The present invention generally relates to a system configured to be integrated with an existing air conditioning system. More particularly, the present invention relates to an integrated compressor system including a compressor, a valve, and a mounting assembly, and configured to be integrated with an existing or modified condenser of an air conditioning system used in vehicles.
Currently, many existing vehicle heating, ventilation, and air conditioning (HVAC) systems have only one compressor driven by the engine of the vehicle. These HVAC systems cannot be operated and thus cannot provide a comfortable environment for drivers and passengers when the engine of the vehicle is off. In response to the needs of the transportation industry and the regulations governing the amount of time that a driver may spend behind the wheel, it is very desirable to have an HVAC system with multiple compressors connected to different power sources, for example, one powered by the engine and one powered by an electric source. Such an HVAC system can provide a comfortable environment for drivers and passengers when the engine of the vehicle is on as well as when it is off.
Integrating an electrically driven system into the existing engine driven system addresses some of these issues, but raises others. For example, many of the components of an existing engine driven HVAC system are located within the engine compartment, and, therefore, integration of an additional compressor into the existing vehicle HVAC system is difficult as there is limited space within an engine compartment for an additional compressor.
Given the above, there is a need in the art for a combined engine/electrically driven HVAC system that addresses the abovementioned issues.
The information disclosed in this Background section is provided for an understanding of the general background of the invention and is not an acknowledgement or suggestion that this information forms part of the prior art already known to a person skilled in the art.
Various aspects of the present invention provide an integrated compressor system configured to be integrated with existing air conditioning systems.
In one embodiment, the integrated system of the present invention comprises a mounting assembly, a first compressor and a valve. The mounting assembly is configured to be mounted directly on a condenser of an existing air conditioning system. The first compressor is configured to compress a refrigerant and comprise a compressor inlet and a compressor outlet. The first compressor is mounted or to be mounted directly on the mounting assembly. In a preferred embodiment, the first compressor is an electric compressor. The valve is also mounted or to be mounted directly on the mounting assembly. The valve comprises a first valve inlet fluidly coupled to the compressor outlet of the first compressor, a second valve inlet configured to be fluidly coupled to a compressor outlet of a second compressor, and a valve outlet to be fluidly connected to a condenser inlet of the condenser.
In another embodiment, the integrated system of the present invention comprises a condenser, a mounting assembly, a first compressor and a valve. The condenser has a condenser inlet. The mounting assembly is configured to be mounted directly on the condenser. The first compressor is configured to compress a refrigerant and comprise a compressor inlet and a compressor outlet. The first compressor is mounted or to be mounted directly on the mounting assembly. In a preferred embodiment, the first compressor is an electric compressor. The valve is also mounted or to be mounted directly on the mounting assembly. The valve comprises a first valve inlet fluidly coupled to the compressor outlet of the first compressor, a second valve inlet configured to be fluidly coupled to a compressor outlet of a second compressor, and a valve outlet to be fluidly connected to a condenser inlet of the condenser.
In some embodiments, the mounting assembly comprises one or more mounting brackets directly and fixedly coupled to the condenser. In some embodiments, the mounting assembly further comprises a valve mounting assembly configured to hold the valve and a compressor mounting assembly configured to hold the first compressor. In an embodiment, the valve mounting assembly and the compressor mounting assembly are directly and fixedly coupled to the condenser or one or more mounting brackets of the mounting assembly. In another embodiment, the valve mounting assembly and the compressor mounting assembly are directly and fixedly coupled to both the condenser and one or more mounting brackets of the mounting assembly.
In some embodiments, the mounting assembly comprises a variety of components such as brackets, spacers or rings. In an embodiment, some or all of these components are pre-assembled together for example by mechanical fastening, brazing, O-ring type sealing, welding or made together by casting. In another embodiment, all or most of these components are separate and not pre-assembled.
The integrated system of the present invention have other features and advantages that will be apparent from or are set forth in more detail in the accompanying drawings, which are incorporated herein, and the following Detailed Description, which together serve to explain certain principles of the present invention.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present application and, together with the detailed description, serve to explain the principles and implementations of the application.
Reference will now be made in detail to implementations of the present application as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts. Those of ordinary skill in the art will realize that the following detailed description of the present application is illustrative only and is not intended to be in any way limiting. Other embodiments of the present application will readily suggest themselves to such skilled persons having benefit of this disclosure.
In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementations, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
Many modifications and variations of this disclosure can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.
Embodiments of the present invention are described in the context of systems integrated or to be integrated with existing air conditioning (AC) systems, and in particular, in the context of systems integrated or to be integrated with condensers of existing AC systems used in vehicles. The vehicle can be a car, a van, a truck, a bus, a trailer, or any other vehicle or machines such as off-highway/agriculture/mining equipment that includes an HVAC system.
To solve this and/or other problems, the present invention provides a mounting assembly, a first compressor and a valve. The first compressor is configured to be mounted onto a condenser, such as an existing or modified condenser of an AC system used in vehicles. The valve is configured to allow a refrigerant compressed by the first compressor or by a second compressor (e.g., a compressor of an existing AC system) to pass into the condenser. The mounting assembly is configured to mount the first compressor and the valve to the condenser. Preferably, the mounting assembly is mounted directly or configured to be mounted directly to the condenser, and the first compressor and the valve are mounted directly on the mounting assembly. As used herein, the term “directly” refers to a configuration, in which two components are in physical contact with each other.
When integrated with an existing AC system, the second valve inlet 168 is fluidly coupled to a compressor outlet of a second compressor 116 (e.g., a compressor of the existing AC system as illustrated in
Preferably, the first compressor 108 is an electric compressor and is operated independently from the second compressor. When used in vehicles, the first compressor 108 can be used to compress a refrigerant when the engine of the vehicle is off, for example, before a driver or passenger enters into the vehicle or when the engine is off. It can also be used to compress a refrigerant when the cooling demand is below the cooling capacity of the exciting AC system to reduce energy consumption and operation cost.
In some embodiments, the system of the present invention can operate up to 2 hours, 3 hours, 4 hours and 5 hours, and provide power up to 3500 BTU/hr, 4500 BTU/hr, or 5500 BTU/hr. The system is relatively small and fits most of AC systems. In some embodiments, for example, as those illustrated in
In some embodiments, to facilitate mounting of the first compressor, the first compressor 108 comprises one or more mounting brackets 122 attached (e.g., by welding) to a wall of the first compressor. By way of illustration,
The valve 110 (As illustrated in
By design, a valve can be held in an open, closed, or any particular position, for example, by a magnetic force or a spring. Once a valve is selected and connected to the system, operation (e.g., movement) of the valve generally depends on the direction of the flow, and more particularly, the flow pressure. By way of illustration,
Generally, as illustrated in
For example,
In some embodiments where the condenser 102 does not comprise an upper mounting bracket or a lower mounting bracket, or where the condenser 102 is a component of the system of the present invention, the mounting assembly comprises a plurality of mounting brackets directly and fixedly coupled to the condenser 102, for example, to an edge of the condenser 102 and extruded from the edge of the condenser 102 as shown in the figures. In some embodiments, the plurality of mounting brackets comprises an upper mounting bracket 124, a middle mounting bracket 128 and a lower mounting bracket 126. Preferably, the upper mounting bracket is directly and fixedly coupled to an upper portion of the edge of the condenser 102. The middle mounting bracket 128 is directly and fixedly coupled to a middle portion of the edge of the condenser 102. The lower mounting bracket 126 is directly and fixedly coupled to a lower portion of the edge of the condenser 102.
The valve mounting assembly 130 is configured to hold the valve. Preferably, the valve mounting assembly 130 is directly and fixedly coupled to the edge of the condenser 102 or the upper mounting bracket, or coupled to both of the edge of the condenser 102 and the upper mounting bracket.
In some embodiments, the valve mounting assembly 130 is configured to comprise one or more or all of the following: (i) a plurality of spacers 134 directly and fixedly coupled to the edge of the condenser 102; (ii) a manifold 136 directly and fixedly coupled to one or more of the spacers 134; (iii) a first bracket 138 directly and fixedly coupled to the upper mounting bracket 124, at least one spacer, or both the upper mounting bracket 124 and at least one spacer; (iv) a plurality of machined rings configured to increase the strength of the valve mounting assembly 130 and to facilitate positioning and sealing of the valve, wherein the plurality of machined rings includes a first ring 142 directly and fixedly coupled to the first bracket 138 and a second ring 144; (v) a plurality of cylindrical pipes comprising one or more of the following: a first cylindrical pipe 158 fixedly coupled to the first ring 142, a second cylindrical pipe 140 fixedly coupled to the second ring 144, and a third cylindrical pipe or rod 159; (vi) a stamped PC 156 disposed blow the first cylindrical pipe 158; and (vii) a junction PC 139 directly and fixedly coupled to one or more of the following: the second cylindrical pipe 140, the third cylindrical pipe or rod 159, the first bracket 139, and one or more of the plurality of the spacers. Sizes, shapes, positions, and interconnections of these components are configured in accordance with the valve, the condenser, or the available space, and can be varied as required by the specific vehicle and HVAC system constraints. In some embodiments, some of these components are welded together or formed as a single casting. In some embodiments, all of these components are welded together or formed as a single casting.
In some embodiments, the valve mounting assembly 130 comprises additional or optional components, such as fasteners, spacers, seals, washers, structural supports or the like, to enhance the strength of the valve mounting assembly 130, to allow alternative arrangement of the valve mounting assembly 130 or the like.
The compressor mounting assembly 132 is configured to hold the first compressor 108. In a preferred embodiment, the compressor mounting assembly 132 is directly and fixedly coupled to one or more of the following: the condenser 102 such as an edge of the condenser, the middle mounting bracket 128, and the lower mounting bracket 126. In some embodiments, the compressor mounting assembly 132 comprises one or more of the following: (i) a second bracket 146 directly and fixedly coupled to one or more of the condenser 102 such as an edge of the condenser, the middle mounting bracket 128 and the lower mounting bracket 126; (ii) a U-shaped bracket 148 directly and fixedly coupled to the second bracket 146 and configured to accommodate the compressor; and (iii) a mechanism for reducing vibration. In some embodiments, the second bracket 146 is a L-shaped bracket. Like the valve assembly, in some cases, the second bracket 146 is pre-assembled (e.g. welded) to the middle mounting bracket 128 or the lower mounting bracket 126 or both. In some embodiments, the U-shaped bracket 148 is pre-assembled (e.g. welded) to the second bracket 146.
The U-shaped bracket 148, including its shape, size and material of which it is made, is configured or selected in accordance with the first compressor 108. In some embodiments, it is made an extrusion process and then cut and formed to shape. In some embodiments, the U-shaped bracket 148 is made with holes, cuts, slots, or the like, for coupling with the one or more mounting brackets 122 welded onto the wall of the first compressor. In such embodiments, the mechanism for reducing vibration comprises a plurality of rubber vibration mounts 154 that couple the one or more mounting brackets welded onto the wall of the first compressor to the U-shaped bracket 148 of the compressor mounting assembly 132.
Similar to the first exemplary mounting assembly, in some embodiments where the condenser 102 does not comprise an upper mounting bracket 124 or a lower mounting bracket 126, or where the condenser 102 is a component of the system of the present invention, the second exemplary mounting assembly comprises a plurality of mounting brackets directly and fixedly coupled to the condenser 102. In some embodiments, the plurality of mounting brackets comprises an upper mounting bracket 124, a middle mounting bracket 128 and a lower mounting bracket 126.
Unlike the first exemplary mounting assembly, the second exemplary mounting assembly comprises a third bracket 150. Preferably, the third bracket 150 is relatively long and fixedly coupled to the upper, middle and lower mounting brackets. In some embodiments, the third bracket 150 is a L-shaped bracket or a plate bent at one edge. In some embodiments where the mounting assembly comprises additional or optional mounting brackets, the third bracket 150 is, preferably, fixedly coupled to the additional or optional mounting brackets. The fixed coupling can be achieved by any suitable meanings, including but not limited to welding, spot welding, clamping, bolting, riveting, hinging or by adhesives.
Preferably, the valve mounting assembly 130 of the second exemplary mounting assembly is directly and fixedly coupled to the edge of the condenser 102, an upper portion of the third bracket 150, or both. Similar to the valve mounting assembly of the first exemplary mounting assembly, the valve mounting assembly of the second exemplary mounting assembly can comprise a variety of components such as brackets, spacers or rings. For example, in some embodiments, the valve mounting assembly of the second exemplary mounting assembly is configured to comprise one or more or all of the following: (i) a plurality of spacers 134 directly and fixedly coupled to the edge of the condenser 102; (ii) a manifold 136 directly and fixedly coupled to one or more of the spacers 134; (iii) a first bracket 138 directly and fixedly coupled to the upper portion of the third bracket 150, at least one spacer, or both the upper portion of the third bracket 150 and at least one spacer; (iv) a plurality of machined rings configured to increase the strength of the valve mounting assembly and facilitate positioning and sealing of the valve, wherein the plurality of machined rings includes a first ring 142 directly and fixedly coupled to the first bracket 138 and a second ring 144; (v) a plurality of cylindrical pipes comprising one or more of the following: a first cylindrical pipe 158 fixedly coupled to the first ring 142, a second cylindrical pipe 140 fixedly coupled to the second ring 144, and a third cylindrical pipe or rod 159; (vi) a stamped PC 156 disposed blow the first cylindrical pipe 158; and (vii) a junction PC 139 directly and fixedly coupled to one or more of the following: the second cylindrical pipe 140, the third cylindrical pipe or rod 159, the first bracket 139, and one or more of the plurality of the spacers. Sizes, shapes, positions, interconnections of these components are configured in accordance with the valve, the condenser, or the available space and can be readily varied. In some embodiments, the valve mounting assembly of the second exemplary mounting assembly comprises additional or optional components, such as fasteners, spacers, seals, washers, structural supports or the like, to enhance the strength of the valve mounting assembly, to allow alternative arrangement of the valve mounting assembly or the like.
In the second exemplary mounting assembly, the compressor mounting assembly is, preferably, fixedly coupled to a lower portion of the third bracket 150. In some embodiments, the compressor mounting assembly comprises a U-shaped bracket 148 fixedly coupled to the lower portion of the third bracket 150 and configured to accommodate the compressor, a mechanism for reducing vibration, or both. In some embodiments, the compressor mounting assembly further comprises a plate or pad 152 disposed between the U-shaped bracket 148 and the third bracket 150. The plate or pad 152 is configured to provide one or more of the following: reducing vibration, distributing pressure evenly and preventing the coupling of the U-shaped bracket 148 to the third bracket 150 from loosening.
In some embodiments, the integrated system of the present invention further comprising a controller 118, such as the controller disclosed in U.S. patent application Ser. No. 14/995,119, the entire contents of which are incorporated herein for all purposes by this reference. The controller 118 is electrically coupled to the first and second compressors and configured to selectively control the operation of the first and second compressors. For example, when the cooling demand is below the cooling capacity of the exciting AC system, the control turns off the second compressor (the compressor of the exciting AC system) and turns on the first compressor, resulting in reduction in energy consumption and operation cost. As another example, the controller can be operated or programmed to turn on the first compressor to pre-condition the vehicle before a driver or passenger enters the vehicle. As a further example in which the existing AC system including multiple evaporators (e.g., a cab evaporator associated with the cab compartment and a sleeper evaporator associated with the sleeper compartment), the controller can selectively control the operation of the first and second compressors in accordance with the cooling demand in different compartments.
In some embodiments, the system of the present invention comprises other additional or optional components. For example, in an embodiment, the system of the present invention includes an electric fan 120. The fan is to be disposed adjacent to the condenser 102 to blow air over the condenser 102.
The terminology used herein is for the purpose of describing particular implementations only and is not intended to be limiting of the claims. As used in the description of the implementations and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be understood that the terms “lower” or “upper”, “downward” or “upward”, and etc. are used to describe features of the exemplary embodiments with reference to the positions of such features as displayed in the figures. It will also be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first bracket 138 could be termed a second bracket, and, similarly, a second bracket could be termed a first bracket 138, without changing the meaning of the description, so long as all occurrences of the “first bracket 138” are renamed consistently and all occurrences of the “second bracket” are renamed consistently.
Number | Name | Date | Kind |
---|---|---|---|
2722050 | Shank | Nov 1955 | A |
2789234 | Lambert et al. | Jun 1956 | A |
3176502 | Cizek et al. | Apr 1965 | A |
3225819 | Stevens | Dec 1965 | A |
3590910 | Lorenz | Jul 1971 | A |
3627030 | Lorenz | Dec 1971 | A |
3807087 | Staats | Apr 1974 | A |
3844130 | Wahnish | Oct 1974 | A |
3880224 | Weil | Apr 1975 | A |
3885398 | Dawkins | May 1975 | A |
3938349 | Ueno | Feb 1976 | A |
3948060 | Gaspard | Apr 1976 | A |
3995443 | Iversen | Dec 1976 | A |
4015182 | Erdman | Mar 1977 | A |
4034801 | Bermstein | Jul 1977 | A |
4071080 | Bridgers | Jan 1978 | A |
4217764 | Armbruster | Aug 1980 | A |
4266405 | Trask | May 1981 | A |
4271677 | Harr | Jun 1981 | A |
4280330 | Harris et al. | Jul 1981 | A |
4324286 | Brett | Apr 1982 | A |
4359875 | Ohtani | Nov 1982 | A |
4391321 | Thunberg | Jul 1983 | A |
4412425 | Fukami | Nov 1983 | A |
4448157 | Eckstein et al. | May 1984 | A |
4459519 | Erdman | Jul 1984 | A |
4577679 | Hibshman | Mar 1986 | A |
4604036 | Sutou et al. | Aug 1986 | A |
4617472 | Slavik | Oct 1986 | A |
4641502 | Aldrich et al. | Feb 1987 | A |
4658593 | Stenvinkel | Apr 1987 | A |
4667480 | Bessler | May 1987 | A |
4694798 | Kato et al. | Sep 1987 | A |
4748825 | King | Jun 1988 | A |
4825663 | Nijar et al. | May 1989 | A |
4841733 | Dussault et al. | Jun 1989 | A |
4856078 | Konopka | Aug 1989 | A |
4893479 | Gillett et al. | Jan 1990 | A |
4905478 | Matsuda et al. | Mar 1990 | A |
4945977 | D'Agaro | Aug 1990 | A |
4947657 | Kalmbach | Aug 1990 | A |
4952283 | Besik | Aug 1990 | A |
4982576 | Proctor et al. | Jan 1991 | A |
5025634 | Dressler | Jun 1991 | A |
5046327 | Walker | Sep 1991 | A |
5067652 | Enander | Nov 1991 | A |
5095308 | Hewitt | Mar 1992 | A |
5125236 | Clancey et al. | Jun 1992 | A |
5170639 | Datta | Dec 1992 | A |
5205781 | Kanno | Apr 1993 | A |
5230719 | Berner et al. | Jul 1993 | A |
5275012 | Dage et al. | Jan 1994 | A |
5307645 | Pannell | May 1994 | A |
5316074 | Isaji et al. | May 1994 | A |
5324229 | Weisbecker | Jun 1994 | A |
5333678 | Mellum et al. | Aug 1994 | A |
5361593 | Dauvergne | Nov 1994 | A |
5376866 | Erdman | Dec 1994 | A |
5396779 | Voss | Mar 1995 | A |
5402844 | Elluin | Apr 1995 | A |
5404730 | Westermeyer | Apr 1995 | A |
5426953 | Meckler | Jun 1995 | A |
5465589 | Bender et al. | Nov 1995 | A |
5497941 | Numazawa et al. | Mar 1996 | A |
5501267 | Iritani et al. | Mar 1996 | A |
5502365 | Nanbu et al. | Mar 1996 | A |
5524442 | Bergmen, Jr. et al. | Jun 1996 | A |
5528901 | Willis | Jun 1996 | A |
5562538 | Suyama | Oct 1996 | A |
5586613 | Ehsani | Dec 1996 | A |
5647534 | Kelz et al. | Jul 1997 | A |
5657638 | Erdman et al. | Aug 1997 | A |
5682757 | Peterson | Nov 1997 | A |
5720181 | Karl et al. | Feb 1998 | A |
5752391 | Ozaki et al. | May 1998 | A |
5761918 | Jackson et al. | Jun 1998 | A |
5775415 | Yoshini | Jul 1998 | A |
5782610 | Ikeda | Jul 1998 | A |
5819549 | Sherwood | Oct 1998 | A |
5896750 | Karl | Apr 1999 | A |
5898995 | Ghodbane | May 1999 | A |
5899081 | Evans et al. | May 1999 | A |
5901572 | Peiffer et al. | May 1999 | A |
5901780 | Zeigler et al. | May 1999 | A |
5921092 | Behr et al. | Jul 1999 | A |
5934089 | Magakawa et al. | Aug 1999 | A |
5982643 | Phlipot | Nov 1999 | A |
5996363 | Kurachi et al. | Dec 1999 | A |
6016662 | Tanaka et al. | Jan 2000 | A |
6021043 | Horng | Feb 2000 | A |
6028406 | Birk | Feb 2000 | A |
6029465 | Bascobert | Feb 2000 | A |
6038877 | Peiffer et al. | Mar 2000 | A |
6038879 | Turcotte | Mar 2000 | A |
6059016 | Rafalovich et al. | May 2000 | A |
6072261 | Lin | Jun 2000 | A |
6073456 | Kawai et al. | Jun 2000 | A |
6111731 | Cepynsky | Aug 2000 | A |
6112535 | Hollenbeck | Sep 2000 | A |
6125642 | Seener et al. | Oct 2000 | A |
6134901 | Harvest et al. | Oct 2000 | A |
6152217 | Ito et al. | Nov 2000 | A |
6185959 | Zajac | Feb 2001 | B1 |
6193475 | Rozek | Feb 2001 | B1 |
6205795 | Backman et al. | Mar 2001 | B1 |
6205802 | Drucker et al. | Mar 2001 | B1 |
6209333 | Bascobert | Apr 2001 | B1 |
6209622 | Lagace et al. | Apr 2001 | B1 |
6213867 | Yazici | Apr 2001 | B1 |
6230507 | Ban et al. | May 2001 | B1 |
6232687 | Hollenbeck et al. | May 2001 | B1 |
6253563 | Ewert et al. | Jul 2001 | B1 |
6265692 | Umebayahi et al. | Jul 2001 | B1 |
6276161 | Peiffer et al. | Aug 2001 | B1 |
6282919 | Rockenfeller et al. | Sep 2001 | B1 |
6318103 | Rieger et al. | Nov 2001 | B1 |
6351957 | Hara | Mar 2002 | B2 |
6405793 | Ghodbane et al. | Jun 2002 | B1 |
6411059 | Frugier et al. | Jun 2002 | B2 |
6453678 | Sundhar | Sep 2002 | B1 |
6457324 | Zeigler et al. | Oct 2002 | B2 |
6467279 | Backman et al. | Oct 2002 | B1 |
6474081 | Feuerecker | Nov 2002 | B1 |
6530426 | Kishita et al. | Mar 2003 | B1 |
6543245 | Waldschmidt | Apr 2003 | B1 |
6571566 | Temple et al. | Jun 2003 | B1 |
6575228 | Ragland et al. | Jun 2003 | B1 |
6626003 | Kortüm et al. | Sep 2003 | B1 |
6675601 | Ebara | Jan 2004 | B2 |
6684863 | Dixon et al. | Feb 2004 | B2 |
6725134 | Dillen et al. | Apr 2004 | B2 |
6745585 | Kelm et al. | Jun 2004 | B2 |
6748750 | Choi | Jun 2004 | B2 |
6758049 | Adachi et al. | Jul 2004 | B2 |
6889762 | Zeigler et al. | May 2005 | B2 |
6932148 | Brummett et al. | Aug 2005 | B1 |
6939114 | Iwanami et al. | Sep 2005 | B2 |
6965818 | Koenig et al. | Nov 2005 | B2 |
6981544 | Iwanami et al. | Jan 2006 | B2 |
6992419 | Kim et al. | Jan 2006 | B2 |
7131281 | Salim et al. | Nov 2006 | B2 |
7135799 | Rittmeyer | Nov 2006 | B2 |
7150159 | Brummett et al. | Dec 2006 | B1 |
7246502 | Hammonds et al. | Jul 2007 | B2 |
7316119 | Allen | Jan 2008 | B2 |
7350368 | Heberle et al. | Apr 2008 | B2 |
7385323 | Takahashi et al. | Jun 2008 | B2 |
7591143 | Zeigler et al. | Sep 2009 | B2 |
7591303 | Ziegler et al. | Sep 2009 | B2 |
7614242 | Quesada Saborio | Nov 2009 | B1 |
7637031 | Salim et al. | Dec 2009 | B2 |
7765824 | Wong et al. | Aug 2010 | B2 |
7821175 | Ionel et al. | Oct 2010 | B2 |
7932658 | Ionel | Apr 2011 | B2 |
8001799 | Obayashi et al. | Aug 2011 | B2 |
8141377 | Connell | Mar 2012 | B2 |
8156754 | Hong et al. | Apr 2012 | B2 |
8276892 | Narikawa et al. | Oct 2012 | B2 |
8492948 | Wang et al. | Jul 2013 | B2 |
8517087 | Zeigler et al. | Aug 2013 | B2 |
8821092 | Nambara | Sep 2014 | B2 |
8841813 | Junak et al. | Sep 2014 | B2 |
8905071 | Coombs | Dec 2014 | B2 |
8919140 | Johnson et al. | Dec 2014 | B2 |
8947531 | Fischer et al. | Feb 2015 | B2 |
9157670 | Kreeley et al. | Oct 2015 | B2 |
9216628 | Self et al. | Dec 2015 | B2 |
9221409 | Gauthier | Dec 2015 | B1 |
9783024 | Connell et al. | Oct 2017 | B2 |
9878591 | Taniguchi et al. | Jan 2018 | B2 |
20010010261 | Oomura et al. | Aug 2001 | A1 |
20020020183 | Hayashi | Feb 2002 | A1 |
20020026801 | Yamashita | Mar 2002 | A1 |
20020036081 | Ito et al. | Mar 2002 | A1 |
20020042248 | Vincent et al. | Apr 2002 | A1 |
20020078700 | Kelm et al. | Jun 2002 | A1 |
20020084769 | Iritani et al. | Jul 2002 | A1 |
20020108384 | Higashiyama | Aug 2002 | A1 |
20020112489 | Egawa et al. | Aug 2002 | A1 |
20020157412 | Iwanami et al. | Oct 2002 | A1 |
20020157413 | Iwanami et al. | Oct 2002 | A1 |
20030041603 | Tada et al. | Mar 2003 | A1 |
20030105567 | Koenig et al. | Jun 2003 | A1 |
20030106332 | Okamoto | Jun 2003 | A1 |
20040060312 | Horn et al. | Apr 2004 | A1 |
20040079098 | Uno et al. | Apr 2004 | A1 |
20040112074 | Komura et al. | Jun 2004 | A1 |
20040168449 | Homan et al. | Sep 2004 | A1 |
20040216477 | Yamasaki et al. | Nov 2004 | A1 |
20040221599 | Hille et al. | Nov 2004 | A1 |
20040250560 | Ikura | Dec 2004 | A1 |
20040256082 | Bracciano | Dec 2004 | A1 |
20050016196 | Kadle et al. | Jan 2005 | A1 |
20050109499 | Iwanami et al. | May 2005 | A1 |
20050161211 | Zeigler et al. | Jul 2005 | A1 |
20050230096 | Yamaoka | Oct 2005 | A1 |
20050235660 | Pham | Oct 2005 | A1 |
20050257545 | Ziehr et al. | Nov 2005 | A1 |
20060042284 | Heberle et al. | Mar 2006 | A1 |
20060080980 | Lee | Apr 2006 | A1 |
20060102333 | Zeigler et al. | May 2006 | A1 |
20060118290 | Klassen et al. | Jun 2006 | A1 |
20060151163 | Zeigler et al. | Jul 2006 | A1 |
20060151164 | Zeigler et al. | Jul 2006 | A1 |
20060254309 | Takeuchi et al. | Nov 2006 | A1 |
20070070605 | Straznicky et al. | Mar 2007 | A1 |
20070101760 | Bergander | May 2007 | A1 |
20070103014 | Sumiya et al. | May 2007 | A1 |
20070131408 | Zeigler et al. | Jun 2007 | A1 |
20070144723 | Aubertin et al. | Jun 2007 | A1 |
20070144728 | Kinmartin et al. | Jun 2007 | A1 |
20070163276 | Braun et al. | Jul 2007 | A1 |
20070227167 | Shapiro | Oct 2007 | A1 |
20070295017 | Pannell | Dec 2007 | A1 |
20080017347 | Chung et al. | Jan 2008 | A1 |
20080110185 | Veettil et al. | May 2008 | A1 |
20080156887 | Stanimirovic | Jul 2008 | A1 |
20080196436 | Connell | Aug 2008 | A1 |
20080196877 | Zeigler et al. | Aug 2008 | A1 |
20080209924 | Yoon et al. | Sep 2008 | A1 |
20090140590 | Hung | Jun 2009 | A1 |
20090211280 | Alston | Aug 2009 | A1 |
20090229288 | Alston et al. | Sep 2009 | A1 |
20090241592 | Stover | Oct 2009 | A1 |
20090249802 | Nemesh et al. | Oct 2009 | A1 |
20090301702 | Zeigler et al. | Dec 2009 | A1 |
20100009620 | Kawato et al. | Jan 2010 | A1 |
20100019047 | Flick | Jan 2010 | A1 |
20100127591 | Court et al. | May 2010 | A1 |
20100218530 | Melbostad et al. | Sep 2010 | A1 |
20100263395 | Adachi et al. | Oct 2010 | A1 |
20100293966 | Yokomachi | Nov 2010 | A1 |
20110088417 | Kayser | Apr 2011 | A1 |
20110120146 | Ota et al. | May 2011 | A1 |
20110126566 | Jones | Jun 2011 | A1 |
20110174014 | Scarcella et al. | Jul 2011 | A1 |
20110308265 | Phannavong | Dec 2011 | A1 |
20120023982 | Berson | Feb 2012 | A1 |
20120102779 | Beers et al. | May 2012 | A1 |
20120118532 | Jentzsch et al. | May 2012 | A1 |
20120133176 | Ramberg | May 2012 | A1 |
20120247135 | Fakieh | Oct 2012 | A1 |
20120297805 | Kamada et al. | Nov 2012 | A1 |
20120318014 | Huff et al. | Dec 2012 | A1 |
20130040549 | Douglas et al. | Feb 2013 | A1 |
20130167577 | Street | Jul 2013 | A1 |
20130181556 | Li et al. | Jul 2013 | A1 |
20130319630 | Yamamoto | Dec 2013 | A1 |
20140066572 | Corveleyn | Mar 2014 | A1 |
20140075973 | Graaf et al. | Mar 2014 | A1 |
20140102679 | Matsudaira | Apr 2014 | A1 |
20140241926 | Fraser | Aug 2014 | A1 |
20140260358 | Leete et al. | Sep 2014 | A1 |
20140290299 | Nakaya | Oct 2014 | A1 |
20150059367 | Emo et al. | Mar 2015 | A1 |
20150158368 | Herr-Rathke et al. | Jun 2015 | A1 |
20150210287 | Penilla et al. | Jul 2015 | A1 |
20150236525 | Aridome | Aug 2015 | A1 |
20150239365 | Hyde et al. | Aug 2015 | A1 |
20150306937 | Kitamura et al. | Oct 2015 | A1 |
20160089958 | Powell | Mar 2016 | A1 |
20160144685 | Ochiai et al. | May 2016 | A1 |
20160146554 | Bhatia | May 2016 | A1 |
20160229266 | Maeda et al. | Aug 2016 | A1 |
20170211855 | Fraser et al. | Jul 2017 | A1 |
20170350632 | Hirao | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
1468409 | Jan 2004 | CN |
2883071 | Mar 2007 | CN |
201872573 | Jun 2011 | CN |
102398496 | Apr 2012 | CN |
103547466 | Jan 2014 | CN |
104105610 | Oct 2014 | CN |
105071563 | Nov 2015 | CN |
105186726 | Nov 2015 | CN |
4440044 | May 1996 | DE |
197 45 028 | Apr 1999 | DE |
10014483 | Nov 2000 | DE |
199 42 029 | Mar 2001 | DE |
199 54 308 | Jul 2001 | DE |
102005004950 | Aug 2006 | DE |
10 2007 028851 | Dec 2008 | DE |
102010054965 | Jun 2012 | DE |
10 2012 022564 | May 2014 | DE |
11 2015 00055 | Nov 2016 | DE |
0516413 | Dec 1992 | EP |
0958952 | Nov 1999 | EP |
1024038 | Aug 2000 | EP |
1 400 764 | Mar 2004 | EP |
1 477 748 | Nov 2004 | EP |
1 700 725 | Sep 2006 | EP |
1 703 231 | Sep 2006 | EP |
1 970 651 | Sep 2008 | EP |
2048011 | Apr 2009 | EP |
2196748 | Jun 2010 | EP |
2320160 | Nov 2011 | EP |
2894420 | Jul 2015 | EP |
0963895 | Dec 2015 | EP |
3118035 | Jan 2017 | EP |
2966391 | Apr 2012 | FR |
H02-128915 | May 1990 | JP |
5032121 | Feb 1993 | JP |
H07186711 | Jul 1995 | JP |
H97-76740 | Mar 1997 | JP |
H09318177 | Dec 1997 | JP |
H10281595 | Oct 1998 | JP |
2000108651 | Apr 2000 | JP |
2005044551 | Apr 2000 | JP |
2002081823 | Mar 2002 | JP |
2005-033941 | Feb 2005 | JP |
2005-081960 | Mar 2005 | JP |
2006-264568 | Oct 2006 | JP |
2008220043 | Sep 2008 | JP |
2012017029 | Jan 2012 | JP |
2014226979 | Dec 2014 | JP |
20090068136 | Jun 2009 | KR |
WO 8909143 | Oct 1989 | WO |
WO 9961269 | Dec 1999 | WO |
WO 0000361 | Jan 2000 | WO |
WO 2004011288 | Feb 2004 | WO |
WO 2006082082 | Aug 2006 | WO |
WO 2012158326 | Nov 2012 | WO |
WO 2013113308 | Aug 2013 | WO |
WO 2014112320 | Jul 2014 | WO |
WO 2014180749 | Nov 2014 | WO |
WO 2014209780 | Dec 2014 | WO |
WO 2015076872 | May 2015 | WO |
Entry |
---|
Alfa Laval Website http://www.alfalaval.com/ecore-Java/WebObjects/ecoreJava.woa/wa/shoNode?siteNodelID=1668&cont . . . ; date last visited May 18, 2007; 1 page. |
Anonymous: “NITE Connected Climate Controlled Transport Monitoring/Mobile Internet of Things UI Design/Mobil UI: Progress/Printeres/Internet of Things, User Inter . . . ,” Oct. 19, 2016 retrieved from: URL:htps://za.pinterest.com/pin/192810427773981541/, 1 pg. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2014/026687, dated Jul. 28, 2014, 12 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2014/026687, dated Sep. 15, 2015, 7 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2014/026683, dated Jul. 3, 2014 12 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2014/026683, dated Sep. 15, 2015, 6 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2013/068331, dated Nov. 7, 2014, 9 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2013/068331, dated May 10, 2016, 6 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2016/021602, dated Nov. 3, 2016, 7 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/021602, dated Sep. 12, 2017, 11 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2017/021346, dated Jul. 25, 2017, 11 pgs. |
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP14717604.4, dated Oct. 23, 2015, 2 pgs. |
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP14717604.4, dated Jun. 2, 2017, 12 pgs. |
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP14722438.0, dated Nov. 2, 2015. 2 pgs. |
Bergstrom, Inc. Communication Pursuant to Article 94(3), EP14722438.0, dated Jan. 24, 2018, 5 pgs. |
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP13795064.8, dated Jun. 22, 2016, 2 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204254.3, dated Jul. 25, 2017, 8 pgs. |
Bergstrom, Inc. Partial European Search Report, EP16204259.2, dated May 30, 2017, 14 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204259.2, dated Oct. 25, 2017, 15 pgs. |
Bergstrom, Inc. Corrected Extended European Search Report, EP16204259.2, dated Nov. 24, 2017, 15 pgs. |
Bergstrom, Inc. Partial European Search Report, EP16204256.8, dated Jul. 13, 2017, 14 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204256.8, dated Jan. 12, 2018, 11 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204256.8, dated Dec. 1, 2017, 13 pgs. |
Bergstrom, Inc., Office Action, CN201480027137.4, 15 pgs. |
Bergstrom, Inc., 2nd Office Action, CN201480027137.4, dated Jul. 13, 2017, 10 pgs. |
Bergstrom, Inc., 3rd Office Action, CN201480027137.4, dated Jan. 17, 2018, 19 pgs. |
Bergstrom, Inc., Office Action, CN201480027117.7, 8 pgs. |
Bergstrom, Inc., Patent Certificate, CN201480027117.7, dated Nov. 21, 2017, 3 pgs. |
Bergstrom, Inc., 2nd Office Action, CN201380081940.1, dated Jan. 17, 2018, 13 pgs. |
Connell, Office Action, U.S. Appl. No. 14,209,877, dated Nov. 27, 2015, 19 pgs. |
Connell, Final Office Action, U.S. Appl. No. 14/209,877, dated Jun. 22, 2016, 17 pgs. |
Connell, Final Office Action, U.S. Appl. No. 14/209,877, dated Dec. 29, 2016, 21 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/209,877, dated May 16, 2017, 5 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/209,877, dated Aug. 4, 2017, 7 pgs. |
Connell, Office Action, U.S. Appl. No. 14/209,961, dated Dec. 2, 2015, 14 pgs. |
Connell, Final Office Action, U.S. Appl. No. 14/209,961, dated Jul. 25, 2016, 15 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/209,961, dated Jun. 15, 2017, 10 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 15/064,552, dated Jun. 1, 2017, 9 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/995,119, dated Aug. 31, 2017, 7 pgs. |
Connell, Office Action, U.S. Appl. No. 14/965,142, dated Aug. 29, 2017, 12 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/965,142, dated Feb. 26, 2018, 8 pgs. |
Connell, Office Action, U.S. Appl. No. 15/280,876, dated Dec. 14, 2017, 23 pgs. |
Connell, Office Action, U.S. Appl. No. 15/791,243, dated May 8, 2018, 12 pgs. |
FlatPlate Heat Exchangers; GEA FlatPiate Inc.; website—http://www.flatplate.com/profile.html; date last visited Aug. 9, 2007; 3 pages. |
Glacier Bay Inc., Glacier Bay's Home Page, page printed from a website, htt(?:i/web.archive.org/web/19990417062255/htt[2://www.glacierbay.com/, apparent archive date: Apr. 17, 1999, 1 page. |
Glacier Bay Inc., Darpa/Glacier Bay ECS, pages printed from a website, httir//web.archive.org/web/19991104132941/wvvw .glacierbay.com/darQatxt. htm, apparent archive date: Nov. 4, 1999, 2 pages. |
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Final Report, pages printed from a website, httn://web.archive.or_gjweb/19991103001512/v⋅vww ,_g.Jacierbay.com/Darnhtm.htm, apparent archive date: Nov. 3, 1999, 9 pages. |
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Project Photos, pages printed from a website, httg://web.archive.org/web/1999 1103012854/www.glacierbay.com/Dargghotos.htm, apparent archive date: Nov. 3, 1999, 2 pages. |
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Operational Video, page printed from a website, httQ://web.archive.orq/web/19991022221040/wvvw.qlacierbay.com/DarQvid.htm, apparent archive date Oct. 22, 1999; 1 page. |
Glacier Bay Inc., R & D, pages printed from a website, htt ://web.archive.org/web/20000121130306/www.glacierbay.com/R&D.htm, apparent archive date: Jan. 21, 2000, 2 pages. |
Glacier Bay Inc., Company History, pages printed from a website, httg://web.archive.org/web/20000301153828/www .g!acierbay.corn/History:.htrn, apparent archive date: Mar. 1, 2000; 2 pages. |
Glacier Bay Inc., Contact, page printed from a website, httQ://web.archive.orq/web/19990508104511/W\″′I!V .qlacierba:t.com/Contact.htm, apparent archive date: May 8, 1999; 1 page. |
Michael Löhle, Günther Feuerecker and Ulrich Salzer; NON Idling HVAC-modufe tor Long Distance Trucks;SAE TechnicalPaper Series 1999-01-1193; International Congress and Exposition, Detroit, Michigan; Mar. 1-4, 1999; 8 pages. |
Mahmoud Ghodbane; On Vehicle Performance of a Secondary Loop A/C System; SAE Technical Paper Series 2000-01-1270; SAE 2000 World Congress, Detroit, Michigan; Mar. 6-9, 2000; 6 pages. |
Masami Konaka and Hiroki Matsuo; SAE Technical Paper Series 2000-01-1271; SAE 2000 World Congress, Detroit, Michigan; Mar. 6-9, 2000; 7 pages. |
Mayo Mayo, Office Action, U.S. Appl. No. 15/034,517, dated Feb. 21, 2018, 22 pgs. |
Frank Stodolsky, Linda Gaines, and Anant Vyas; Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks; Paper-Center for Transportation Research, Energy Systems Division, Argonne National Laboratory,9700 South Cass Avenue, Argonne, Illinois 60439;Jun. 2000; 30 pages. |
Paper No. 26 in IPR2012-00027, Jun. 11, 2013, 12 pgs. (7,591,303). |
Patricia Gardie and Vincent Goetz; Thermal Energy Storage System by Solid Absorption for Electric Automobile Heating and Air-Conditioning; Paper; 1995, 5 pages. |
TropiCool No-idle Heating & Cooling, 110V/12V High-efficiency, Self-contained, Electrified Heating/AC System; ACC Climate Control Brochure, Elkhart, Indiana; 2005, 1 page. |
TropiCool Power Plus, More comfort. More efficiency. More options.; ACC Climate Control Brochure, Elkhart, Indiana; 2006, 3 pages. |
Packless Industries, the leader in refrigerant to water coaxial heat exchangers, flexible hoses and sucti . . . ; website—http://www.packless.com/profile.htmle: date last visited Aug. 9, 2007; 1 page. |
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Mar. 11, 2013, 8 pgs. |
Zeigler, Final Office Action, U.S. Appl. No. 13/661,519, dated Sep. 18, 2013, 15 pgs. |
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Apr. 9, 2014, 20 pgs. |
Zeigler, Final Office Action, U.S. Appl. No. 13/661,519, dated Sep. 26, 2014, 23 pgs. |
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Oct. 28, 2015, 20 pgs. |
Zeigler, Notice of Allowance, U.S. Appl. No. 13/661,519, dated Jun. 17, 2016, 8 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2016/065812, dated Mar. 22, 2017, 12 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/065812, dated Jun. 12, 2018, 8 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204267.5, dated Jul. 11, 2017, 8 pgs. |
Bergstrom, Inc., 4th Office Action, CN201480027137.4, dated Jul. 26, 2018, 8 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 15/280,876, dated Jun. 21, 2018, 8 pgs. |
Connell, Office Action, U.S. Appl. No. 15/283,150, dated Sep. 27, 2018, 21pgs. |
Mayo Mayo, Final Office Action, U.S. Appl. No. 15/034,517, dated Aug. 28, 2018, 9pgs. |
Hansson, Office Action dated Oct. 5, 2018, U.S. Appl. No. 15/256,109, 14pgs. |
Connell, Office Action, dated Oct. 19, 2018, U.S. Appl. No. 15/722,860, 7 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2018/044093, dated Oct. 25, 2018, 13 pgs. |
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP14717604.4, dated Feb. 4, 2019, 5 pgs. |
Bergstrom, Inc. Extended European Search Report, EP18177850.7, dated Nov. 28, 2018. 8 pgs. |
Bergstrom, Inc., Notification of Grant, CN201480027137.4, dated Feb. 21, 2019, 1 pg. |
Bergstrom, Inc., 3rd Office Action, CN201380081940.1, dated Jul. 30, 2018, 7 pgs. |
Bergstrom, Inc., 1st Office Action, CN201680002224.3, dated Dec. 11, 2018, 5 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 15/283,150, dated Mar. 22, 2019, 8 pgs. |
Connell, Notice of Allowance, dated Feb. 7, 2019, U.S. Appl. No. 15/722,860, 5 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 15/791,243, dated Jan. 24, 2019, 7 pgs. |
Connell, Office Action, dated Apr. 18, 2019, U.S. Appl. No. 15/816,993, 17 pgs. |
Hansson, Final Office Action, U.S. Appl. No. 15/256,109, dated May 2, 2019, 14 pgs. |
Mayo Mayo, Final Office Action, U.S. Appl. No. 15/034,517, dated Nov. 30, 2018, 7 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2017049859, dated Nov. 12, 2017, 9 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2017049859, dated Mar. 5, 2019, 6 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2017053196, dated Sep. 3, 2018, 17 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2017053196, dated Apr. 2, 2019, 11 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/423326, dated Sep. 27, 2016, 8 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/423326, dated Jan. 16, 2018, 7 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42307, dated Oct. 7, 2016, 8 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/42307, dated Jan. 16, 2018, 7 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42314, dated Sep. 30, 2016, 7 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/42314, dated Jan. 16, 2018, 6 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42329, dated Sep. 30, 2016, 6 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/42329, dated Jan. 16, 2018, 5 pgs. |
Bergstrom, Inc., Communicaton Pursuant to Article 94(3), EP16820096.2, dated Aug. 12, 2019, 7 pgs. |
Bergstrom, Inc., Communication Pursuant to Rules 161(1) and 162, EP17780954.8, dated May 10, 2019, 3 pgs. |
Bergstrom, Inc., Extended European Search Report, EP19166779.9, dated Aug. 30, 2019, 8 pgs. |
Bergstrom, Inc., Patent Certificate CN201480027137.4, May 31, 2019, 4 pgs. |
Bergstrom, Inc., Letters Patent, CN201680002224.3, Sep. 10, 2019, 2 pgs. |
Connell, Notice of Allowance, dated May 20, 2019, U.S. Appl. No. 15/722,860, 5 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 15/791,243, dated May 15, 2019, 7 pgs. |
Connell, Notice of Allowance, dated Sep. 26, 2019, U.S. Appl. No. 15/816,993, 8 pgs. |
Connell, Office Action, U.S. Appl. No. 15/439,865, dated Sep. 24, 2019, 6 pgs. |
Connell, Office Action, U.S. Appl. No. 15/660,734, dated Oct. 30, 2019, 24 pgs. |
Hansson, Notice of Allowance, U.S. Appl. No. 15/256,109, dated Sep. 24, 2019, 9 pgs. |
TYCO Electronics Corporation, “MAG-MATE Connector with Multispring Pin,” Datasheet, 2013, pp. 1-2 from <URL: http://datasheet.octopart.com/1247003-2-TE-Connectivity-datasheet-14918754.pdf>. |
Number | Date | Country | |
---|---|---|---|
20170259645 A1 | Sep 2017 | US |