Integrated cryosurgical system with refrigerant and electrical power source

Information

  • Patent Grant
  • 9066712
  • Patent Number
    9,066,712
  • Date Filed
    Tuesday, December 22, 2009
    14 years ago
  • Date Issued
    Tuesday, June 30, 2015
    8 years ago
Abstract
A system for treating tissue in a patient includes a body having a cooling fluid supply path and a tissue piercing probe in fluid communication with the cooling fluid supply path. The probe extends distally from the body and is insertable into the tissue through the patient's skin. A cooling fluid source is fluidly coupled with the probe such that when cooling is initiated, cooling fluid flows in the probe thereby cooling the probe and any adjacent tissue. A heater element is in thermal engagement with the cooling fluid source and a power source provides power to the heater element thereby heating the cooling fluid. The power source has sufficient power to heat the cooling fluid to at least a desired temperature but has insufficient power to heat the cooling fluid above a critical temperature which results in rupture of the cooling fluid source.
Description
BACKGROUND OF THE INVENTION

The present invention is generally directed to medical devices, systems, and methods, particularly for cooling-induced remodeling of tissues. Embodiments of the invention include devices, systems, and methods for applying cryogenic cooling to dermatological tissues so as to selectively remodel one or more target tissues along and/or below an exposed surface of the skin. Embodiments may be employed for a variety of cosmetic conditions, optionally by inhibiting undesirable and/or unsightly effects on the skin (such as lines, wrinkles, or cellulite dimples) or on other surrounding tissue. Other embodiments may find use for a wide range of medical indications. The remodeling of the target tissue may achieve a desired change in its behavior or composition.


The desire to reshape various features of the human body to either correct a deformity or merely to enhance one's appearance is common. This is evidenced by the growing volume of cosmetic surgery procedures that are performed annually.


Many procedures are intended to change the surface appearance of the skin by reducing lines and wrinkles. Some of these procedures involve injecting fillers or stimulating collagen production. More recently, pharmacologically based therapies for wrinkle alleviation and other cosmetic applications have gained in popularity.


Botulinum toxin type A (BOTOX®) is an example of a pharmacologically based therapy used for cosmetic applications. It is typically injected into the facial muscles to block muscle contraction, resulting in temporary enervation or paralysis of the muscle. Once the muscle is disabled, the movement contributing to the formation of the undesirable wrinkle is temporarily eliminated. Another example of pharmaceutical cosmetic treatment is mesotherapy, where a cocktail of homeopathic medication, vitamins, and/or drugs approved for other indications is injected into the skin to deliver healing or corrective treatment to a specific area of the body. Various cocktails are intended to effect body sculpting and cellulite reduction by dissolving adipose tissue, or skin resurfacing via collagen enhancement. Development of non-pharmacologically based cosmetic treatments also continues. For example, endermology is a mechanical based therapy that utilizes vacuum suction to stretch or loosen fibrous connective tissues which are implicated in the dimpled appearance of cellulite.


While BOTOX® and/or mesotherapies may temporarily reduce lines and wrinkles, reduce fat, or provide other cosmetic benefits they are not without their drawbacks, particularly the dangers associated with injection of a known toxic substance into a patient, the potential dangers of injecting unknown and/or untested cocktails, and the like. Additionally, while the effects of endermology are not known to be potentially dangerous, they are brief and only mildly effective.


In light of the above, improved medical devices, systems, and methods utilizing a cryogenic approach to treating the tissue have been proposed, particularly for treatment of wrinkles, fat, cellulite, and other cosmetic defects. These new techniques can provide an alternative visual appearance improvement mechanism which may replace and/or compliment known bioactive and other cosmetic therapies, ideally allowing patients to decrease or eliminate the injection of toxins and harmful cocktails while providing similar or improved cosmetic results. These new techniques are also promising because they may be performed percutaneously using only local or no anesthetic with minimal or no cutting of the skin, no need for suturing or other closure methods, no extensive bandaging, and limited or no bruising or other factors contributing to extended recovery or patient “down time.” Additionally, cryogenic treatments are also desirable since they may be used in the treatment of other cosmetic and/or dermatological conditions (and potentially other target tissues), particularly where the treatments may be provided with greater accuracy and control, less collateral tissue injury and/or pain, and greater ease of use.


While these new cryogenic treatments are promising, the use of cryogenic fluids can be dangerous to the operator as well as the patient. Cryogenic fluids are often stored in a heater canister. Excessive heating of the canister could result in canister rupture and undesired fluid leakage. Additionally, many of these cryogenic systems are powered with electrical energy. A short circuit or other electrical failure could also result in unwanted canister heating and rupture. Rupture of the canister could result in dangerous projectiles flying through the air as well as cooling fluid leaking from the device and causing injury or unwanted results to the patient and/or physician. Therefore it would be desirable to provide cryogenic treatment devices and methods with additional safety features that can more carefully control storage and heating of the cryogenic fluid in the device. It would also be desirable if these safety features were also cost effective, easy to manufacture and operate.


BRIEF SUMMARY OF THE INVENTION

The present invention is generally directed to medical devices, systems and methods for cooling-induced remodeling of tissues. More specifically, the present invention relates to methods and apparatus used to facilitate safe storage of cryogenic cooling fluids.


In a first aspect of the present invention, a system for treating target tissue in a patient comprises a body having at least one cooling refrigerant supply path and at least one probe having a proximal portion, a distal tissue piercing portion and a lumen therebetween that is in fluid communication with the cooling refrigerant supply path. The at least one probe extends distally from the body and is inserted into the target tissue through the skin surface of a patient. The system also includes a refrigerant source that is fluidly coupled with the lumen such that when cooling is initiated, a refrigerant, such as a cooling fluid or gas flows in the lumen thereby cooling the probe and any adjacent target tissue. A heater element is in thermal engagement with the refrigerant source and a power source is adapted to provide power to the heater element thereby heating the refrigerant. The power source has sufficient power to heat the refrigerant to a desired temperature and the power source has insufficient power to heat the refrigerant, which may be a cooling fluid, above a critical temperature which results in rupture of the cooling fluid source.


The body may further comprise a quick disconnect mechanism disposed near a distal end thereof and that is adapted to releasably hold the at least one probe. The quick disconnect mechanism may comprise a check valve that is adapted to prevent refrigerant from flowing along the refrigerant supply path after the probe is disconnected from the body. The probe may be releasably connected with the body and may also comprise a needle having a distal end adapted to pierce tissue. The distal end of the needle may be sealed so as to prevent refrigerant from flowing therethrough.


The refrigerant, which may be a cooling fluid source, may comprise a canister that contains the refrigerant and the canister may comprise from about 1 gram to about 35 grams of nitrous oxide. The power source may comprise a disposable or rechargeable and reusable battery such as a nickel metal hydride or lithium ion battery. In some embodiments, the battery provides electrical energy at less than about 5 volts and has a capacity of 350 milliamp-hours of current or less. The critical temperature may be less than about 80% of the canister burst temperature and the desired temperature may be 30° C. The power source may comprise an alternating current power source external to the body and tethered thereto. A thermal fuse may be electrically disposed between the power source and the heater.


The system may further comprise a valve that is adapted to regulate flow of refrigerant from the canister to the lumen. In some embodiments, the system may comprise a motor that is operatively coupled with the valve such that actuation of the motor actuates the valve. The system may also comprise a controller that is electrically coupled with the power source. The controller may comprise instructions that, if executed, result in refrigerant flow from the refrigerant source to the lumen. The valve may also be manually actuated.


In a second aspect of the present invention, a method for treating target tissue in a patient comprises the steps of providing a cryogenic device having a body with a cooling refrigerant or fluid supply path, a cooling fluid source and a probe coupled with a distal region of the body. The probe has a lumen and the device also includes a heater element in thermal engagement with the cooling fluid source and a power source. The method also comprises heating the cooling fluid source with the heater wherein the power source provides power to the heater. The power source has sufficient power to heat the cooling fluid to a desired temperature but the power source has insufficient power to heat the cooling fluid above a critical temperature which results in rupture of the cooling fluid source. The probe is engaged with the target tissue and cooling the probe cools the target tissue so as to remodel the target tissue.


The probe may comprise a needle and the step of engaging the probe may comprise piercing a skin surface with the needle into the target tissue. The target tissue may comprise skin, nerve, fat, connective tissue, blood vessels, muscle, or a combination thereof. The step of cooling comprises cooling the target tissue to at least at least 0° C. and may cause physical, physiological, or structural changes therein. Cooling may include evaporating at least some of the cooling fluid from a liquid to a gas within a distal portion of the probe. The cooling refrigerant or fluid may comprise nitrous oxide, carbon dioxide, or other refrigerants.


The cryogenic device may comprise a valve and the method may further comprise the step of actuating the valve so as to regulate flow of cooling fluid from the cooling fluid source to the lumen. The cryogenic device may comprise a motor operably coupled with the valve and the method may further comprise the step of actuating the motor so as to actuate the valve. Sometimes the power source may comprise a first battery and the method may further comprise the steps of decoupling the first battery from the cryogenic device when the first battery is substantially discharged and coupling a second battery with the cryogenic device. The second battery may be at least partially charged. When the power source comprises a battery, the method may also include recharging the battery after it has been substantially discharged. Sometimes the method may also include the step of disconnecting the probe from the body and discarding the probe.


In still another aspect of the present invention, a system for cooling a target tissue in a single patient comprises a probe having a proximal portion, a distal target tissue engaging portion, and a cooling fluid supply lumen therebetween. The probe is insertable distally into the target tissue and a cooling fluid source contains a quantity of cooling fluid. A heater element is thermally engaged with the cooling fluid source and a disposable or rechargeable battery is adapted to provide power to the heater element so as to heat the cooling fluid. The power source has sufficient power to heat the cooling fluid to a desired temperature but has insufficient power to heat the cooling fluid above a critical temperature which results in rupture of the cooling fluid source. The battery also has sufficient power to operate the cryogenic device to cool the target tissue adjacent a plurality of insertion sites so as to remodel the target tissue and cosmetically enhance an appearance of the patient. The cooling fluid source may comprise a single-use canister having from about 1 gram to about 35 grams of nitrous oxide or other refrigerant and the battery may have a capacity of less than 350 milliamp-hours of current.


These and other embodiments are described in further detail in the following description related to the appended drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a self-contained subdermal cryogenic remodeling probe and system, according to an embodiment of the invention.



FIG. 1B is a partially transparent perspective view of the self-contained probe of FIG. 1A, showing internal components of the cryogenic remodeling system and schematically illustrating replacement treatment needles for use with the disposable probe.



FIG. 1C is a schematic diagram of a cryogenic remodeling probe and system powered by an external power supply.



FIG. 1D is a schematic diagram of a cryogenic remodeling probe and system having a control console with a controller, and optional external power supply.



FIG. 1E is a schematic diagram of a cryogenic remodeling probe and system having a control console with an internal power supply and controller.



FIG. 2 schematically illustrates components that may be included in the treatment system.



FIG. 3 is a flow chart schematically illustrating a method for treatment using the disposable cryogenic probe and system of FIG. 1B.



FIG. 4 illustrates the cryogenic probe of FIG. 1B inserted through a patient's skin into target tissue.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides improved medical devices, systems, and methods. Embodiments of the invention will facilitate remodeling of tissues disposed at and below the skin, optionally to treat a cosmetic defect, a lesion, a disease state, and/or so as to alter a shape of the overlying skin surface.


Among the most immediate applications of the present invention may be the amelioration of lines and wrinkles, particularly by inhibiting muscular contractions which are associated with these cosmetic defects so as to improve an appearance of the patient. Rather than relying entirely on a pharmacological toxin or the like to disable muscles so as to induce temporary paralysis, many embodiments of the invention will at least in part employ cold to interrupt, modulate, or change nerve and muscle functions. Advantageously the function of, nerves, muscles, and associated tissues may be temporarily interrupted, modulated, or changed using moderately cold temperatures of 10° C. to −5° C. without permanently disabling the tissue function or structures. Using an approach similar to that employed for identifying structures associated with atrial fibrillation, a needle probe or other treatment device can be used to identify a target tissue structure in a diagnostic mode with these moderate temperatures, and the same probe (or a different probe) can also be used to provide a longer term or permanent treatment, optionally by treating the target tissue zone and/or inducing apoptosis at temperatures from about −5° C. to about −100° C. In some embodiments, apoptosis may be induced using treatment temperatures from about −1° C. to about −15° C., or from about −1° C. to about −19° C., optionally so as to provide a longer term or permanent treatment that limits or avoids inflammation and mobilization of skeletal muscle satellite repair cells. Hence, the duration of the treatment efficacy of such subdermal cryogenic treatments may be selected and controlled, with colder temperatures, longer treatment times, and/or larger volumes or selected patterns of target tissue determining the longevity of the treatment. Using treatment temperatures colder than −5° C., tissue may be selectively modified such that cells (for example, skeletal muscle cells or nerve axons) are treated while connective tissue structures are left intact so as to ensure complete recovery or regeneration of the affected tissue, thereby providing a temporary treatment effect.


Additional description of cryogenic cooling for treatment of cosmetic and other defects may be found in U.S. Pat. No. 7,713,266, entitled “Subdermal Cryogenic Remodeling of Muscle, Nerves, Connective Tissue, and/or Adipose Tissue (Fat),” and U.S. Pat. No. 7,850,683, also entitled “Subdermal Cryogenic Remodeling of Muscles, Nerves, Connective Tissue, and/or Adipose Tissue (Fat),” the full disclosures of which are both incorporated herein by reference.


In addition to cosmetic treatments of lines, wrinkles, and the like, embodiments of the invention may also find applications for treatments of subdermal adipose tissues, benign, pre-malignant lesions, malignant lesions, acne and a wide range of other dermatological conditions (including dermatological conditions for which cryogenic treatments have been proposed and additional dermatological conditions), and the like. Embodiments of the invention may also find applications for alleviation of pain, including those associated with muscle spasms as disclosed in copending U.S. Provisional Patent Application No. 60/987,992, filed on Nov. 14, 2007 and entitled “Pain Management Using Cryogenic Remodeling,” the full disclosure of which is incorporated herein by reference.


Referring now to FIGS. 1A and 1B, a system for cryogenic remodeling here comprises a self-contained probe handpiece generally having a proximal end 12 and a distal end 14. A handpiece body or housing 16 has a size and ergonomic shape suitable for being grasped and supported in a surgeon's hand or other system operator. As can be seen most clearly in FIG. 1B, a cryogenic cooling refrigerant supply 18, a supply valve 32 and electrical power source 20 are found within housing 16, along with a circuit 22 having a processor for controlling cooling applied by self-contained system 10 in response to actuation of an input 24. Power source 20 also supplies power to heater element 44 in order to heat the cooling refrigerant supply 18 thereby helping to create uniform coolant conditions. When actuated, supply valve 32 controls the flow of cryogenic cooling refrigerant from fluid supply 18. Some embodiments may, at least in part, be manually activated, such as through the use of a manual supply valve and/or the like, so that processors, electrical power supplies, and the like may be absent.


Extending distally from distal end 14 of housing 16 is a tissue-penetrating cryogenic cooling probe 26. Probe 26 is thermally coupled to a cooling fluid path extending from cooling refrigerant source 18, with the exemplary probe comprising a tubular body receiving at least a portion of the cooling fluid from the cooling fluid source therein. The exemplary probe 26 comprises a 30 g needle having a sharpened distal end that is axially sealed. Probe 26 may have an axial length between distal end 14 of housing 16 and the distal end of the needle of between about 0.5 mm and 5 cm, preferably having a length from about 0.5 cm to about 1 cm (5-10 mm). Such needles may comprise a stainless steel tube with an inner diameter of about 0.006 inches and an outer diameter of about 0.012 inches, while alternative probes may comprise structures having outer diameters (or other lateral cross-sectional dimensions) from about 0.006 inches to about 0.100 inches. Generally, needle probe 26 will comprise a 16 g or smaller size needle, often comprising a 20 g needle or smaller, typically comprising a 27, 30, or 31 gauge or smaller needle. In some embodiments, probe 26 may comprise two or more needles arranged in a linear array, such as those disclosed in U.S. Pat. No. 7,850,683, entitled “Subdermal Cryogenic Remodeling of Muscles, Nerves, Connective Tissue, and/or Adipose Tissue (Fat),” the full disclosure of which has been incorporated herein by reference. Multiple needle probe configurations allow the cryogenic treatment to be applied to a larger or more specific treatment area. Other needle configurations that facilitate controlling the depth of needle penetration and insulated needle embodiments are disclosed in U.S. Pat. No. 8,409,185, entitled “Replaceable and/or Easily Removable Needle Systems for Dermal and Transdermal Cryogenic Remodeling,” the entire contents of which are incorporated herein by reference. In some embodiments needle 26 is releasably coupled with body 16 so that it may be replaced after use with a sharper needle (as indicated by the dotted line) or with a needle having a different configuration. In exemplary embodiments, the needle may be threaded into the body, it may be press fit into an aperture in the body or it may have a quick disconnect such as a detent mechanism for engaging the needle with the body. A quick disconnect with a check valve is advantageous since it permits decoupling of the needle from the body at any time without excessive coolant discharge. This can be a useful safety feature in the event that the device fails in operation (e.g. motor failure), allowing an operator to disengage the needle and device from a patient's tissue without exposing the patient to coolant as the system depressurizes. This feature is also advantageous because it allows an operator to easily exchange a dull needle with a sharp needle in the middle of a treatment. One of skill in the art will appreciate that other coupling mechanisms may be used.


Addressing some of the components within housing 16, the exemplary cooling refrigerant supply 18 comprises a canister, sometimes referred to herein as a cartridge, containing a liquid under pressure, with the liquid preferably having a boiling temperature of less than 37° C. When the refrigerant is thermally coupled to the tissue-penetrating probe 26, and the probe is positioned within the patient so that an outer surface of the probe is adjacent to a target tissue, the heat from the target tissue evaporates at least a portion of the liquid and the enthalpy of vaporization cools the target tissue. A supply valve 32 may be disposed along the cooling fluid flow path between canister 18 and probe 26, or along the cooling fluid path after the probe so as to limit the temperature, time, rate of temperature change, or other cooling characteristics. The valve will often be powered electrically via power source 20, per the direction of processor 22, but may at least in part be manually powered. The exemplary power source 20 comprises a rechargeable or single-use battery. Additional details about valve 32 and power source 20 are described below. In other embodiments, the cooling refrigerant supply 18 may comprise a canister having fins or other heat exchange elements (not illustrated) thermally coupled therewith in order to prevent overheating of the canister.


The exemplary refrigerant fluid supply 18 comprises a single-use canister. Advantageously, the canister and cooling fluid therein may be stored and/or used at (or even above) room temperature. The canister may have a frangible seal or may be refillable, with the exemplary canister containing liquid nitrous oxide, N2O. A variety of alternative cooling fluids might also be used, with exemplary cooling fluids including fluorocarbon refrigerants and/or carbon dioxide. The quantity of cooling fluid contained by canister 18 will typically be sufficient to treat at least a significant region of a patient, but will often be less than sufficient to treat two or more patients. An exemplary liquid N2O canister might contain, for example, a quantity in a range from about 1 gram to about 40 grams of liquid, more preferably from about 1 gram to about 35 grams of liquid, and even more preferably from about 7 grams to about 30 grams of liquid.


Processor 22 will typically comprise a programmable electronic microprocessor embodying machine readable computer code or programming instructions for implementing one or more of the treatment methods described herein. The microprocessor will typically include or be coupled to a memory (such as a non-volatile memory, a flash memory, a read-only memory (“ROM”), a random access memory (“RAM”), or the like) storing the computer code and data to be used thereby, and/or a recording media (including a magnetic recording media such as a hard disk, a floppy disk, or the like; or an optical recording media such as a CD or DVD) may be provided. Suitable interface devices (such as digital-to-analog or analog-to-digital converters, or the like) and input/output devices (such as USB or serial I/O ports, wireless communication cards, graphical display cards, and the like) may also be provided. A wide variety of commercially available or specialized processor structures may be used in different embodiments, and suitable processors may make use of a wide variety of combinations of hardware and/or hardware/software combinations. For example, processor 22 may be integrated on a single processor board and may run a single program or may make use of a plurality of boards running a number of different program modules in a wide variety of alternative distributed data processing or code architectures. In addition Processor 22 controls an optional security 23 means that may comprise an integrated chip having a code that requires a matching code from the disposable probe 26 to work. Also the design of the interface of probe 26 connected to the distal end of housing 14 may be a geometrical fit such that the probe 26 has a fit orientation that seats or locks into the distal end of housing 14. This prevents or minimizes the use of third party knock-off components.



FIGS. 1C-1E illustrate alternative embodiments of those shown in FIGS. 1A-1B. For example, in FIG. 1C, system 10 generally takes the same form as system 10 in FIGS. 1A-1B, except that the power source has been removed from the housing, and instead a tether or power cord 51 connects the system 10 with an alternating current power supply 57 such as a wall socket. An optional fuse 53 prevents too much power from being drawn from the power supply 57, thereby preventing overheating of the refrigerant supply (not illustrated). FIG. 1D is another variation of system 10, that generally takes the same form as system 10 in FIGS. 1A-1B, with the major difference being that the power source and the controller have both been removed from the housing 16. In this embodiment, an external controller box 55 is connected with the housing 16 via a tether or cord 51, and the box 55 optionally contains either or both the controller 59 and a battery 61, which may be charged via a wall socket or other alternating current source 57. In still another variation, FIG. 1E generally takes the same form as system 10 in FIGS. 1A-1B, with the major difference being that the power source and the controller have been removed from the housing. In this embodiment, the housing 16 is coupled with an external control box 55 via a tether or cord 51. The control box 55 optionally contains either or both a battery 61 and a controller 59. A fuse 53 is electrically disposed between the control box 55 and the housing 16, to prevent too much power from being drawn from the battery 61 and overheating the refrigerant source (not illustrated).


Referring now to FIG. 2, the flow of cryogenic cooling fluid from fluid supply 18 is controlled by a supply valve 32. Supply valve 32 may comprise an electrically actuated solenoid valve, a motor actuated valve or the like operating in response to control signals from controller 22, and/or may comprise a manual valve. Exemplary supply valves may comprise structures suitable for on/off valve operation, and may provide venting of the fluid source and/or the cooling fluid path downstream of the valve when cooling flow is halted so as to limit residual cryogenic fluid vaporization and cooling. Additionally, the valve may be actuated by the controller in order to modulate coolant flow to provide high rates of cooling in some instances where it is desirable to promote necrosis of tissue such as in malignant lesions and the like or slow cooling which promotes ice formation between cells rather than within cells when necrosis is not desired. More complex flow modulating valve structures might also be used in other embodiments. For example, other applicable valve embodiments are disclosed in U.S. Pat. No. 8,409,185, previously incorporated herein by reference.


Still referring to FIG. 2, a heater (not illustrated) heats cooling fluid supply 18 so that heated cooling fluid flows through valve 32 and through a lumen 34 of a cooling fluid supply tube 36. Supply tube 36 is, at least in part, disposed within a lumen 38 of needle 26, with the supply tube extending distally from a proximal end 40 of the needle toward a distal end 42. The exemplary supply tube 36 comprises a fused silica tubular structure (not illustrated) having a polymer coating and extending in cantilever into the needle lumen 38. Supply tube 36 may have an inner lumen with an effective inner diameter of less than about 200 μm, the inner diameter often being less than about 100 μm, and typically being less than about 40 μm. Exemplary embodiments of supply tube 36 have inner lumens of between about 15 and 50 μm, such as about 30 μm. An outer diameter or size of supply tube 36 will typically be less than about 1000 μm, often being less than about 800 μm, with exemplary embodiments being between about 60 and 150 μm, such as about 90 μm or 105 μm. The tolerance of the inner lumen diameter of supply tubing 36 will preferably be relatively tight, typically being about +/−10 μm or tighter, often being +/−5 μm or tighter, and ideally being +/−3 μm or tighter, as the small diameter supply tube may provide the majority of (or even substantially all of) the metering of the cooling fluid flow into needle 26. Additional details on various aspects of needle 26 along with alternative embodiments and principles of operation are disclosed in greater detail in U.S. Patent Publication No. 2008/0154254, filed Dec. 21, 2006 and entitled “Dermal and Transdermal Cryogenic Microprobe Systems and Methods,” the entire contents of which are incorporated herein by reference. U.S. Pat. No. 8,409,185, previously incorporated herein by reference, also discloses additional details on the needle 26 along with various alternative embodiments and principles of operation.


The cooling fluid injected into lumen 38 of needle 26 will typically comprise liquid, though some gas may also be injected. At least some of the liquid vaporizes within needle 26, and the enthalpy of vaporization cools the tissue engaged by the needle. Controlling a pressure of the gas/liquid mixture within needle 26 substantially controls the temperature within lumen 38, and hence the treatment temperature ranges of the tissue. A relatively simple mechanical pressure relief valve 46 may be used to control the pressure within the lumen of the needle, with the exemplary valve comprising a valve body such as a ball bearing, urged against a valve seat by a biasing spring. An exemplary relief valve is disclosed in U.S. Provisional Patent Application No. 61/116,050 previously incorporated herein by reference. Thus, the relief valve allows better temperature control in the needle, minimizing transient temperatures. Further details on exhaust volume are disclosed in U.S. Pat. No. 8,409,185, previously incorporated herein by reference.


Alternative methods to inhibit excessively low transient temperatures at the beginning of a refrigeration cycle might be employed instead of or together with the limiting of the exhaust volume. For example, the supply valve might be cycled on and off, typically by controller 22, with a timing sequence that would limit the cooling fluid flowing so that only vaporized gas reached the needle lumen (or a sufficiently limited amount of liquid to avoid excessive dropping of the needle lumen temperature). This cycling might be ended once the exhaust volume pressure was sufficient so that the refrigeration temperature would be within desired limits during steady state flow. Analytical models that may be used to estimate cooling flows are described in greater detail in U.S. Patent Publication No. 2008/0154,254, previously incorporated herein by reference.


The device described above relies on electrical power for the controller and actuation of the valve (if present). Additionally, in some embodiments a heater element is in thermal engagement with the canister and is used to heat the coolant to a constant desired temperature. Therefore, a suitable power source is required. The device may be powered by plugging the device into a wall socket, but in order to provide a single use handheld device, a battery is more convenient to use as the power supply. Using a battery also is advantageous because it facilitates handling of the device by a physician who does not have to worry about electrical power cords dangling from the device. While the use of a battery has advantages, it also has potential drawbacks, just as any power source would have. For example, if the battery were to short out, the resulting heat could cause overheating of the cooling fluid thereby resulting excessive pressure in the canister and subsequent canister rupture. Not only would this be dangerous because of projectiles, but this could also potentially expose the patient and/or physician to the cooling fluid resulting in unwanted results or injury. Also, if the controller or other portions of the device were to fail, the heater could be left in the “on” position similarly overheating and bursting the canister. Pressure monitoring could be implemented in such a system to prevent overheating and over pressurization of the canister, but this adds expense and complexity to the device. Therefore, it would be advantageous to provide safety features that prevent overheating and rupture of the canister which do not rely on cooling fluid pressure monitoring. A simple solution is to use a fuse in the device circuitry and thus if excessive current is drawn from the battery, the fuse will melt, breaking the power circuit. Thermal fuses may also be used such that if canister temperature exceeds a critical value, the fuse cuts power to the heater. While these features are promising, once the fuse melts, the device becomes inoperative until the fuse is replaced. Therefore, a different safety feature that prevents overheating without relying on a fuse and shutting the device down is desirable.


One embodiment of such a safety feature is to use a power source such as a battery that has sufficient capacity to power the device during a typical treatment while at the same time lacking enough power to overheat the cooling fluid canister. The battery must have enough capacity to power the controller and the heater element. In some embodiments, it is desirable to heat the cooling fluid to around 28° C. to 32° C. in order to provide uniform cooling fluid supply conditions that result in optimal probe cooling, thus the battery must have enough power to heat the canister to this desired temperature. Additionally, in embodiments where a solenoid or motor actuates the valve, the battery must also have adequate capacity to power these components as well. Using a motor instead of a battery is advantageous because the motor requires less power than a solenoid. Battery requirements and capacity may be estimated by conducting various experiments. The experiments disclosed below are exemplary only and not intended to be limiting.


Experiment 1:


Testing of the system illustrated in FIG. 1 helps determine upper limits to battery capacity. For example, a system having a 4.8 volt 350 mAh nickel metal hydride battery was used to heat an 8 gram nitrous oxide canister with a 4Ω resistive heater element and a manual valve. The battery was fully charged and allowed to continuously heat the canister for 1050 seconds until depleted. Canister temperature was monitored and it reached a maximum of 81° C. without canister rupture. Therefore, it is apparent that a 4.8 volt 350 mAh battery has insufficient capacity to heat and burst an 8 gram nitrous oxide canister and furthermore, 81° C. is not hot enough to burst this type of canister.


Experiment 2:


A 10 volt DC power supply was substituted for the battery described above in Experiment 1. Power was continuously supplied to the canister and temperature was monitored until the canister ruptured. A first canister ruptured at 161° C. and a second canister ruptured at 138° C. The second canister ruptured after 1250 seconds of heating. Therefore, the canister should not be heated above approximately 138° C. and more preferably less than a lower temperature in order to allow for some margin of safety. A larger sample size (here, n=2) is required in order to obtain a statistically significant burst temperature. Furthermore, the burst temperature may vary depending on manufacturing lot of the canister as well as based on the manufacturer. An upper burst temperature limit could be determined by testing a statistically significant number of canisters and factoring in a safety margin. In an exemplary method, the cylinder would not be heated to within 80% of its burst temperature.


A safe battery capacity that does not overheat and rupture the canister may be calculated as follows using the data generated from the two experiments described above. From Experiment 2, the power required to burst the canister is estimated according to the following.

    • Current delivered with 10 volt supply=10 v/4Ω, or 2.5 Amps.
    • Power delivered with 10 volt supply=10 v*2.5 A, or 25 Watts.
    • Amp hours required to burst canister=2.5 A*1250 sec/(3600 sec per hour), or 0.868 amp-hours, or 868 milliamp-hours.
    • Watt-hours required to burst canister=25 W*1250 sec/(3600 sec per hour), or 8.68 Watt-hours.


      The data from Experiment 1 confirms that the 4.8 volt 350 milliamp-hour battery would have insufficient capacity to rupture the canister. Actual battery capacity was calculated to be:
    • Current supplied to heater=4.8 v/4Ω, or 1.17 Amps.
    • Power delivered=4.8 v*1.17 Amps=5.62 Watts.
    • Watt hours delivered=5.62 Watts*1050 sec/(3600 sec per hour), or 1.64 Watt-hours.
    • Battery capacity=1050 sec/(3600 sec per hour)*1.17 Amps, or 0.341 Amp-hours, or 341 milliamp-hours.


      Thus, the 4.8 volt, 350 milliamp-hour battery does not have adequate capacity to overheat the canister and is therefore intrinsically safe given the parameters described above. In order to provide a 2× safety factor, battery capacity should not exceed 4.3 Watt-hours or 430 milliamp-hours. One of skill in the art will of course appreciate that these calculations are based on a specific heater element and battery as well as other factors such as the type of canister, heater/canister interface and other system features. Any changes to the system can alter these estimates which are presented for exemplary use only.


Referring now to FIG. 3, a method 100 facilitates treating a patient using a cryogenic cooling system having a self-contained disposable or reusable handpiece, replaceable needles such as those of FIG. 1B and a limited capacity battery. Method 100 generally begins with a determination 110 of the desired tissue therapy and results, such as the alleviation of specific cosmetic wrinkles of the face, the inhibition of pain from a particular site, the alleviation of unsightly skin lesions or cosmetic defects from a region of the face, or the like. Appropriate target tissues for treatment are identified 112 (such as the subdermal muscles that induce the wrinkles, a tissue that transmits the pain signal, or the lesion-inducing infected tissues), allowing a target treatment depth, target treatment temperature profile, or the like to be determined 114. The application of the treatment algorithm 114 may include the control of multiple parameters such as temperature, time, cycling, pulsing, and ramp rates for cooling or thawing of treatment areas. An appropriate needle assembly can then be mounted 116 to the handpiece, with the needle assembly optionally having a needle length, skin surface cooling chamber, needle array, and/or other components suitable for treatment of the target tissues. Simpler systems may include only a single needle type, and/or a first needle assembly mounted to the handpiece.


Pressure, heating, cooling, or combinations thereof may be applied 118 to the skin surface adjacent the needle insertion site before, during, and/or after insertion 120 and cryogenic cooling 122 of the needle and associated target tissue. Upon completion of the cryogenic cooling cycle the needles will need additional “thaw” time 123 to thaw from the internally created ice ball to allow for safe removal of the probe without physical disruption of the target tissues, which may include, but not be limited to nerves, muscles, blood vessels, or connective tissues. This thaw time can either be timed with the refrigerant valve shut-off for as short a time as possible, preferably under 15 seconds, more preferably under 5 seconds, manually or programmed into the controller to automatically shut-off the valve and then pause for a chosen time interval until there is an audible or visual notification of treatment completion.


The needle can then be retracted 124 from the target tissue. If the treatment is not complete 126 and the needle does not require replacing 128, optionally pressure and/or cooling and/or heating can be applied to the next needle insertion location site 118, and the additional target tissue treated. However, as small gauge needles may dull after being inserted only a few times into the skin, any needles that are dulled (or otherwise determined to be sufficiently used to warrant replacement, regardless of whether it is after a single insertion, 5 insertions, or the like) during the treatment may be replaced with a new needle 116 before the next application of pressure/cooling 118, needle insertion 120, and/or the like. Once the target tissues have been completely treated, or once the cooling supply canister included in the self-contained handpiece is depleted, the used canister and/or needles can be disposed of 130. The handpiece may optionally be discarded. In some cases, the power source used to provide energy to the system is a battery and this may be replaced or re-charged when depleted. FIG. 4 illustrates the needle 26 of FIGS. 1A-1B and FIG. 2 after it has pierced through a patient's skin S and into the adjacent treatment tissue T. After cryogenic cooling fluid is heated and in injected into the needle 26 via supply tube 36, a region 99 of target tissue T is cooled sufficiently to effect the desired remodeling of at least a portion of the target tissue. The cooled region 99 may be controlled and shaped to treat varying tissue volumes.


A variety of target treatment temperatures, times, and cycles may be applied to differing target tissues to as to achieve the desired remodeling. For example, (as more fully described in U.S. Pat. Nos. 7,713,266 and 7,850,683, both previously incorporated herein by reference).


There is a window of temperatures where apoptosis can be induced. An apoptotic effect may be temporary, long-term (lasting at least weeks, months, or years) or even permanent. While necrotic effects may be long term or even permanent, apoptosis may actually provide more long-lasting cosmetic benefits than necrosis. Apoptosis may exhibit a non-inflammatory cell death. Without inflammation, normal muscular healing processes may be inhibited. Following many muscular injuries (including many injuries involving necrosis), skeletal muscle satellite cells may be mobilized by inflammation. Without inflammation, such mobilization may be limited or avoided. Apoptotic cell death may reduce muscle mass and/or may interrupt the collagen and elastin connective chain. Temperature ranges that generate a mixture of apoptosis and necrosis may also provide long-lasting or permanent benefits. For the reduction of adipose tissue, a permanent effect may be advantageous. Surprisingly, both apoptosis and necrosis may produce long-term or even permanent results in adipose tissues, since fat cells regenerate differently than muscle cells.


While the exemplary embodiments have been described in some detail for clarity of understanding and by way of example, a number of modifications, changes, and adaptations may be implemented and/or will be obvious to those as skilled in the art. Hence, the scope of the present invention is limited solely by the independent claims.

Claims
  • 1. A system for treating target tissue in a patient, said system comprising: a body comprising at least one cooling refrigerant supply path;at least one probe having a proximal portion, a distal tissue piercing portion and a lumen therebetween in fluid communication with the cooling refrigerant supply path, the at least one probe extending distally from the body and insertable into the target tissue through a skin surface of the patient;a refrigerant source fluidly coupled with the lumen such that when cooling is initiated, refrigerant flows in the lumen thereby cooling the probe and any adjacent target tissue;a heater element in thermal engagement with the refrigerant source; anda power source adapted to provide power to the heater element thereby heating the refrigerant source, wherein the power source has sufficient power to heat the refrigerant a desired temperature, andwherein the power source has insufficient power to heat the refrigerant above a critical temperature which results in rupture of the refrigerant source.
  • 2. The system of claim 1, wherein the body further comprises a quick disconnect mechanism disposed near a distal end thereof and adapted to releasably hold the at least one probe.
  • 3. The system of claim 2, wherein the quick disconnect mechanism comprises a check valve adapted to prevent refrigerant from flowing along the refrigerant fluid supply path after the probe is disconnected from the body.
  • 4. The system of claim 1, wherein the at least one probe is releasably connected with the body.
  • 5. The system of claim 1, wherein the at least one probe comprises a needle, the needle having a distal end adapted to pierce tissue.
  • 6. The system of claim 5, wherein the distal end of the needle is sealed so as to prevent the refrigerant from flowing therethrough.
  • 7. The system of claim 1, wherein the refrigerant source comprises a canister, the canister containing the refrigerant.
  • 8. The system of claim 7, wherein the canister comprises from about 1 gram to about 35 grams of nitrous oxide.
  • 9. The system of claim 1, wherein the power source comprises a disposable or reusable battery.
  • 10. The system of claim 1, wherein the power source comprises an alternating current power source external to the body and tethered thereto, and wherein a thermal fuse is electrically disposed between the power source and the heater.
  • 11. The system of claim 1, wherein the critical temperature is less than about 80% of canister burst temperature.
  • 12. The system of claim 1, wherein the desired temperature is 35° C.
  • 13. The system of claim 9, wherein the battery provides electrical energy at less than about 5 volts and has a capacity of 350 milliamp-hours of current or less.
  • 14. The system of claim 1, wherein the power source comprises a reusable battery.
  • 15. The system of claim 14, wherein the battery comprises a nickel metal hydride or lithium ion battery.
  • 16. The system of claim 1, further comprising a valve adapted to regulate flow of refrigerant from the canister to the lumen.
  • 17. The system of claim 16, further comprising a motor, the motor operatively coupled with the valve and adapted to actuate the valve.
  • 18. The system of claim 16, wherein the valve is manually actuated.
  • 19. The system of claim 1, further comprising a controller electrically coupled with the power source, the controller comprising instructions that, if executed, result in refrigerant flow from the cooling fluid source to the lumen.
  • 20. A method for treating target tissue in a patient, said method comprising: providing a cryogenic device having a body with a cooling fluid supply path, a cooling fluid source, a probe coupled with a distal region of the body and having a lumen, a heater element in thermal engagement with the cooling fluid source and a power source;heating the cooling fluid source with the heater, the power source providing power to the heater, wherein the power source has sufficient power to heat the cooling fluid to at least a desired temperature and wherein the power source has insufficient power to heat the cooling fluid above a critical temperature which results in rupture of the cooling fluid source;engaging the probe with the target tissue; andcooling the target tissue with the probe so as to remodel the target tissue.
  • 21. The method of claim 20, wherein the power source comprises a battery.
  • 22. The method of claim 21, wherein the battery provides electrical energy at less than about 5 volts and has a capacity of 350 milliamp-hours of current or less.
  • 23. The method of claim 20, wherein the power source comprises a nickel metal hydride battery.
  • 24. The method of claim 20, wherein the desired temperature is 30° C.
  • 25. The method of claim 20, wherein the critical temperature is 130° C.
  • 26. The method of claim 20, wherein the probe comprises a needle and the step of engaging the probe comprises piercing a skin surface with the needle into the target tissue.
  • 27. The method of claim 20, wherein the target tissue comprises skin.
  • 28. The method of claim 20, wherein the target tissue comprises muscle.
  • 29. The method of claim 20, wherein the step of cooling comprises cooling the target tissue to at least 0° C.
  • 30. The method of claim 29, wherein the step of cooling of the target tissue induces necrosis therein.
  • 31. The method of claim 20, wherein the step of cooling comprises evaporating at least some of the cooling fluid from a liquid to a gas within a distal portion of the probe.
  • 32. The method of claim 20, wherein the cooling fluid comprises nitrous oxide.
  • 33. The method of claim 20, wherein the cryogenic device comprises a valve and the method further comprises the step of actuating the valve so as to regulate flow of cooling fluid from the cooling fluid source to the lumen.
  • 34. The method of claim 33, wherein the cryogenic device comprises a motor operably coupled with the valve and the method further comprises the step of actuating the motor so as to actuate the valve.
  • 35. The method of claim 20, wherein the power source comprises a first battery and the method further comprises: decoupling the first battery from the cryogenic device when the first battery is substantially discharged; andcoupling a second battery with the cryogenic device, the second battery being at least partially charged.
  • 36. The method of claim 20, wherein the power source comprises a battery and the method further comprises: recharging the battery after it has been substantially discharged.
  • 37. The method of claim 20, further comprising the step of disconnecting the probe from the body and discarding the probe.
  • 38. A system for cooling a target tissue in a single patient, said system comprising: a probe having a proximal portion, a distal target tissue engaging portion, and a cooling fluid supply lumen therebetween, the probe insertable distally into the target tissue;a cooling fluid source containing a quantity of cooling fluid;a heater element thermally engaged with the cooling fluid source; anda battery or power source adapted to provide power to the heater element so as to heat the cooling fluid,wherein the power source has sufficient power to heat the cooling fluid to at least a desired temperature, andwherein the power source has insufficient power to heat the cooling fluid above a critical temperature which results in rupture of the cooling fluid source, andwherein the battery has sufficient power to operate the cryogenic device to cool the target tissue adjacent a plurality of insertion sites so as to remodel the target tissue and cosmetically enhance an appearance of the patient.
  • 39. The system of claim 35, wherein the cooling fluid source comprises a single-use canister holding the cooling fluid.
  • 40. The system of claim 38, wherein the battery comprises less than 450 milliamp-hours of current.
  • 41. The system of claim 38, wherein the cooling fluid comprises from about 1 gram to about 35 grams of nitrous oxide.
  • 42. The system of claim 38, wherein the desired temperature is 30° C.
  • 43. The system of claim 38, wherein the critical temperature is 130° C.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a National Stage of International Application No. PCT/US2009/069282, filed Dec. 22, 2009, and which claims the benefit of U.S. Provisional Application No. 61/139,837, filed Dec. 22, 2008, the disclosures of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2009/069282 12/22/2009 WO 00 7/2/2012
Publishing Document Publishing Date Country Kind
WO2010/075438 7/1/2010 WO A
US Referenced Citations (212)
Number Name Date Kind
2319542 Hall May 1943 A
2672032 Towse Mar 1964 A
3266492 Steinberg Aug 1966 A
3289424 Lee Dec 1966 A
3343544 Dunn et al. Sep 1967 A
3351063 Malaker et al. Nov 1967 A
3439680 Thomas , Jr. Apr 1969 A
3483869 Hayhurst Dec 1969 A
3507283 Thomas, Jr. Apr 1970 A
3532094 Stahl Oct 1970 A
3664344 Bryne May 1972 A
3702114 Zacarian Nov 1972 A
3795245 Allen, Jr. et al. Mar 1974 A
3814095 Lubens Jun 1974 A
3830239 Stumpf et al. Aug 1974 A
3886945 Stumpf et al. Jun 1975 A
3889681 Waller et al. Jun 1975 A
3951152 Crandell et al. Apr 1976 A
3993075 Lisenbee et al. Nov 1976 A
4140109 Savic et al. Feb 1979 A
4207897 Lloyd et al. Jun 1980 A
4236518 Floyd Dec 1980 A
4306568 Torre Dec 1981 A
4376376 Gregory Mar 1983 A
4404862 Harris, Sr. Sep 1983 A
4524771 McGregor et al. Jun 1985 A
4758217 Gueret Jul 1988 A
4802475 Weshahy Feb 1989 A
4946460 Merry Aug 1990 A
5059197 Urie et al. Oct 1991 A
5200170 McDow Apr 1993 A
5294325 Liu Mar 1994 A
5334181 Rubinsky et al. Aug 1994 A
5520681 Fuller et al. May 1996 A
5571147 Sluijter et al. Nov 1996 A
5647868 Chinn Jul 1997 A
5747777 Matsuoka May 1998 A
5755753 Knowlton May 1998 A
5814040 Nelson et al. Sep 1998 A
5860970 Goddard et al. Jan 1999 A
5879378 Usui Mar 1999 A
5899897 Rabin et al. May 1999 A
5916212 Baust et al. Jun 1999 A
5976505 Henderson Nov 1999 A
6003539 Yoshihara Dec 1999 A
6032675 Rubinsky Mar 2000 A
6039730 Rabin et al. Mar 2000 A
6041787 Rubinsky Mar 2000 A
6139545 Utley et al. Oct 2000 A
6141985 Cluzeau et al. Nov 2000 A
6142991 Schatzberger Nov 2000 A
6182666 Dobak, III Feb 2001 B1
6196839 Ross Mar 2001 B1
6238386 Muller et al. May 2001 B1
6277099 Strowe et al. Aug 2001 B1
6277116 Utely et al. Aug 2001 B1
6363730 Thomas Apr 2002 B1
6371943 Racz et al. Apr 2002 B1
6432102 Joye et al. Aug 2002 B2
6494844 Van Bladel et al. Dec 2002 B1
6503246 Har-Shai et al. Jan 2003 B1
6506796 Fesus et al. Jan 2003 B1
6546935 Hooven Apr 2003 B2
6551309 LePivert Apr 2003 B1
6562030 Abboud et al. May 2003 B1
6648880 Chauvet et al. Nov 2003 B2
6669688 Svaasand et al. Dec 2003 B2
6672095 Luo Jan 2004 B1
6682501 Nelson et al. Jan 2004 B1
6706037 Zvuloni et al. Mar 2004 B2
6723092 Brown et al. Apr 2004 B2
6749624 Knowlton Jun 2004 B2
6761715 Carroll Jul 2004 B2
6764493 Weber et al. Jul 2004 B1
6786901 Joye et al. Sep 2004 B2
6786902 Rabin et al. Sep 2004 B1
6789545 Littrup et al. Sep 2004 B2
6840935 Lee Jan 2005 B2
6858025 Maurice Feb 2005 B2
6902554 Huttner Jun 2005 B2
6905492 Zvuloni et al. Jun 2005 B2
6960208 Bourne et al. Nov 2005 B2
7001400 Modesitt et al. Feb 2006 B1
7081111 Svaasand et al. Jul 2006 B2
7081112 Joye et al. Jul 2006 B2
7083612 Littrup et al. Aug 2006 B2
7195616 Diller et al. Mar 2007 B2
7217939 Johansson et al. May 2007 B2
7250046 Fallat Jul 2007 B1
7311672 Van Bladel et al. Dec 2007 B2
7367341 Anderson et al. May 2008 B2
7402140 Spero et al. Jul 2008 B2
7422586 Morris et al. Sep 2008 B2
7578819 Bleich et al. Aug 2009 B2
7641679 Joye et al. Jan 2010 B2
7713266 Elkins et al. May 2010 B2
7803154 Toubia et al. Sep 2010 B2
7850683 Elkins et al. Dec 2010 B2
7862558 Elkins et al. Jan 2011 B2
7998137 Elkins et al. Aug 2011 B2
8298216 Burger et al. Oct 2012 B2
8409185 Burger et al. Apr 2013 B2
8715275 Burger et al. May 2014 B2
20020010460 Joye et al. Jan 2002 A1
20020013602 Huttner Jan 2002 A1
20020045434 Masoian et al. Apr 2002 A1
20020049436 Zvuloni et al. Apr 2002 A1
20020068929 Zvuloni Jun 2002 A1
20020120260 Morris et al. Aug 2002 A1
20020120261 Morris et al. Aug 2002 A1
20020120263 Brown et al. Aug 2002 A1
20020128638 Chauvet et al. Sep 2002 A1
20020156469 Yon et al. Oct 2002 A1
20020183731 Holland et al. Dec 2002 A1
20020193778 Alchas et al. Dec 2002 A1
20030036752 Joye et al. Feb 2003 A1
20030109912 Joye et al. Jun 2003 A1
20030130575 Desai Jul 2003 A1
20030181896 Zvuloni et al. Sep 2003 A1
20030195436 Van Bladel et al. Oct 2003 A1
20030220635 Knowlton et al. Nov 2003 A1
20030220674 Anderson et al. Nov 2003 A1
20040024391 Cytron et al. Feb 2004 A1
20040082943 Littrup et al. Apr 2004 A1
20040092875 Kochamba May 2004 A1
20040122482 Tung et al. Jun 2004 A1
20040143252 Hurst Jul 2004 A1
20040162551 Brown et al. Aug 2004 A1
20040167505 Joye et al. Aug 2004 A1
20040191229 Link et al. Sep 2004 A1
20040204705 Lafontaine Oct 2004 A1
20040210212 Maurice Oct 2004 A1
20040215178 Maurice Oct 2004 A1
20040215294 Littrup et al. Oct 2004 A1
20040215295 Littrup et al. Oct 2004 A1
20040220497 Findlay et al. Nov 2004 A1
20040220648 Carroll Nov 2004 A1
20040225276 Burgess Nov 2004 A1
20040243116 Joye et al. Dec 2004 A1
20040267248 Duong et al. Dec 2004 A1
20040267257 Bourne et al. Dec 2004 A1
20050004563 Racz et al. Jan 2005 A1
20050177147 Vancelette et al. Aug 2005 A1
20050177148 van der Walt et al. Aug 2005 A1
20050182394 Spero et al. Aug 2005 A1
20050203505 Megerman et al. Sep 2005 A1
20050203593 Shanks et al. Sep 2005 A1
20050209565 Yuzhakov et al. Sep 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050224086 Nahon Oct 2005 A1
20050228288 Hurst Oct 2005 A1
20050251103 Steffen et al. Nov 2005 A1
20050261753 Littrup et al. Nov 2005 A1
20050276759 Roser et al. Dec 2005 A1
20050281530 Rizoiu et al. Dec 2005 A1
20050283148 Janssen et al. Dec 2005 A1
20060009712 Van Bladel et al. Jan 2006 A1
20060015092 Joye et al. Jan 2006 A1
20060069385 Lafontaine et al. Mar 2006 A1
20060079914 Modesitt et al. Apr 2006 A1
20060084962 Joye et al. Apr 2006 A1
20060089688 Panescu Apr 2006 A1
20060111732 Gibbens et al. May 2006 A1
20060129142 Reynolds Jun 2006 A1
20060142785 Modesitt et al. Jun 2006 A1
20060173447 Jay Aug 2006 A1
20060173469 Klein et al. Aug 2006 A1
20060189968 Howlett et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060200117 Hermans Sep 2006 A1
20060212028 Joye et al. Sep 2006 A1
20060212048 Crainich Sep 2006 A1
20060223052 MacDonald et al. Oct 2006 A1
20060224149 Hillely Oct 2006 A1
20060258951 Bleich et al. Nov 2006 A1
20070060921 Janssen et al. Mar 2007 A1
20070088217 Babaev Apr 2007 A1
20070129714 Elkins et al. Jun 2007 A1
20070156125 DeLonzor Jul 2007 A1
20070161975 Goulko Jul 2007 A1
20070167943 Janssen et al. Jul 2007 A1
20070167959 Modesitt et al. Jul 2007 A1
20070179509 Nagata et al. Aug 2007 A1
20070198071 Ting et al. Aug 2007 A1
20070255362 Levinson et al. Nov 2007 A1
20070270925 Levinson Nov 2007 A1
20080051775 Evans Feb 2008 A1
20080051776 Bliweis et al. Feb 2008 A1
20080077201 Levinson et al. Mar 2008 A1
20080077202 Levinson Mar 2008 A1
20080077211 Levinson et al. Mar 2008 A1
20080154254 Burger et al. Jun 2008 A1
20080183164 Elkins et al. Jul 2008 A1
20080200910 Burger et al. Aug 2008 A1
20080287839 Rosen et al. Nov 2008 A1
20090018623 Levinson et al. Jan 2009 A1
20090018624 Levinson et al. Jan 2009 A1
20090018625 Levinson et al. Jan 2009 A1
20090018626 Levinson et al. Jan 2009 A1
20090018627 Levinson et al. Jan 2009 A1
20090118722 Ebbers et al. May 2009 A1
20090171334 Elkins et al. Jul 2009 A1
20090221986 Wang et al. Sep 2009 A1
20090248001 Burger et al. Oct 2009 A1
20090264876 Roy et al. Oct 2009 A1
20090299357 Zhou Dec 2009 A1
20100198207 Elkins et al. Aug 2010 A1
20110144631 Elkins et al. Jun 2011 A1
20120065629 Elkins et al. Mar 2012 A1
20120089211 Curtis et al. Apr 2012 A1
20130324990 Burger et al. Dec 2013 A1
20140249519 Burger et al. Sep 2014 A1
Foreign Referenced Citations (44)
Number Date Country
2643474 Sep 2007 CA
0043447 Jun 1981 EP
0777123 Jun 1997 EP
0955012 Oct 1999 EP
1074273 Feb 2001 EP
1377327 Sep 2007 EP
1862125 Dec 2007 EP
1360353 Jul 1974 GB
1402632 Aug 1975 GB
60-013111 Jan 1985 JP
H04-357945 Dec 1992 JP
05-038347 Jan 1998 JP
10-014656 Jan 1998 JP
2001-178737 Jul 2001 JP
2002102268 Apr 2002 JP
2004-511274 Apr 2004 JP
2005-080988 Mar 2005 JP
2006-130055 May 2006 JP
2006-517118 Jul 2006 JP
2008-515469 May 2008 JP
2254060 Jun 2005 RU
9749344 Dec 1997 WO
0197702 Dec 2001 WO
02092153 Nov 2002 WO
2004039440 May 2004 WO
2004045434 Jun 2004 WO
2004089460 Oct 2004 WO
2005000106 Jan 2005 WO
2005079321 Sep 2005 WO
2005096979 Oct 2005 WO
2006012128 Feb 2006 WO
2006023348 Mar 2006 WO
WO 2006044727 Apr 2006 WO
2006062788 Jun 2006 WO
2006125835 Nov 2006 WO
2006127467 Nov 2006 WO
WO 2007025106 Mar 2007 WO
2007037326 Apr 2007 WO
2007-076123 Jul 2007 WO
2007089603 Aug 2007 WO
2007129121 Nov 2007 WO
2007135629 Nov 2007 WO
2009026471 Feb 2009 WO
2010-075448 Jul 2010 WO
Non-Patent Literature Citations (33)
Entry
The International Search Report, dated Mar. 3, 2010, for International Application No. PCT/US2009/069282, 3 pages.
The International Search Report and the Written Opinion, dated Jul. 7, 2011, for International Application No. PCT/US2009/069282, 10 pages.
Singaporean Office Action issued in International Patent Application No. 201104541-6, dated May 13, 2013, 15 pages.
The International Search Report and the Written Opinion, dated Mar. 30, 2010, for International Application No. PCT/US2009/069304, 11 pages.
European Office Action issued in International Patent Application No. 09835799.9-2305, dated Apr. 24, 2012, 32 pages.
Singaporean Office Action issued in International Patent Application No. 201104540-8, dated Oct. 2, 2012, 8 pages.
Singaporean Examination Report issued in International Patent Application No. 201104540-8, dated May 27, 2013, 6 pages.
The International Search Report, dated Apr. 19, 2013, for International Application No. PCT PCT/US2013/021488, 12 pages.
Australian Office Action issued in International Patent Application No. 2009330012, dated Aug. 8, 2013, 3 pages.
Japanese Notice of Reasons for Rejection issued on Oct. 21, 2013 for Japanese Patent Application No. 2011-542582, with English translation, 4 pages.
European Decision to Grant issued on Jul. 18, 2013 for European Patent Application No. 09835792.4, 2 pages.
Extended European Search Report mailed on Apr. 26, 2012 for European Patent Application No. 09835792.4, 9 pages.
Japanese Notice of Reasons for Rejection issued on Oct. 7, 2013 for Japanese Patent Application No. 2011-542579, with English translation, 7 pages.
Patent Examination Report issued on Nov. 4, 2013 for Australian Patent Application No. 2009330022, 3 pages.
Examination Report issued Feb. 12, 2013 for European Patent Application No. 09835799.9, 6 pages.
Advanced Cosmetic Intervention, Inc. [webpage], retrieved from the Internet: http://www.acisurgery.com, copyright 2007, 1 page.
Cryopen, LLC [Press Release], “CyroPen, LLC Launches Revolutionary, State-of-the-Art Medical Device—The Dure of Cryosurgery in a Pend,” dated Apr. 27, 2007, retrieved from the Internet: <<http://cryopen.com/press.htm>>, 3 pages total.
Cryopen, LLC., [webpage], retrieved from the Internet: <<http://cryopen.com/>>, copyright 2006-2008, 2 pages total.
Cryosurgical Concepts, Inc., [webpage] “CryoProbenr™”, retrieved from the Internet: <<http://www.cryo-surgical.com//>> on Feb. 8, 2008, 2 pages total.
Dasiou-Plankida, “Fat injections for facial rejuvenation: 17 years experience in 1720 patients,” Journal of Cosmetic Dermatology, Oct. 22, 2004; 2(3-4): 119-125.
Foster et al., “Radiofrequency Ablation of Facial Nerve Branches Controlling Glabellar Frowning”, Dermatol Surg. Dec. 2009; 35(12):1908-1917.
Har-Shai et al., “Effect of skin surface temperature on skin pigmentation during contact and intralesional cryosurgery of hypertrophic scars and Kleoids,” Journal of the European Academy of Dermatology and Venereology, Feb. 2007, vol. 21, issue 2, pp. 191-198.
Magalov et al., “Isothermal vol. contours generated in a freezing gel by embedded cryo-needles with applications to cryo-surgery,” Cryobiology Oct. 2007, 55(2):127-137.
Metrum CryoFlex, Cryoablation in pain management brochure, 2012, 5 pages.
Metrum CryoFlex, Cryosurgery probes and accessories catalogue, 2009, 25 pages.
One Med Group, LLC., [webpage] “CryoProbe™”, retrieved from the Internet: <<http://www.onemedgroup.com/>> on Feb. 4, 2008, 2 pages total.
Rewcastle et al., “A model for the time dependent three-dimensional thermal distribution within iceballs surrounding multiple cryoprobes,” Med Phys. Jun. 2001; 28(6):1125-1137.
Rutkove, “Effects of Temperature on Neuromuscular Electrophysiology,” Muscles and Nerves, Jun. 12, 2001; 24(7):867-882; retrieved from http://www3.interscience.wiley.com/cgi-bin/fulltext/83502418/PDFSTART.
Utley et al., “Radiofrequency Ablation of the Nerve to the Corrugator Muscle for the Elimination of Glabellar Furrowing,” Arch. Facial Plastic Surgery 1:46-48, 1999.
Yang et al., “Apoptosis induced by cryo-injury in human colorectal cancer cells is associated with mitochondrial dysfunction.,” International Journal of Cancer, 2002, vol. 103, No. 3, pp. 360-369.
U.S. Appl. No. 60/987,992, filed Nov. 14, 2007, titled “Pain Management Using Cryogenic Remodeling” by Keith Burger et al.
U.S. Appl. No. 61/116,050, filed Nov. 19, 2008, titled “Cryosurgical Safety Valve Arrangement and Methods for Its Use in Cosmetic and Other Treatment” by Timothy Holland et al.
International Preliminary Report on Patentability mailed Jul. 7, 2011, for PCT Application No. PCT/US2009/069304, 8 pages.
Related Publications (1)
Number Date Country
20120265278 A1 Oct 2012 US
Provisional Applications (1)
Number Date Country
61139837 Dec 2008 US