The present disclosure generally relates to cyclic pulsed detonation combustors (PDCs) and more particularly, enhancing the deflagration-to-detonation transition (DDT) process by integrating a cooling fluid flow with the initiation obstacles.
In a generalized pulse detonation combustor, fuel and oxidizer (e.g., oxygen-containing gas such as air) are admitted to an elongated detonation chamber at an upstream inlet end. An igniter is used to initiate this combustion process. Following a successful transition to detonation, a detonation wave propagates toward the outlet at supersonic speed causing substantial combustion of the fuel/air mixture before the mixture can be substantially driven from the outlet. The result of the combustion is to rapidly elevate pressure within the combustor before substantial gas can escape through the combustor exit. The effect of this inertial confinement is to produce near constant volume combustion. Such devices can be used to produce pure thrust or can be integrated in a gas-turbine engine. The former is generally termed a pure thrust-producing device and the latter is termed a pulse detonation turbine engine. A pure thrust-producing device is often used in a subsonic or supersonic propulsion vehicle system such as rockets, missiles and afterburner of a turbojet engine. Industrial gas turbines are often used to provide output power to drive an electrical generator or motor. Other types of gas turbines may be used as aircraft engines, on-site and supplemental power generators, and for other applications.
The deflagration-to-detonation (DDT) process begins when a fuel-air mixture in a chamber is ignited via a spark or other ignition source. The subsonic flame generated from the spark accelerates as it travels along the length of the chamber due to various chemical and flow mechanics. As the flame reaches critical speeds, “hot spots” are created that create localized explosions, eventually transitioning the flame to a super sonic detonation wave. The DDT process can take up to several meters of the length of the chamber, and efforts have been made to reduce the distance required for DDT by using internal initiation obstacles in the flow. The problem with obstacles for cyclic detonation devices is that they create a pressure drop within the chamber during the fill process and require cooling of the obstacles to enable long life. Initiation obstacles that include an integrated cooling system and minimize pressure drops during the fill process are desirable.
As used herein, a “pulse detonation combustor” is understood to mean any device or system that produces pressure rise, temperature rise and velocity increase from a series of repeating detonations or quasi-detonations within the device. A “quasi-detonation” is a supersonic turbulent combustion process that produces pressure rise, temperature rise and velocity increase higher than pressure rise, temperature rise and velocity increase produced by a deflagration wave. Embodiments of pulse detonation combustors include a fuel injection system, an oxidizer flow system, a means of igniting a fuel/oxidizer mixture, and a detonation chamber, in which pressure wave fronts initiated by the ignition process coalesce to produce a detonation wave or quasi-detonation. Each detonation or quasi-detonation is initiated either by external ignition, such as spark discharge or laser pulse, or by gas dynamic processes, such as shock focusing, autoignition or by another detonation (cross-fire). As used herein, a detonation is understood to mean either a detonation or quasi-detonation. The geometry of the detonation combustor is such that the pressure rise of the detonation wave expels combustion products out the pulse detonation combustor exhaust to produce a thrust force. Pulse detonation combustion can be accomplished in a number of types of detonation chambers, including shock tubes, resonating detonation cavities and tubular/tuboannular/annular combustors. As used herein, the term “chamber” includes pipes having circular or non-circular cross-sections with constant or varying cross sectional area. Exemplary chambers include cylindrical tubes, as well as tubes having polygonal cross-sections, for example hexagonal tubes.
Briefly, in accordance with one embodiment, a detonation chamber for a pulse detonation combustor is provided. The detonation chamber includes a plurality of initiation obstacles disposed on at least a portion of an inner surface of the detonation chamber, each of the plurality of initiation obstacles defining a low-pressure region at a trailing edge. The pulse detonation combustor further includes at least one injector in fluid flow communication with each of the plurality of initiation obstacles. The plurality of initiation obstacles enhance a turbulence of a fluid flow and flame acceleration through the detonation chamber. The at least one injector provides a cooling fluid flow through each of the plurality of initiation obstacles.
In accordance with another embodiment, a detonation chamber for a pulse detonation combustor is provided. The detonation chamber includes a plurality of initiation obstacles disposed on at least a portion of an inner surface of the detonation chamber and defining a low-pressure region at a trailing edge of each of the plurality of initiation obstacles. The plurality of initiation obstacles are configured to enhance a turbulence of a fluid flow and flame acceleration through the detonation chamber. The pulse detonation chamber further includes an inlet and an outlet, wherein the plurality of initiation obstacles are disposed between the inlet and the outlet and at least one injector in fluid flow communication with each of the plurality of initiation obstacles, wherein the at least one injector provides a cooling fluid flow to each of the plurality of initiation obstacles. The cooling fluid flow passes through each of the initiation obstacles and into the detonation chamber at the trailing edge of each of the initiation obstacles.
In accordance with another embodiment, a pulse detonation combustor is provided. The pulse detonation combustor includes at least one detonation chamber; an oxidizer supply section for feeding an oxidizer into the detonation chamber; a fuel supply section for feeding a fuel into the detonation chamber; and an igniter for igniting a mixture of the gas and the fuel in the detonation chamber. The detonation chamber further comprises a plurality of initiation obstacles disposed on an inner surface of the detonation chamber and defining a low pressure region at a trailing edge of each of the plurality of initiation obstacles, wherein the plurality of initiation obstacles are configured to enhance a turbulence of a fluid flow and flame acceleration through the detonation chamber; and at least one injector in fluid flow communication with each of the plurality of initiation obstacles, wherein the at least one injector provides a cooling fluid flow through each of the plurality of initiation obstacles.
These and other advantages and features will be better understood from the following detailed description of preferred embodiments of the invention that is provided in connection with the accompanying drawings.
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the subsequent detailed description when taken in conjunction with the accompanying drawings, wherein like elements are numbered alike in the several FIGs, and in which:
Referring now to the drawings, one or more specific embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. Illustrated in
In exemplary embodiments, air supplied from an inlet fan 20 and/or a compressor 12, which is driven by a turbine 18, is fed into the detonation chamber 16 through an intake 30. Fresh air is filled in the detonation chamber 16, after purging combustion gases remaining in the detonation chamber 16 due to detonation of the fuel-air mixture from the previous cycle. After the purging the pulse detonation combustor 16, fresh fuel is injected into pulse detonation combustor 16. Next, the igniter 26 ignites the fuel-air mixture forming a flame, which accelerates down the detonation chamber 16, finally transitioning to a detonation wave or a quasi-detonation wave. Due to the detonation combustion heat release, the gases exiting the pulse detonation combustor 14 are at high temperature, high pressure and high velocity conditions, which expand across the turbine 18, located at the downstream of the pulse detonation combustor 16, thus generating positive work. For the pulse detonation turbine engine application with the purpose of generation of power, the pulse detonation driven turbine 18 is mechanically coupled to a generator (e.g., a power generator) 22 for generating power output. For a pulse detonation turbine engine application with the purpose of propulsion (such as the present aircraft engines), the turbine shaft is coupled to the inlet fan 20 and the compressor 12. In a pure pulse detonation engine application of the pulse detonation combustor 14 shown in
Turning now to
In the embodiment depicted in
The injectors 54 are positioned to inject a fluid flow 49, which in this particular embodiment is fuel, at a trailing edge 48 of each obstacle 46 where a low-pressure region is created during a fill process. The injection of fuel at the trailing edge 48 of the obstacles 46 enables the low-pressure region to be reduced during the fill process. By reducing this low-pressure region, the filling losses in the detonation chamber 41 are reduced.
In order to ensure the proper mixture of fuel and air in the detonation chamber 41, the injection of the fluid flow 49 through the obstacles 46 will need to be controlled, including, but not limited to, staging of the injection, timing of the injection and duration of the injection. In an exemplary embodiment, the injection of the fluid flow 49 will be pulsed and timed with the frequency of combustor operation (air valve, ignition source, etc.). For pulsed applications the injectors 54 can be timed together, staged, or operated individually to achieve the desired fuel-to-air mixture.
The plurality of integrated initiation obstacles 46 and injectors 54 are disposed on the inner surface 32 of the improved detonation chamber 41 to enhance and accelerate the turbulent flame speed, while limiting the total pressure loss in the pulse detonation combustor 40 and providing cooling to the initiation obstacles 46 for durability. The plurality of initiation obstacles 46 also enhance turbulence flame surface area by providing increased turbulence which allow the flame front to stretch at a greater rate compared to the flame surface area in a combustor chamber with smooth walls. A plurality of circumferentially and axially spaced apart integrated initiation obstacles 46 and injectors 54 were found to be necessary in the illustrated embodiments to affect the transition of the accelerating turbulent flame into a detonation wave 58.
As previously described, the embodiment depicted in
Referring now to
The plurality of injectors 62 are configured to inject the flow 51 of the fuel and air mixture into the detonation chamber 41 at a trailing edge 48 of each initiation obstacle 46. In this exemplary embodiment, the individual flows of the fuel and air may be configured on separate circuits or injected in a spray blast atomization configuration. When injecting the fuel and air on separate circuits, the equivalence ratio can be tailored along the length of the detonation chamber 41 (for example: phi=1 at head end→phi=0.7 at aft) by changing the injection timing/duration for each individual injector 62. The spray blast enables creation of the proper droplet size for liquid fuels and therefore may be advantageous. In an alternate embodiment, the integrated initiation obstacles 46 and injectors 62 may be configured to inject more than one type of fuel through a single injector 62. The injection of more than one type of fuel, such as a gaseous fuel and a liquid fuel, may allow for ease in detonation.
Referring now to
The plurality of injectors 75 are configured to inject the cooling fluid flow 49 into the detonation chamber 41 at a trailing edge 48 of each initiation obstacle 46. The injection of the flow of air 78 via plenum 72 and openings 74, is distributed substantially equally along an entire surface of the detonation chamber 41 with the cooling fluid flow 49 being injected simultaneously along the chamber 41. The distributed airflow 78 injection via openings 74 provides a faster fill of the chamber 41 so as to reduce fill time and enable higher frequency operation of the pulse detonation combustor 70.
Referring now to
The plurality of injectors 82 are configured to inject air into the detonation chamber 41 at a trailing edge 48 of each initiation obstacle 46. In this exemplary embodiment, the air may be pulsed or steady and operates to cool the initiation obstacles 46. Fuel injection into the detonation chamber 41 would occur separate from injectors 82.
In each of the embodiments illustrated in
Referring still to
The improved detonation chamber 41 may be constructed in a variety of ways including, but not limited to, casting, welding or molding initiation obstacles 46 to form the structures protruding from the surface 32 of the detonation chamber 41 and having integrated therewith the injectors. The plurality of initiation obstacles 46 may be formed as commonly used DDT geometries such as spirals, regularly spaced blockage plates, or as shaped walls. These various configurations are shown in the FIGs. as an expedient of presentation only, and actual use and design of the various initiation obstacles 46 will depend on actual combustor design and aerodynamic cycles.
Accordingly, by the introduction of relatively simple and small initiation obstacles on an interior surface of the detonation chamber between the inlet and the outlet and having integrated therewith at least one injector for the injection of cooling fluid flow, such as a fuel, a combination of fuels, a fuel/air mixture, or air, provides: (i) significant enhancement in the turbulence of the fluid flow within the detonation chamber; (ii) enhancement of the deflagration-to-detonation transition; (iii) cooling of the initiation obstacles; (iv) minimization of pressure drops during the fill process; and (v) creates viable locations for fuel injection into the detonation chamber. The integrated initiation obstacles and injectors may have various configurations represented by various permutations of the various features described above as examples.
While the disclosure has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.