser 102. The additional or optional mounting brackets can be configured substantially the same as or different from the middle mounting bracket 128. By way of illustration, FIGS. 10C and 11B illustrate two additional or optional mounting brackets 160 slightly different from the middle mounting bracket 128.


Similar to the first exemplary mounting assembly, in some embodiments where the condenser 102 does not comprise an upper mounting bracket 124 or a lower mounting bracket 126, or where the condenser 102 is a component of the system of the present invention, the second exemplary mounting assembly comprises a plurality of mounting brackets directly and fixedly coupled to the condenser 102. In some embodiments, the plurality of mounting brackets comprises an upper mounting bracket 124, a middle mounting bracket 128 and a lower mounting bracket 126.


Unlike the first exemplary mounting assembly, the second exemplary mounting assembly comprises a third bracket 150. Preferably, the third bracket 150 is relatively long and fixedly coupled to the upper, middle and lower mounting brackets. In some embodiments, the third bracket 150 is a L-shaped bracket or a plate bent at one edge. In some embodiments where the mounting assembly comprises additional or optional mounting brackets, the third bracket 150 is, preferably, fixedly coupled to the additional or optional mounting brackets. The fixed coupling can be achieved by any suitable meanings, including but not limited to welding, spot welding, clamping, bolting, riveting, hinging or by adhesives.


Preferably, the valve mounting assembly 130 of the second exemplary mounting assembly is directly and fixedly coupled to the edge of the condenser 102, an upper portion of the third bracket 150, or both. Similar to the valve mounting assembly of the first exemplary mounting assembly, the valve mounting assembly of the second exemplary mounting assembly can comprise a variety of components such as brackets, spacers or rings. For example, in some embodiments, the valve mounting assembly of the second exemplary mounting assembly is configured to comprise one or more or all of the following: (i) a plurality of spacers 134 directly and fixedly coupled to the edge of the condenser 102; (ii) a manifold 136 directly and fixedly coupled to one or more of the spacers 134; (iii) a first bracket 138 directly and fixedly coupled to the upper portion of the third bracket 150, at least one spacer, or both the upper portion of the third bracket 150 and at least one spacer; (iv) a plurality of machined rings configured to increase the strength of the valve mounting assembly and facilitate positioning and sealing of the valve, wherein the plurality of machined rings includes a first ring 142 directly and fixedly coupled to the first bracket 138 and a second ring 144; (v) a plurality of cylindrical pipes comprising one or more of the following: a first cylindrical pipe 158 fixedly coupled to the first ring 142, a second cylindrical pipe 140 fixedly coupled to the second ring 144, and a third cylindrical pipe or rod 159; (vi) a stamped PC 156 disposed blow the first cylindrical pipe 158; and (vii) a junction PC 139 directly and fixedly coupled to one or more of the following: the second cylindrical pipe 140, the third cylindrical pipe or rod 159, the first bracket 139, and one or more of the plurality of the spacers. Sizes, shapes, positions, interconnections of these components are configured in accordance with the valve, the condenser, or the available space and can be readily varied. In some embodiments, the valve mounting assembly of the second exemplary mounting assembly comprises additional or optional components, such as fasteners, spacers, seals, washers, structural supports or the like, to enhance the strength of the valve mounting assembly, to allow alternative arrangement of the valve mounting assembly or the like.


In the second exemplary mounting assembly, the compressor mounting assembly is, preferably, fixedly coupled to a lower portion of the third bracket 150. In some embodiments, the compressor mounting assembly comprises a U-shaped bracket 148 fixedly coupled to the lower portion of the third bracket 150 and configured to accommodate the compressor, a mechanism for reducing vibration, or both. In some embodiments, the compressor mounting assembly further comprises a plate or pad 152 disposed between the U-shaped bracket 148 and the third bracket 150. The plate or pad 152 is configured to provide one or more of the following: reducing vibration, distributing pressure evenly and preventing the coupling of the U-shaped bracket 148 to the third bracket 150 from loosening.



FIG. 14 is a schematic diagram illustrating integration of the integrated system of the present invention with an existing AC system in accordance with some embodiments. As shown, the second valve inlet of the valve 110 is fluidly coupled to a compressor outlet of a second compressor 116, such as a compressor of an existing AC system used in a vehicle. The valve outlet of the valve 110 is fluidly connected to a condenser inlet of the condenser 102. In the illustrated embodiment, the compressor inlet of the first compressor 108 is fluidly connected to the compressor inlet of the second compressor 116, i.e., the first and second compressors are fluidly connected in parallel.


In some embodiments, the integrated system of the present invention further comprising a controller 118, such as the controller disclosed in U.S. patent application Ser. No. 14/995,119, the entire contents of which are incorporated herein for all purposes by this reference. The controller 118 is electrically coupled to the first and second compressors and configured to selectively control the operation of the first and second compressors. For example, when the cooling demand is below the cooling capacity of the exciting AC system, the control turns off the second compressor (the compressor of the exciting AC system) and turns on the first compressor, resulting in reduction in energy consumption and operation cost. As another example, the controller can be operated or programmed to turn on the first compressor to pre-condition the vehicle before a driver or passenger enters the vehicle. As a further example in which the existing AC system including multiple evaporators (e.g., a cab evaporator associated with the cab compartment and a sleeper evaporator associated with the sleeper compartment), the controller can selectively control the operation of the first and second compressors in accordance with the cooling demand in different compartments.


In some embodiments, the system of the present invention comprises other additional or optional components. For example, in an embodiment, the system of the present invention includes an electric fan 120. The fan is to be disposed adjacent to the condenser 102 to blow air over the condenser 102.


The terminology used herein is for the purpose of describing particular implementations only and is not intended to be limiting of the claims. As used in the description of the implementations and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be understood that the terms “lower” or “upper”, “downward” or “upward”, and etc. are used to describe features of the exemplary embodiments with reference to the positions of such features as displayed in the figures. It will also be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first bracket 138 could be termed a second bracket, and, similarly, a second bracket could be termed a first bracket 138, without changing the meaning of the description, so long as all occurrences of the “first bracket 138” are renamed consistently and all occurrences of the “second bracket” are renamed consistently.

Claims
  • 1. An aftermarket compressor system for coupling to an existing vehicle air-conditioning system, comprising: an electric compressor configured to mount directly to a condenser of the existing vehicle air-conditioning system via a first condenser bracket and compress a refrigerant, the electric compressor comprising a compressor inlet and a compressor outlet; anda valve configured to mount directly to the condenser of the existing vehicle air-conditioning system via a second condenser bracket, the valve comprising: a first valve inlet fluidly coupled to the compressor outlet of the electric compressor;a second valve inlet configured to be fluidly coupled to a compressor outlet of an engine-driven compressor of the existing vehicle air-conditioning system; anda valve outlet to be fluidly connected to a condenser inlet of the condenser.
  • 2. The system of claim 1, wherein the compressor inlet of the electric compressor is configured to be fluidly connected to a compressor inlet of the engine-driven compressor.
  • 3. The system of claim 1, wherein a largest cross-sectional dimension of the electric compressor is less than 3.5 inches, less than 4 inches, less than 4.5 inches or less than 5 inches.
  • 4. The system of claim 1, wherein the electric compressor comprises one or more mounting brackets welded onto a wall of the electric compressor and configured to be coupled to the condenser.
  • 5. The system of claim 1, wherein the valve is selected from the group consisting of a magnetic valve, a spring-load valve, electronic solenoid valve, and electronic stepper valve.
  • 6. The system of claim 1, wherein the electric compressor comprises the first condenser bracket.
  • 7. The system of claim 1, wherein the electric compressor comprises the second condenser bracket.
  • 8. A system, comprising: an engine-driven compressor, of an existing vehicle air-conditioning system, configured to compress a refrigerant, the engine-driven compressor comprising a compressor outlet;a condenser having a condenser inlet;an electric compressor configured to compress a refrigerant, the electric compressor mounted directly to the condenser via a first condenser bracket and comprising a compressor inlet and a compressor outlet; anda valve mounted directly to the condenser via a second condenser bracket, the valve comprising: a first valve inlet fluidly connected to the compressor outlet of the electric compressor;a second valve inlet fluidly connected to the compressor outlet of the engine-driven compressor; anda valve outlet fluidly connected to the condenser inlet of the condenser.
  • 9. The system of claim 8, further comprising one or more of the following: a first refrigerant tube connecting the compressor outlet of the electric compressor to the first valve inlet of the valve;a second refrigerant tube for connecting the valve outlet of the valve to the condenser inlet of the condenser;a controller electrically coupled to the electric compressor and the engine-driven compressor and configured to selectively control operation of the electric compressor and the engine-driven compressor; andan electric fan disposed adjacent to the condenser, the electric fan being configured and positioned to blow air over the condenser.
  • 10. The system of claim 8, further comprising: a valve mounting assembly configured to hold the valve, wherein the valve mounting assembly is directly and fixedly coupled to one or more of the following: the edge of the condenser, andthe second condenser bracket; anda compressor mounting assembly configured to hold the electric compressor, wherein the compressor mounting assembly is directly and fixedly coupled to one or more of the following: the edge of the condenser,a middle mounting bracket, andthe first condenser bracket.
  • 11. The system of claim 10, wherein the middle mounting bracket is identical to the first condenser bracket or the second condenser bracket.
  • 12. The system of claim 10, wherein: the valve mounting assembly comprises one or more of the following: a plurality of spacers directly and fixedly coupled to the edge of the condenser;a manifold directly and fixedly coupled to one or more of the spacers;a first bracket directly and fixedly coupled to one or more of the following: the second condenser bracket and one or more of the spacers;a plurality of machined rings configured to enhance strength of the valve mounting assembly and facilitate positioning and sealing of the valve, wherein the plurality of machined rings includes a first ring directly and fixedly coupled to the first bracket and a second ring;a plurality of cylindrical pipes comprising one or more of the following: a first cylindrical pipe fixedly coupled to the first ring, a second cylindrical pipe fixedly coupled to the second ring, and a third cylindrical pipe or rod;a stamped PC disposed below the first cylindrical pipe; anda junction PC directly and fixedly coupled to one or more of the following: the second cylindrical pipe, the third cylindrical pipe or rod, the first bracket, and one or more of the plurality of the spacers;the compressor mounting assembly comprises one or more of the following: a second bracket directly and fixedly coupled to one or more of the following:the edge of the condenser, the middle mounting bracket and the first condenser bracket;a U-shaped bracket directly and fixedly coupled to the second bracket, and configured to accommodate the electric compressor; and one or more vibration dampeners.
  • 13. The system of claim 12, wherein: the electric compressor comprises one or more mounting brackets welded onto a wall of the electric compressor and configured to be coupled to the U-shaped bracket of the compressor mounting assembly; andthe one or more vibration dampeners comprise a plurality of rubber vibration mounts coupling the one or more mounting brackets welded onto the wall of the electric compressor to the U-shaped bracket of the compressor mounting assembly.
  • 14. The system of claim 8, wherein the condenser comprises the first condenser bracket and the second condenser bracket, and the system further comprises: a third bracket fixedly coupled to the first and second condenser brackets;a valve mounting assembly configured to hold the valve, wherein the valve mounting assembly is fixedly coupled to one or more of the following: the edge of the condenser and an upper portion of the third bracket; anda compressor mounting assembly configured to hold the electric compressor, wherein the compressor mounting assembly is fixedly coupled a lower portion of the third bracket.
  • 15. The system of claim 14, wherein: the valve mounting assembly comprises one or more of the following: a plurality of spacers directly and fixedly coupled to the edge of the condenser;a manifold directly and fixedly coupled to one or more of the spacers;a first bracket directly and fixedly coupled to one or more of the following: the upper portion of the third bracket and one or more of the spacers;a plurality of machined rings configured to enhance strength of the valve mounting assembly and facilitate positioning and sealing of the valve, wherein the plurality of machined rings includes a first ring directly and fixedly coupled to the first bracket and a second ring;a plurality of cylindrical pipes comprising one or more of the following: a first cylindrical pipe fixedly coupled to the first ring, a second cylindrical pipe fixedly coupled to the second ring, and a third cylindrical pipe or rod;a stamped PC disposed below the first cylindrical pipe; anda junction PC directly and fixedly coupled to one or more of the following: the second cylindrical pipe, the third cylindrical pipe or rod, the first bracket, and one or more of the plurality of the spacers; andthe compressor mounting assembly comprises one or more of the following: a U-shaped bracket fixedly coupled to the lower portion of the third bracket and configured to accommodate the electric compressor;one or more vibration dampeners; anda pad disposed between the U-shaped bracket and the third bracket and configured to provide one or more of the following: reducing vibration, distributing pressure evenly, and preventing the coupling of the U-shaped bracket to the third bracket from loosening.
  • 16. The system of claim 8, further comprising a mounting assembly, wherein the mounting assembly comprises: a plurality of mounting brackets directly and fixedly coupled to an edge of the condenser and extruded from the edge of the condenser, wherein the plurality of mounting brackets comprises: (i) an upper mounting bracket directly and fixedly coupled to an upper portion of the edge of the condenser;(ii) a middle mounting bracket directly and fixedly coupled to a middle portion of the edge of the condenser; and(iii) a lower mounting bracket directly and fixedly coupled to a lower portion of the edge of the condenser;a third bracket fixedly coupled to the upper, middle and lower mounting brackets;a valve mounting assembly configured to hold the valve, wherein the valve mounting assembly is fixedly coupled to one or more of the following: the edge of the condenser, and an upper portion of the third bracket; anda compressor mounting assembly configured to hold the electric compressor, wherein the compressor mounting assembly is fixedly coupled to a lower portion of the third bracket.
  • 17. The system of claim 16, wherein: the valve mounting assembly comprises one or more of the following: a plurality of spacers directly and fixedly coupled to the edge of the condenser;a manifold directly and fixedly coupled to one or more of the spacers;a first bracket directly and fixedly coupled to one or more of the following: the upper portion of the third bracket and one or more of the spacers;a plurality of machined rings configured to enhance strength of the valve mounting assembly and facilitate positioning and sealing of the valve, wherein the plurality of machined rings includes a first ring directly and fixedly coupled to the first bracket and a second ring;a plurality of cylindrical pipes comprising one or more of the following: a first cylindrical pipe fixedly coupled to the first ring, a second cylindrical pipe fixedly coupled to the second ring, and a third cylindrical pipe or rod;a stamped PC disposed below the first cylindrical pipe; anda junction PC directly and fixedly coupled to one or more of the following: the second cylindrical pipe, the third cylindrical pipe or rod, the first bracket, and one or more of the plurality of the spacers; andthe compressor mounting assembly comprises one or more of the following:a U-shaped bracket fixedly coupled to the lower portion of the third bracket and configured to accommodate the electric compressor;one or more vibration dampeners; anda pad disposed between the U-shaped bracket and the third bracket and configured to provide one or more of the following: reducing vibration, distributing pressure evenly, and preventing the coupling of the U-shaped bracket to the third bracket from loosening.
  • 18. The system of claim 17, wherein: the electric compressor comprises one or more mounting brackets welded onto a wall of the electric compressor and configured to be coupled to the U-shaped bracket of the compressor mounting assembly; andthe one or more vibration dampeners comprise a plurality of rubber vibration mounts coupling the one or more mounting brackets welded onto the wall of the electric compressor to the U-shaped bracket of the compressor mounting assembly.
US Referenced Citations (266)
Number Name Date Kind
2722050 Shank Nov 1955 A
2789234 Lambert et al. Jun 1956 A
3176502 Cizek et al. Apr 1965 A
3225819 Stevens Dec 1965 A
3590910 Lorenz Jul 1971 A
3627030 Lorenz Dec 1971 A
3807087 Staats Apr 1974 A
3844130 Wahnish Oct 1974 A
3880224 Weil Apr 1975 A
3885398 Dawkins May 1975 A
3938349 Ueno Feb 1976 A
3948060 Gaspard Apr 1976 A
3995443 Iversen Dec 1976 A
4015182 Erdman Mar 1977 A
4034801 Bermstein Jul 1977 A
4071080 Bridgers Jan 1978 A
4217764 Armbruster Aug 1980 A
4266405 Trask May 1981 A
4271677 Harr Jun 1981 A
4280330 Harris et al. Jul 1981 A
4324286 Brett Apr 1982 A
4359875 Ohtani Nov 1982 A
4391321 Thunberg Jul 1983 A
4412425 Fukami Nov 1983 A
4448157 Eckstein et al. May 1984 A
4459519 Erdman Jul 1984 A
4577679 Hibshman Mar 1986 A
4604036 Sutou et al. Aug 1986 A
4617472 Slavik Oct 1986 A
4641502 Aldrich et al. Feb 1987 A
4658593 Stenvinkel Apr 1987 A
4667480 Bessler May 1987 A
4694798 Kato et al. Sep 1987 A
4748825 King Jun 1988 A
4825663 Nijar et al. May 1989 A
4841733 Dussault et al. Jun 1989 A
4856078 Konopka Aug 1989 A
4893479 Gillett et al. Jan 1990 A
4905478 Matsuda et al. Mar 1990 A
4945977 D'Agaro Aug 1990 A
4947657 Kalmbach Aug 1990 A
4952283 Besik Aug 1990 A
4982576 Proctor et al. Jan 1991 A
5025634 Dressler Jun 1991 A
5046327 Walker Sep 1991 A
5067652 Enander Nov 1991 A
5095308 Hewitt Mar 1992 A
5125236 Clancey et al. Jun 1992 A
5170639 Datta Dec 1992 A
5205781 Kanno Apr 1993 A
5230719 Berner et al. Jul 1993 A
5275012 Dage et al. Jan 1994 A
5307645 Pannell May 1994 A
5316074 Isaji et al. May 1994 A
5324229 Weisbecker Jun 1994 A
5333678 Mellum et al. Aug 1994 A
5361593 Dauvergne Nov 1994 A
5376866 Erdman Dec 1994 A
5396779 Voss Mar 1995 A
5402844 Elluin Apr 1995 A
5404730 Westermeyer Apr 1995 A
5426953 Meckler Jun 1995 A
5465589 Bender et al. Nov 1995 A
5497941 Numazawa et al. Mar 1996 A
5501267 Iritani et al. Mar 1996 A
5502365 Nanbu et al. Mar 1996 A
5524442 Bergmen, Jr. et al. Jun 1996 A
5528901 Willis Jun 1996 A
5562538 Suyama Oct 1996 A
5586613 Ehsani Dec 1996 A
5647534 Kelz et al. Jul 1997 A
5657638 Erdman et al. Aug 1997 A
5682757 Peterson Nov 1997 A
5720181 Karl et al. Feb 1998 A
5752391 Ozaki et al. May 1998 A
5761918 Jackson et al. Jun 1998 A
5775415 Yoshini Jul 1998 A
5782610 Ikeda Jul 1998 A
5819549 Sherwood Oct 1998 A
5896750 Karl Apr 1999 A
5898995 Ghodbane May 1999 A
5899081 Evans et al. May 1999 A
5901572 Peiffer et al. May 1999 A
5901780 Zeigler et al. May 1999 A
5921092 Behr et al. Jul 1999 A
5934089 Magakawa et al. Aug 1999 A
5982643 Phlipot Nov 1999 A
5996363 Kurachi et al. Dec 1999 A
6016662 Tanaka et al. Jan 2000 A
6021043 Horng Feb 2000 A
6028406 Birk Feb 2000 A
6029465 Bascobert Feb 2000 A
6038877 Peiffer et al. Mar 2000 A
6038879 Turcotte Mar 2000 A
6059016 Rafalovich et al. May 2000 A
6072261 Lin Jun 2000 A
6073456 Kawai et al. Jun 2000 A
6111731 Cepynsky Aug 2000 A
6112535 Hollenbeck Sep 2000 A
6125642 Seener et al. Oct 2000 A
6134901 Harvest et al. Oct 2000 A
6152217 Ito et al. Nov 2000 A
6185959 Zajac Feb 2001 B1
6193475 Rozek Feb 2001 B1
6205795 Backman et al. Mar 2001 B1
6205802 Drucker et al. Mar 2001 B1
6209333 Bascobert Apr 2001 B1
6209622 Lagace et al. Apr 2001 B1
6213867 Yazici Apr 2001 B1
6230507 Ban et al. May 2001 B1
6232687 Hollenbeck et al. May 2001 B1
6253563 Ewert et al. Jul 2001 B1
6265692 Umebayahi et al. Jul 2001 B1
6276161 Peiffer et al. Aug 2001 B1
6282919 Rockenfeller et al. Sep 2001 B1
6318103 Rieger et al. Nov 2001 B1
6351957 Hara Mar 2002 B2
6405793 Ghodbane et al. Jun 2002 B1
6411059 Frugier et al. Jun 2002 B2
6453678 Sundhar Sep 2002 B1
6457324 Zeigler et al. Oct 2002 B2
6467279 Backman et al. Oct 2002 B1
6474081 Feuerecker Nov 2002 B1
6530426 Kishita et al. Mar 2003 B1
6543245 Waldschmidt Apr 2003 B1
6571566 Temple et al. Jun 2003 B1
6575228 Ragland et al. Jun 2003 B1
6626003 Kortüm et al. Sep 2003 B1
6675601 Ebara Jan 2004 B2
6684863 Dixon et al. Feb 2004 B2
6725134 Dillen et al. Apr 2004 B2
6745585 Kelm et al. Jun 2004 B2
6748750 Choi Jun 2004 B2
6758049 Adachi et al. Jul 2004 B2
6889762 Zeigler et al. May 2005 B2
6932148 Brummett et al. Aug 2005 B1
6939114 Iwanami et al. Sep 2005 B2
6965818 Koenig et al. Nov 2005 B2
6981544 Iwanami et al. Jan 2006 B2
6992419 Kim et al. Jan 2006 B2
7131281 Salim et al. Nov 2006 B2
7135799 Rittmeyer Nov 2006 B2
7150159 Brummett et al. Dec 2006 B1
7246502 Hammonds et al. Jul 2007 B2
7316119 Allen Jan 2008 B2
7350368 Heberle et al. Apr 2008 B2
7385323 Takahashi et al. Jun 2008 B2
7591143 Zeigler et al. Sep 2009 B2
7591303 Ziegler et al. Sep 2009 B2
7614242 Quesada Saborio Nov 2009 B1
7637031 Salim et al. Dec 2009 B2
7765824 Wong et al. Aug 2010 B2
7821175 Ionel et al. Oct 2010 B2
7932658 Ionel Apr 2011 B2
8001799 Obayashi et al. Aug 2011 B2
8141377 Connell Mar 2012 B2
8156754 Hong et al. Apr 2012 B2
8276892 Narikawa et al. Oct 2012 B2
8492948 Wang et al. Jul 2013 B2
8517087 Zeigler et al. Aug 2013 B2
8821092 Nambara Sep 2014 B2
8841813 Junak et al. Sep 2014 B2
8905071 Coombs Dec 2014 B2
8919140 Johnson et al. Dec 2014 B2
8947531 Fischer et al. Feb 2015 B2
9157670 Kreeley et al. Oct 2015 B2
9216628 Self et al. Dec 2015 B2
9221409 Gauthier Dec 2015 B1
9783024 Connell et al. Oct 2017 B2
9878591 Taniguchi et al. Jan 2018 B2
20010010261 Oomura et al. Aug 2001 A1
20020020183 Hayashi Feb 2002 A1
20020026801 Yamashita Mar 2002 A1
20020036081 Ito et al. Mar 2002 A1
20020042248 Vincent et al. Apr 2002 A1
20020078700 Kelm et al. Jun 2002 A1
20020084769 Iritani et al. Jul 2002 A1
20020108384 Higashiyama Aug 2002 A1
20020112489 Egawa et al. Aug 2002 A1
20020157412 Iwanami et al. Oct 2002 A1
20020157413 Iwanami et al. Oct 2002 A1
20030041603 Tada et al. Mar 2003 A1
20030105567 Koenig et al. Jun 2003 A1
20030106332 Okamoto Jun 2003 A1
20040060312 Horn et al. Apr 2004 A1
20040079098 Uno et al. Apr 2004 A1
20040112074 Komura et al. Jun 2004 A1
20040168449 Homan et al. Sep 2004 A1
20040216477 Yamasaki et al. Nov 2004 A1
20040221599 Hille et al. Nov 2004 A1
20040250560 Ikura Dec 2004 A1
20040256082 Bracciano Dec 2004 A1
20050016196 Kadle et al. Jan 2005 A1
20050109499 Iwanami et al. May 2005 A1
20050161211 Zeigler et al. Jul 2005 A1
20050230096 Yamaoka Oct 2005 A1
20050235660 Pham Oct 2005 A1
20050257545 Ziehr et al. Nov 2005 A1
20060042284 Heberle et al. Mar 2006 A1
20060080980 Lee Apr 2006 A1
20060102333 Zeigler et al. May 2006 A1
20060118290 Klassen et al. Jun 2006 A1
20060151163 Zeigler et al. Jul 2006 A1
20060151164 Zeigler et al. Jul 2006 A1
20060254309 Takeuchi et al. Nov 2006 A1
20070070605 Straznicky et al. Mar 2007 A1
20070101760 Bergander May 2007 A1
20070103014 Sumiya et al. May 2007 A1
20070131408 Zeigler et al. Jun 2007 A1
20070144723 Aubertin et al. Jun 2007 A1
20070144728 Kinmartin et al. Jun 2007 A1
20070163276 Braun et al. Jul 2007 A1
20070227167 Shapiro Oct 2007 A1
20070295017 Pannell Dec 2007 A1
20080017347 Chung et al. Jan 2008 A1
20080110185 Veettil et al. May 2008 A1
20080156887 Stanimirovic Jul 2008 A1
20080196436 Connell Aug 2008 A1
20080196877 Zeigler et al. Aug 2008 A1
20080209924 Yoon et al. Sep 2008 A1
20090140590 Hung Jun 2009 A1
20090211280 Alston Aug 2009 A1
20090229288 Alston et al. Sep 2009 A1
20090241592 Stover Oct 2009 A1
20090249802 Nemesh et al. Oct 2009 A1
20090301702 Zeigler et al. Dec 2009 A1
20100009620 Kawato et al. Jan 2010 A1
20100019047 Flick Jan 2010 A1
20100127591 Court et al. May 2010 A1
20100218530 Melbostad et al. Sep 2010 A1
20100263395 Adachi et al. Oct 2010 A1
20100293966 Yokomachi Nov 2010 A1
20110088417 Kayser Apr 2011 A1
20110120146 Ota et al. May 2011 A1
20110126566 Jones Jun 2011 A1
20110174014 Scarcella et al. Jul 2011 A1
20110308265 Phannavong Dec 2011 A1
20120023982 Berson Feb 2012 A1
20120102779 Beers et al. May 2012 A1
20120118532 Jentzsch et al. May 2012 A1
20120133176 Ramberg May 2012 A1
20120247135 Fakieh Oct 2012 A1
20120297805 Kamada et al. Nov 2012 A1
20120318014 Huff et al. Dec 2012 A1
20130040549 Douglas et al. Feb 2013 A1
20130167577 Street Jul 2013 A1
20130181556 Li et al. Jul 2013 A1
20130319630 Yamamoto Dec 2013 A1
20140066572 Corveleyn Mar 2014 A1
20140075973 Graaf et al. Mar 2014 A1
20140102679 Matsudaira Apr 2014 A1
20140241926 Fraser Aug 2014 A1
20140260358 Leete et al. Sep 2014 A1
20140290299 Nakaya Oct 2014 A1
20150059367 Emo et al. Mar 2015 A1
20150158368 Herr-Rathke et al. Jun 2015 A1
20150210287 Penilla et al. Jul 2015 A1
20150236525 Aridome Aug 2015 A1
20150239365 Hyde et al. Aug 2015 A1
20150306937 Kitamura et al. Oct 2015 A1
20160089958 Powell Mar 2016 A1
20160144685 Ochiai et al. May 2016 A1
20160146554 Bhatia May 2016 A1
20160229266 Maeda et al. Aug 2016 A1
20170211855 Fraser et al. Jul 2017 A1
20170350632 Hirao Dec 2017 A1
Foreign Referenced Citations (60)
Number Date Country
1468409 Jan 2004 CN
2883071 Mar 2007 CN
201872573 Jun 2011 CN
102398496 Apr 2012 CN
103547466 Jan 2014 CN
104105610 Oct 2014 CN
105071563 Nov 2015 CN
105186726 Nov 2015 CN
4440044 May 1996 DE
197 45 028 Apr 1999 DE
10014483 Nov 2000 DE
199 42 029 Mar 2001 DE
199 54 308 Jul 2001 DE
102005004950 Aug 2006 DE
10 2007 028851 Dec 2008 DE
102010054965 Jun 2012 DE
10 2012 022564 May 2014 DE
11 2015 00055 Nov 2016 DE
0516413 Dec 1992 EP
0958952 Nov 1999 EP
1024038 Aug 2000 EP
1 400 764 Mar 2004 EP
1 477 748 Nov 2004 EP
1 700 725 Sep 2006 EP
1 703 231 Sep 2006 EP
1 970 651 Sep 2008 EP
2048011 Apr 2009 EP
2196748 Jun 2010 EP
2320160 Nov 2011 EP
2894420 Jul 2015 EP
0963895 Dec 2015 EP
3118035 Jan 2017 EP
2966391 Apr 2012 FR
H02-128915 May 1990 JP
5032121 Feb 1993 JP
H07186711 Jul 1995 JP
H97-76740 Mar 1997 JP
H09318177 Dec 1997 JP
H10281595 Oct 1998 JP
2000108651 Apr 2000 JP
2005044551 Apr 2000 JP
2002081823 Mar 2002 JP
2005-033941 Feb 2005 JP
2005-081960 Mar 2005 JP
2006-264568 Oct 2006 JP
2008220043 Sep 2008 JP
2012017029 Jan 2012 JP
2014226979 Dec 2014 JP
20090068136 Jun 2009 KR
WO 8909143 Oct 1989 WO
WO 9961269 Dec 1999 WO
WO 0000361 Jan 2000 WO
WO 2004011288 Feb 2004 WO
WO 2006082082 Aug 2006 WO
WO 2012158326 Nov 2012 WO
WO 2013113308 Aug 2013 WO
WO 2014112320 Jul 2014 WO
WO 2014180749 Nov 2014 WO
WO 2014209780 Dec 2014 WO
WO 2015076872 May 2015 WO
Non-Patent Literature Citations (113)
Entry
Alfa Laval Website http://www.alfalaval.com/ecore-Java/WebObjects/ecoreJava.woa/wa/shoNode?siteNodelID=1668&cont . . . ; date last visited May 18, 2007; 1 page.
Anonymous: “NITE Connected Climate Controlled Transport Monitoring/Mobile Internet of Things UI Design/Mobil UI: Progress/Printeres/Internet of Things, User Inter . . . ,” Oct. 19, 2016 retrieved from: URL:htps://za.pinterest.com/pin/192810427773981541/, 1 pg.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2014/026687, dated Jul. 28, 2014, 12 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2014/026687, dated Sep. 15, 2015, 7 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2014/026683, dated Jul. 3, 2014 12 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2014/026683, dated Sep. 15, 2015, 6 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2013/068331, dated Nov. 7, 2014, 9 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2013/068331, dated May 10, 2016, 6 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2016/021602, dated Nov. 3, 2016, 7 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/021602, dated Sep. 12, 2017, 11 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2017/021346, dated Jul. 25, 2017, 11 pgs.
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP14717604.4, dated Oct. 23, 2015, 2 pgs.
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP14717604.4, dated Jun. 2, 2017, 12 pgs.
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP14722438.0, dated Nov. 2, 2015. 2 pgs.
Bergstrom, Inc. Communication Pursuant to Article 94(3), EP14722438.0, dated Jan. 24, 2018, 5 pgs.
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP13795064.8, dated Jun. 22, 2016, 2 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204254.3, dated Jul. 25, 2017, 8 pgs.
Bergstrom, Inc. Partial European Search Report, EP16204259.2, dated May 30, 2017, 14 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204259.2, dated Oct. 25, 2017, 15 pgs.
Bergstrom, Inc. Corrected Extended European Search Report, EP16204259.2, dated Nov. 24, 2017, 15 pgs.
Bergstrom, Inc. Partial European Search Report, EP16204256.8, dated Jul. 13, 2017, 14 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204256.8, dated Jan. 12, 2018, 11 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204256.8, dated Dec. 1, 2017, 13 pgs.
Bergstrom, Inc., Office Action, CN201480027137.4, 15 pgs.
Bergstrom, Inc., 2nd Office Action, CN201480027137.4, dated Jul. 13, 2017, 10 pgs.
Bergstrom, Inc., 3rd Office Action, CN201480027137.4, dated Jan. 17, 2018, 19 pgs.
Bergstrom, Inc., Office Action, CN201480027117.7, 8 pgs.
Bergstrom, Inc., Patent Certificate, CN201480027117.7, dated Nov. 21, 2017, 3 pgs.
Bergstrom, Inc., 2nd Office Action, CN201380081940.1, dated Jan. 17, 2018, 13 pgs.
Connell, Office Action, U.S. Appl. No. 14,209,877, dated Nov. 27, 2015, 19 pgs.
Connell, Final Office Action, U.S. Appl. No. 14/209,877, dated Jun. 22, 2016, 17 pgs.
Connell, Final Office Action, U.S. Appl. No. 14/209,877, dated Dec. 29, 2016, 21 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/209,877, dated May 16, 2017, 5 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/209,877, dated Aug. 4, 2017, 7 pgs.
Connell, Office Action, U.S. Appl. No. 14/209,961, dated Dec. 2, 2015, 14 pgs.
Connell, Final Office Action, U.S. Appl. No. 14/209,961, dated Jul. 25, 2016, 15 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/209,961, dated Jun. 15, 2017, 10 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/064,552, dated Jun. 1, 2017, 9 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/995,119, dated Aug. 31, 2017, 7 pgs.
Connell, Office Action, U.S. Appl. No. 14/965,142, dated Aug. 29, 2017, 12 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/965,142, dated Feb. 26, 2018, 8 pgs.
Connell, Office Action, U.S. Appl. No. 15/280,876, dated Dec. 14, 2017, 23 pgs.
Connell, Office Action, U.S. Appl. No. 15/791,243, dated May 8, 2018, 12 pgs.
FlatPlate Heat Exchangers; GEA FlatPiate Inc.; website—http://www.flatplate.com/profile.html; date last visited Aug. 9, 2007; 3 pages.
Glacier Bay Inc., Glacier Bay's Home Page, page printed from a website, htt(?:i/web.archive.org/web/19990417062255/htt[2://www.glacierbay.com/, apparent archive date: Apr. 17, 1999, 1 page.
Glacier Bay Inc., Darpa/Glacier Bay ECS, pages printed from a website, httir//web.archive.org/web/19991104132941/wvvw .glacierbay.com/darQatxt. htm, apparent archive date: Nov. 4, 1999, 2 pages.
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Final Report, pages printed from a website, httn://web.archive.or_gjweb/19991103001512/v⋅vww ,_g.Jacierbay.com/Darnhtm.htm, apparent archive date: Nov. 3, 1999, 9 pages.
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Project Photos, pages printed from a website, httg://web.archive.org/web/1999 1103012854/www.glacierbay.com/Dargghotos.htm, apparent archive date: Nov. 3, 1999, 2 pages.
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Operational Video, page printed from a website, httQ://web.archive.orq/web/19991022221040/wvvw.qlacierbay.com/DarQvid.htm, apparent archive date Oct. 22, 1999; 1 page.
Glacier Bay Inc., R & D, pages printed from a website, htt ://web.archive.org/web/20000121130306/www.glacierbay.com/R&D.htm, apparent archive date: Jan. 21, 2000, 2 pages.
Glacier Bay Inc., Company History, pages printed from a website, httg://web.archive.org/web/20000301153828/www .g!acierbay.corn/History:.htrn, apparent archive date: Mar. 1, 2000; 2 pages.
Glacier Bay Inc., Contact, page printed from a website, httQ://web.archive.orq/web/19990508104511/W\″′I!V .qlacierba:t.com/Contact.htm, apparent archive date: May 8, 1999; 1 page.
Michael Löhle, Günther Feuerecker and Ulrich Salzer; NON Idling HVAC-modufe tor Long Distance Trucks;SAE TechnicalPaper Series 1999-01-1193; International Congress and Exposition, Detroit, Michigan; Mar. 1-4, 1999; 8 pages.
Mahmoud Ghodbane; On Vehicle Performance of a Secondary Loop A/C System; SAE Technical Paper Series 2000-01-1270; SAE 2000 World Congress, Detroit, Michigan; Mar. 6-9, 2000; 6 pages.
Masami Konaka and Hiroki Matsuo; SAE Technical Paper Series 2000-01-1271; SAE 2000 World Congress, Detroit, Michigan; Mar. 6-9, 2000; 7 pages.
Mayo Mayo, Office Action, U.S. Appl. No. 15/034,517, dated Feb. 21, 2018, 22 pgs.
Frank Stodolsky, Linda Gaines, and Anant Vyas; Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks; Paper-Center for Transportation Research, Energy Systems Division, Argonne National Laboratory,9700 South Cass Avenue, Argonne, Illinois 60439;Jun. 2000; 30 pages.
Paper No. 26 in IPR2012-00027, Jun. 11, 2013, 12 pgs. (7,591,303).
Patricia Gardie and Vincent Goetz; Thermal Energy Storage System by Solid Absorption for Electric Automobile Heating and Air-Conditioning; Paper; 1995, 5 pages.
TropiCool No-idle Heating & Cooling, 110V/12V High-efficiency, Self-contained, Electrified Heating/AC System; ACC Climate Control Brochure, Elkhart, Indiana; 2005, 1 page.
TropiCool Power Plus, More comfort. More efficiency. More options.; ACC Climate Control Brochure, Elkhart, Indiana; 2006, 3 pages.
Packless Industries, the leader in refrigerant to water coaxial heat exchangers, flexible hoses and sucti . . . ; website—http://www.packless.com/profile.htmle: date last visited Aug. 9, 2007; 1 page.
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Mar. 11, 2013, 8 pgs.
Zeigler, Final Office Action, U.S. Appl. No. 13/661,519, dated Sep. 18, 2013, 15 pgs.
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Apr. 9, 2014, 20 pgs.
Zeigler, Final Office Action, U.S. Appl. No. 13/661,519, dated Sep. 26, 2014, 23 pgs.
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Oct. 28, 2015, 20 pgs.
Zeigler, Notice of Allowance, U.S. Appl. No. 13/661,519, dated Jun. 17, 2016, 8 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2016/065812, dated Mar. 22, 2017, 12 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/065812, dated Jun. 12, 2018, 8 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204267.5, dated Jul. 11, 2017, 8 pgs.
Bergstrom, Inc., 4th Office Action, CN201480027137.4, dated Jul. 26, 2018, 8 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/280,876, dated Jun. 21, 2018, 8 pgs.
Connell, Office Action, U.S. Appl. No. 15/283,150, dated Sep. 27, 2018, 21pgs.
Mayo Mayo, Final Office Action, U.S. Appl. No. 15/034,517, dated Aug. 28, 2018, 9pgs.
Hansson, Office Action dated Oct. 5, 2018, U.S. Appl. No. 15/256,109, 14pgs.
Connell, Office Action, dated Oct. 19, 2018, U.S. Appl. No. 15/722,860, 7 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2018/044093, dated Oct. 25, 2018, 13 pgs.
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP14717604.4, dated Feb. 4, 2019, 5 pgs.
Bergstrom, Inc. Extended European Search Report, EP18177850.7, dated Nov. 28, 2018. 8 pgs.
Bergstrom, Inc., Notification of Grant, CN201480027137.4, dated Feb. 21, 2019, 1 pg.
Bergstrom, Inc., 3rd Office Action, CN201380081940.1, dated Jul. 30, 2018, 7 pgs.
Bergstrom, Inc., 1st Office Action, CN201680002224.3, dated Dec. 11, 2018, 5 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/283,150, dated Mar. 22, 2019, 8 pgs.
Connell, Notice of Allowance, dated Feb. 7, 2019, U.S. Appl. No. 15/722,860, 5 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/791,243, dated Jan. 24, 2019, 7 pgs.
Connell, Office Action, dated Apr. 18, 2019, U.S. Appl. No. 15/816,993, 17 pgs.
Hansson, Final Office Action, U.S. Appl. No. 15/256,109, dated May 2, 2019, 14 pgs.
Mayo Mayo, Final Office Action, U.S. Appl. No. 15/034,517, dated Nov. 30, 2018, 7 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2017049859, dated Nov. 12, 2017, 9 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2017049859, dated Mar. 5, 2019, 6 pgs.
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2017053196, dated Sep. 3, 2018, 17 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2017053196, dated Apr. 2, 2019, 11 pgs.
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/423326, dated Sep. 27, 2016, 8 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/423326, dated Jan. 16, 2018, 7 pgs.
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42307, dated Oct. 7, 2016, 8 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/42307, dated Jan. 16, 2018, 7 pgs.
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42314, dated Sep. 30, 2016, 7 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/42314, dated Jan. 16, 2018, 6 pgs.
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42329, dated Sep. 30, 2016, 6 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/42329, dated Jan. 16, 2018, 5 pgs.
Bergstrom, Inc., Communicaton Pursuant to Article 94(3), EP16820096.2, dated Aug. 12, 2019, 7 pgs.
Bergstrom, Inc., Communication Pursuant to Rules 161(1) and 162, EP17780954.8, dated May 10, 2019, 3 pgs.
Bergstrom, Inc., Extended European Search Report, EP19166779.9, dated Aug. 30, 2019, 8 pgs.
Bergstrom, Inc., Patent Certificate CN201480027137.4, May 31, 2019, 4 pgs.
Bergstrom, Inc., Letters Patent, CN201680002224.3, Sep. 10, 2019, 2 pgs.
Connell, Notice of Allowance, dated May 20, 2019, U.S. Appl. No. 15/722,860, 5 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/791,243, dated May 15, 2019, 7 pgs.
Connell, Notice of Allowance, dated Sep. 26, 2019, U.S. Appl. No. 15/816,993, 8 pgs.
Connell, Office Action, U.S. Appl. No. 15/439,865, dated Sep. 24, 2019, 6 pgs.
Connell, Office Action, U.S. Appl. No. 15/660,734, dated Oct. 30, 2019, 24 pgs.
Hansson, Notice of Allowance, U.S. Appl. No. 15/256,109, dated Sep. 24, 2019, 9 pgs.
TYCO Electronics Corporation, “MAG-MATE Connector with Multispring Pin,” Datasheet, 2013, pp. 1-2 from <URL: http://datasheet.octopart.com/1247003-2-TE-Connectivity-datasheet-14918754.pdf>.
Related Publications (1)
Number Date Country
20170259645 A1 Sep 2017 US