This disclosure relates generally to heating, ventilation, and air conditioning systems including heat pump systems.
A heat pump system is disclosed that provides at least six different modes of heating, cooling, and/or domestic water heating operation, where domestic water heating may occur concurrently with heating or cooling a space in a structure. The heat pump system may include (1) a desuperheater heat exchanger positioned downstream of the compressor and operable as a desuperheater, a condenser, or an evaporator, (2) a source heat exchanger operable as either a condenser or an evaporator, (3) a load heat exchanger operable as either a condenser or an evaporator, (4) a reversing valve positioned downstream of the desuperheater heat exchanger and configured to alternately direct refrigerant flow from the desuperheater heat exchanger to one of the load heat exchanger and the source heat exchanger and to alternately return refrigerant flow from the other of the load heat exchanger and the source heat exchanger to the compressor, and (5) an expansion valve positioned between the load heat exchanger and the source heat exchanger.
In one embodiment, a heat pump system is disclosed comprising a refrigerant circuit that fluidly interconnects: (1) a variable speed compressor; (2) a desuperheater heat exchanger positioned downstream of the compressor and operable as a desuperheater, a condenser, or an evaporator; (3) a source heat exchanger operable as either a condenser or an evaporator; (4) a load heat exchanger operable as either a condenser or an evaporator; (5) a reversing valve positioned downstream of the desuperheater heat exchanger and configured to alternately direct refrigerant flow from the desuperheater heat exchanger to one of the load heat exchanger and the source heat exchanger and to alternately return refrigerant flow from the other of the load heat exchanger and the source heat exchanger to the compressor; and (6) an expansion valve positioned between the load heat exchanger and the source heat exchanger.
In this embodiment, the load heat exchanger may be a refrigerant-to-liquid heat exchanger or a refrigerant-to-air heat exchanger. The heat pump system may include a fan driven by a variable speed motor, where the fan is configured to flow air over a portion of the load heat exchanger. The desuperheater heat exchanger may be a refrigerant-to-liquid heat exchanger configured to exchange heat between refrigerant in the refrigerant circuit and domestic water in a storage loop. The heat pump system may include a storage tank for storing heated domestic water, and a variable speed pump for circulating the domestic water in the storage loop and through the desuperheater heat exchanger. The source heat exchanger may be a refrigerant-to-liquid heat exchanger configured to exchange heat between refrigerant in the refrigerant circuit and a liquid in a source loop. The heat pump system may include a variable speed pump for circulating the liquid in the source loop and through the source heat exchanger. The expansion valve may be an electronically controlled thermostatic expansion valve.
In this embodiment, the heat pump system may include a controller comprising a processor and memory on which one or more software programs are stored, the controller configured to control operation of the reversing valve, the expansion valve, the compressor, a first variable speed pump for circulating water through the desuperheater heat exchanger, and a second variable speed pump for circulating a source liquid through the source heat exchanger.
To operate the system in a space heating mode, the controller may be configured to: (a) control the first variable speed pump to disable heat exchange in the desuperheater heat exchanger; (b) control the reversing valve to cause refrigerant flow from the desuperheater heat exchanger to the load heat exchanger acting as a condenser and to return flow from the source heat exchanger acting as an evaporator to the compressor; (c) control an opening in the expansion valve to cause refrigerant flow from the load heat exchanger, through the expansion valve, and to the source heat exchanger; and (d) control the second variable speed pump to
To operate the system in a space cooling mode, the controller may be configured to: (a) control the first variable speed pump to disable heat exchange in the desuperheater heat exchanger; (b) control the reversing valve to cause refrigerant flow from the desuperheater heat exchanger to the source heat exchanger acting as a condenser and to return flow from the load heat exchanger acting as an evaporator to the compressor; (c) control an opening in the expansion valve to cause refrigerant flow from the source heat exchanger, through the expansion valve, and to the load heat exchanger; and (d) control the second variable speed pump to enable heat exchange in the source heat exchanger.
To operate the system in a space heating with desuperheater water heating mode, the controller may be configured to: (a) control the first variable speed pump to enable heat exchange in the desuperheater heat exchanger to heat domestic water pumped through the desuperheater heat exchanger at a relatively low flow rate; (b) control the reversing valve to cause refrigerant flow from the desuperheater heat exchanger to the load heat exchanger acting as a condenser and to return flow from the source heat exchanger acting as an evaporator to the compressor, wherein the refrigerant flow from the desuperheater heat exchanger comprises desuperheated refrigerant; (c) control an opening in the expansion valve to cause refrigerant flow from the load heat exchanger, through the expansion valve, and to the source heat exchanger; and (d) control the second variable speed pump to enable heat exchange in the source heat exchanger.
To operate the system in a space cooling with desuperheater water heating mode, the controller may be configured to: (a) control the first variable speed pump to enable heat exchange in the desuperheater heat exchanger to heat domestic water pumped through the desuperheater heat exchanger at a relatively low flow rate; (b) control the reversing valve to cause refrigerant flow from the desuperheater heat exchanger to the source heat exchanger acting as a condenser and to return flow from the load heat exchanger acting as an evaporator to the compressor, wherein the refrigerant flow from the desuperheater heat exchanger comprises desuperheated refrigerant; (c) control an opening in the expansion valve to cause refrigerant flow from the source heat exchanger, through the expansion valve, and to the load heat exchanger; and (d) control the second variable speed pump to enable heat exchange in the source heat exchanger.
To operate the system in a space cooling to water heating mode, the controller may be configured to: (a) control the first variable speed pump to enable heat exchange in the desuperheater heat exchanger to heat domestic water pumped through the desuperheater heat exchanger at a relatively high flow rate; (b) control the reversing valve to cause refrigerant flow from the desuperheater heat exchanger acting as a condenser to the source heat exchanger configured in an inactive state and to return flow from the load heat exchanger acting as an evaporator to the compressor; (c) control an opening in the expansion valve to cause refrigerant flow from the source heat exchanger, through the expansion valve, and to the load heat exchanger; and (d) control the second variable speed pump to disable heat exchange in the source heat exchanger. In this mode, the load heat exchanger may be a refrigerant-to-air heat exchanger, and the controller may be configured to control a variable speed motor to drive a fan to flow air over a portion of the load heat exchanger.
To operate the system in a water heating mode, the controller may be configured to: (a) control the first variable speed pump to enable heat exchange in the desuperheater heat exchanger to heat domestic water pumped through the desuperheater heat exchanger at a relatively high flow rate; (b) control the reversing valve to cause refrigerant flow from the desuperheater heat exchanger acting as a condenser to the load heat exchanger configured in an inactive state and to return flow from the source heat exchanger acting as an evaporator to the compressor; (c) control an opening in the expansion valve to cause refrigerant flow from the load heat exchanger, through the expansion valve, and to the source heat exchanger; and (d) control the second variable speed pump to enable heat exchange in the source heat exchanger.
In another embodiment, a heat pump system is disclosed, comprising a refrigerant circuit that fluidly interconnects: (1) a variable speed compressor; (2) a desuperheater heat exchanger positioned downstream of the compressor and operable as a desuperheater, a condenser, or an evaporator; (3) a source heat exchanger operable as either a condenser or an evaporator; (4) a load heat exchanger operable as either a condenser or an evaporator; (5) a reversing valve positioned downstream of the desuperheater heat exchanger and configured to alternately direct refrigerant flow from the desuperheater heat exchanger to one of the load heat exchanger and the source heat exchanger and to alternately return refrigerant flow from the other of the load heat exchanger and the source heat exchanger to the compressor; and (6) an expansion valve positioned between the load heat exchanger and the source heat exchanger. The heat pump system is operable in any of at least: (a) a space heating mode in which the desuperheater heat exchanger is configured in an inactive state, (b) a space cooling mode in which the desuperheater heat exchanger is configured in an inactive state, (c) a space heating with concurrent desuperheater water heating mode in which refrigerant flow from the desuperheater heat exchanger comprises desuperheated refrigerant, (d) a space cooling with concurrent desuperheater water heating mode in which refrigerant flow from the desuperheater heat exchanger comprises desuperheated refrigerant, (e) a space cooling to water heating mode in which refrigerant flow from the desuperheater heat exchanger comprises condensed refrigerant, the load heat exchanger is configured in an active state, and the source heat exchanger is configured in an inactive state, and (f) a dedicated water heating mode in which refrigerant flow from the desuperheater heat exchanger comprises condensed refrigerant, the load heat exchanger is configured in an inactive state and the source heat exchanger is configured in an active state.
In another embodiment, a method for operating a heat pump system is disclosed, comprising: (1) providing a refrigerant circuit that fluidly interconnects: (a) a variable speed compressor, (b) a desuperheater heat exchanger positioned downstream of the compressor and operable as a desuperheater, a condenser, or an evaporator, (c) a source heat exchanger operable as either a condenser or an evaporator, (d) a load heat exchanger operable as either a condenser or an evaporator, (e) a reversing valve positioned downstream of the desuperheater heat exchanger and configured to alternately direct refrigerant flow from the desuperheater heat exchanger to one of the load heat exchanger and the source heat exchanger and to alternately return refrigerant flow from the other of the load heat exchanger and the source heat exchanger to the compressor, and (f) an expansion valve positioned between the load heat exchanger and the source heat exchanger; (2) providing a controller comprising a processor and memory on which one or more software programs are stored; and (3) operating the controller to control operation of the reversing valve, the expansion valve, the compressor, a first variable speed pump for circulating domestic water through the desuperheater heat exchanger, and a second variable speed pump for circulating a liquid through the source heat exchanger.
To operate the heat pump system in a space heating mode may include: (i) controlling the first variable speed pump to disable heat exchange in the desuperheater heat exchanger; (ii) controlling the reversing valve to cause refrigerant flow from the desuperheater heat exchanger to the load heat exchanger acting as a condenser and to return flow from the source heat exchanger acting as an evaporator to the compressor; (iii) controlling an opening in the expansion valve to cause refrigerant flow from the load heat exchanger, through the expansion valve, and to the source heat exchanger; and (iv) controlling the second variable speed pump to enable heat exchange in the source heat exchanger.
To operate the heat pump system in a space cooling mode may include: (i) controlling the first variable speed pump to disable heat exchange in the desuperheater heat exchanger; (ii) controlling the reversing valve to cause refrigerant flow from the desuperheater heat exchanger to the source heat exchanger acting as a condenser and to return flow from the load heat exchanger acting as an evaporator to the compressor; (iii) controlling an opening in the expansion valve to cause refrigerant flow from the source heat exchanger, through the expansion valve, and to the load heat exchanger; and (iv) controlling the second variable speed pump to enable heat exchange in the source heat exchanger.
To operate the heat pump system in a space heating with desuperheater water heating mode may include: (i) controlling the first variable speed pump to enable heat exchange in the desuperheater heat exchanger to heat domestic water pumped through the desuperheater heat exchanger at a relatively low flow rate; (ii) controlling the reversing valve to cause refrigerant flow from the desuperheater heat exchanger to the load heat exchanger acting as a condenser and to return flow from the source heat exchanger acting as an evaporator to the compressor, wherein the refrigerant flow from the desuperheater heat exchanger comprises desuperheated refrigerant; (iii) controlling an opening in the expansion valve to cause refrigerant flow from the load heat exchanger, through the expansion valve, and to the source heat exchanger; and (iv) controlling the second variable speed pump to enable heat exchange in the source heat exchanger.
To operate the heat pump system in a space cooling with desuperheater water heating mode may include: (i) controlling the first variable speed pump to enable heat exchange in the desuperheater heat exchanger to heat domestic water pumped through the desuperheater heat exchanger at a relatively low flow rate; (ii) controlling the reversing valve to cause refrigerant flow from the desuperheater heat exchanger to the source heat exchanger acting as a condenser and to return flow from the load heat exchanger acting as an evaporator to the compressor, wherein the refrigerant flow from the desuperheater heat exchanger comprises desuperheated refrigerant; (iii) controlling an opening in the expansion valve to cause refrigerant flow from the source heat exchanger, through the expansion valve, and to the load heat exchanger; and (iv) controlling the second variable speed pump to enable heat exchange in the source heat exchanger.
To operate the heat pump system in a space cooling to water heating mode may include: (i) controlling the first variable speed pump to enable heat exchange in the desuperheater heat exchanger to heat domestic water pumped through the desuperheater heat exchanger at a relatively high flow rate; (ii) controlling the reversing valve to cause refrigerant flow from the desuperheater heat exchanger acting as a condenser to the source heat exchanger configured in an inactive state and to return flow from the load heat exchanger acting as an evaporator to the compressor; (iii) controlling an opening in the expansion valve to cause refrigerant flow from the source heat exchanger, through the expansion valve, and to the load heat exchanger; and (iv) controlling the second variable speed pump to disable heat exchange in the source heat exchanger. In this mode, the heat pump system may be configured to include controlling a variable speed motor to drive a fan to flow air over a portion of the load heat exchanger.
To operate the heat pump system in a water heating mode may include: (i) controlling the first variable speed pump to enable heat exchange in the desuperheater heat exchanger to heat domestic water pumped through the desuperheater heat exchanger at a relatively high flow rate; (ii) controlling the reversing valve to cause refrigerant flow from the desuperheater heat exchanger acting as a condenser to the load heat exchanger configured in an inactive state and to return flow from the source heat exchanger acting as an evaporator to the compressor; (iii) controlling an opening in the expansion valve to cause refrigerant flow from the load heat exchanger, through the expansion valve, and to the source heat exchanger; and (iv) controlling the second variable speed pump to enable heat exchange in the source heat exchanger.
For a better understanding of the features described in this disclosure, reference may be made to embodiments shown in the drawings. The components in the drawings are not necessarily to scale, and related elements may be omitted so as to emphasize and clearly illustrate the novel features described herein. In addition, system components can be variously arranged, as known in the art. In the figures, like referenced numerals may refer to like parts throughout the different figures unless otherwise specified.
While the features, methods, devices, and systems described herein may be embodied in various forms, there are shown in the drawings, and will hereinafter be described, some exemplary and non-limiting embodiments. Not all of the depicted components described in this disclosure may be required, however, and some implementations may include additional, different, or fewer components from those expressly described in this disclosure. Variations in the arrangement and type of the components may be made without departing from the spirit or scope of the claims as set forth herein.
A heat pump system including a desuperheater is disclosed for providing the heating, cooling, and water heating needs for a structure. The heat pump system described herein includes embodiments designed to minimize the number of components. For example, the heat pump system disclosed herein utilizes a single expansion valve in place of a combination of expansion valves, check valves, and/or receiver to increase the efficiency of the system. In some embodiments, the system may include one or more fans, blowers, or air handlers for circulating heated or cooled air produced by the heat pump system throughout the structure. In some embodiments, the system may include auxiliary heater(s) for satisfying any additional heating needs. For example, an auxiliary heater may be included in a storage tank or connected to storage tank plumbing and configured to provide auxiliary heating to water stored in the storage tank according to some embodiments.
The heat pump system of the instant disclosure provides at least six modes of operation: (1) space heating, (2) space cooling, (3) space heating with desuperheater water heating, (4) space cooling with desuperheater water heating, (5) space cooling to water heating, and (6) dedicated water heating. The heat pump system of the instant disclosure eliminates the need to isolate the third, unused heat exchanger in any given mode of operation, which eliminates the possibility of refrigerant accumulating in the unused, third heat exchanger. The refrigerant in the heat pump system of the instant disclosure may include any known refrigerant, such as R410A or R32, or any later-developed type of refrigerant.
Use of a variable speed compressor as disclosed herein allows appropriate capacity for domestic water heating and space conditioning. For example, although demand may call for the heat pump system to require a 1-ton compressor, the heat pump of the instant disclosure allows the use of a 4-5 ton compressor, for example, that is driven at a low speed to match the demand. Conversely, if demand requires a 4-5 ton compressor, for example, then the heat pump system will have the capacity to meet that demand.
Use of one or more variable speed fan motors as disclosed herein allows appropriate airflow for capacity modulation. Use of one or more variable speed pumps as disclosed herein allows more appropriate water/fluid flow for capacity modulation. In addition, by varying the rate of water flowing through a desuperheater heat exchanger, the heat pump system can control whether the unit desuperheats or fully condenses the refrigerant. The desuperheater heat exchanger may be sized and/or configured to fully condense the refrigerant when desired.
Turning to the drawings,
Heat pump system 100 may also include controller 101, which may be functionally connected to one or more of the foregoing components (as well as other components not shown) to control the operation, position, or function of one or more features of one or more of these components. For example, controller 101 may control the direction of flow and the flowrate of refrigerant in refrigerant circuit 115 according to an operational mode of heat pump system 100 as well as the heating and cooling demand on heat pump system 100.
In some embodiments, desuperheater, source, and load heat exchangers 121, 122, 123 may each be configured as refrigerant-to-liquid heat exchangers. In other embodiments, only desuperheater and source heat exchangers 121, 122 are configured as refrigerant-to-liquid heat exchangers. In still other embodiments, only desuperheater heat exchanger 121 is configured as a refrigerant-to-liquid heat exchanger. In such embodiments, these heat exchangers may be configured as coaxial heat exchangers, brazed plate heat exchangers, or any type of heat exchanger capable of exchanging heat between two adjacent fluids.
In some embodiments, source heat exchanger 122 and/or load heat exchanger 123 may be configured as a refrigerant-to-air heat exchanger. If source heat exchanger 122 and/or load heat exchanger 123 is a refrigerant-to-air heat exchanger, heat pump system 100 may also include one or more fans or blowers 180 powered by respective variable speed fan motors to convey air across the coils of the respective source and/or load heat exchangers 122, 123 to exchange heat with the refrigerant in the refrigerant circuit, which air may thereafter be circulated throughout a space or structure to provide for heating and/or cooling needs. If load heat exchanger 123, for example, is a refrigerant-to-liquid heat exchanger, then heat pump system 100 may be configured to include a load loop (not shown) configured to circulate a liquid therein to exchange heat with the refrigerant in the load heat exchanger 123. The load loop may include a variable speed pump for circulating a liquid through the load loop.
As shown in the embodiment of
Storage loop 135 and source loop 145 may each comprise one or more fluid conduits configured to convey a fluid, such as water, therethrough for exchanging heat with the refrigerant flowing through refrigerant circuit 115 via desuperheater heat exchanger 121 and source heat exchanger 122, respectively. For example, in various embodiments, desuperheater heat exchanger 121, when activated, is configured to exchange heat between the refrigerant circulating in refrigerant circuit 115 and water circulating in storage loop 135 to create hot water that may be stored in storage tank 140. Similarly, in various embodiments, source heat exchanger 122, when activated, is configured to exchange heat between the refrigerant circulating in refrigerant circuit 115 and water or other liquid circulating in source loop 145. In embodiments in which source heat exchanger 122 is a refrigerant-to-air heat exchanger, then source loop 145 may be omitted and replaced with a fan 180 driven by a variable speed motor. In some embodiments, the fluid circulating through source loop 145 may be an antifreeze. The flow rate of water circulating through storage loop 135 may be controlled by controller 101 by controlling variable speed pump 131. Similarly, the flow rate of water, antifreeze or other liquid circulating through source loop 145 may be controlled by controller 101 by controlling variable speed pump 132.
Storage tank 140 may further include one or more temperature sensors 190 for detecting the temperature of water stored in storage tank 140. Although
Some or all of the components of heat pump system 100 may be installed within the structure in which air conditioning, heating, or hot water is desired. In some embodiments, some components, such as one or more portions of source loop 145, may be installed outdoors.
Various operating modes of heat pump system 100 are shown in
At least one of the operating modes may be initiated automatically by controller 101 when the temperature of the water stored in storage tank 140 falls below a predetermined value. At least some of the various operating modes may be initiated automatically by controller 101 in response to a call for heating or cooling, for example, by one or more thermostats 195 according to predetermined user settings, or in response to a call for heating or cooling requested by a user operating the thermostat or by a user selectable input at a user interface that enables a user to select an operational mode of heat pump system 100. The one or more thermostats 195 may be any known or later developed device for detecting a temperature in a space and for triggering a call for heating or cooling of the space. For example, in one embodiment, the thermostat may be a mechanical, mercury-style thermostat. In another embodiment, the thermostat may be an electric, thermistor-style thermostat. The one or more thermostats 195 may be electronically programmable by a user via a user interface. The user interface may be a touch screen, which may be detachable from the thermostat. The user interface may be associated with a user's web-enabled device, including a mobile phone, a tablet, a smart watch, and a personal computer, operating a web application that remotely interfaces with the one or more thermostats 195 and/or controller 101. In this way, a user may remotely access, program, and/or control the thermostat and/or controller 101. The one or more thermostats 195 may include a smart thermostat that is connected to the Internet and capable of learning user behaviors and patterns for automatically adjusting operational settings of the thermostat or controller 101. The one or more thermostats 195 may be connected to controller 101 by wire, or may alternatively be wirelessly connected to controller 101 via Wi-Fi, Bluetooth, or any other wireless protocol.
At 201, hot, compressed refrigerant gas leaving compressor 110 is conveyed through inactive desuperheater heat exchanger 121 (i.e., storage loop 135 is inactive). At 202, the hot, compressed refrigerant gas is conveyed to reversing valve 160 (reversing valve 160 is powered off), where the refrigerant is then conveyed to load heat exchanger 123.
At 203, the hot, compressed refrigerant gas enters load heat exchanger 123 acting as a condenser to cause the refrigerant to condense to a liquid. If load heat exchanger 123 is a refrigerant-to-liquid heat exchanger, such as a coaxial heat exchanger, then the compressed refrigerant gas may exchange heat with relatively cooler liquid flowing through a load loop (not shown). If load heat exchanger 123 is an air coil heat exchanger, air flowing over the coils of load heat exchanger 123 may cool the compressed refrigerant gas flowing in the coils. As the heated refrigerant gas is cooled, heat is concurrently released from the refrigerant and absorbed by the air as it passes over the coils of load heat exchanger 123, and the heated air may then be utilized to heat a space within the structure.
At 204, liquid refrigerant (at relatively high pressure) exits load heat exchanger 123 and is conveyed to expansion valve 170. Expansion valve 170 separates high and low pressure refrigerant and meters the refrigerant as a liquid for entry to the source heat exchanger 122.
At 205, the metered liquid refrigerant is conveyed to source heat exchanger 122 acting as an evaporator to vaporize the refrigerant by exchanging heat with the relatively warmer source liquid from source loop 145.
At 206, refrigerant gas is conveyed to reversing valve 160 (powered off), which diverts the refrigerant gas back to compressor 110 to continue the cycle.
At 301, hot, compressed refrigerant gas leaving compressor 110 is conveyed through inactive desuperheater heat exchanger 121 (i.e., storage loop 135 is inactive). At 302, the hot, compressed refrigerant gas is conveyed to reversing valve 160 (reversing valve 160 is powered on), where the refrigerant is then conveyed to source heat exchanger 122.
At 303, the hot, compressed refrigerant gas enters source heat exchanger 122 acting as a condenser to cause the refrigerant to condense to a liquid by exchanging heat with the relatively cooler source liquid from source loop 145.
At 304, liquid refrigerant (at relatively high pressure) exits source heat exchanger 122 and is conveyed to expansion valve 170. Expansion valve 170 separates high and low pressure refrigerant and meters the refrigerant as a liquid for entry to the load heat exchanger 123.
At 305, the metered liquid refrigerant is conveyed to load heat exchanger 123 acting as an evaporator to vaporize the refrigerant by exchanging heat with the relatively warmer load liquid from load loop (not shown) or by the relatively warmer air being blown over the coils of load heat exchanger 123 if load heat exchanger 123 is an air coil heat exchanger. In the latter case, for example, as the liquid refrigerant absorbs heat from the air flowing over the coils of load heat exchanger 123, the air flowing over the coils of load heat exchanger 123 by fan 180 becomes cooled and the refrigerant changes phase to become a vapor. The structure may then be cooled as fan 180 blows the cooled air through a duct system that distributes the cooled air to one or more spaces within the structure to be cooled.
At 306, refrigerant gas is conveyed to reversing valve 160 (powered on), which diverts the refrigerant gas back to compressor 110 to continue the cycle.
At 401, hot, compressed refrigerant gas leaving compressor 110 is conveyed through active desuperheater heat exchanger 121 where relatively low water flow is allowed to flow through storage loop 135 by controlling the speed of pump 131. The refrigerant is desuperheated by exchanging heat with the relatively cooler water flowing at a relatively low rate through the storage loop 135.
At 402, the desuperheated refrigerant gas is conveyed to reversing valve 160 (reversing valve 160 is powered off), where the refrigerant is then conveyed to load heat exchanger 123.
At 403, the desuperheated refrigerant gas enters load heat exchanger 123 acting as a condenser to cause the refrigerant to condense to a liquid. If load heat exchanger 123 is a refrigerant-to-liquid heat exchanger, such as a coaxial heat exchanger, then the refrigerant gas may exchange heat with relatively cooler liquid flowing through load loop (not shown). If load heat exchanger 123 is an air coil heat exchanger, air flowing over the coils of load heat exchanger 123 may cool the desuperheated refrigerant gas flowing in the coils. As the desuperheated refrigerant gas is cooled, heat is concurrently released from the refrigerant and absorbed by the air as it passes over the coils of load heat exchanger 123, and the heated air may then be utilized to heat a space within the structure.
At 404, liquid refrigerant (at relatively high pressure) exits load heat exchanger 123 and is conveyed to expansion valve 170. Expansion valve 170 separates high and low pressure refrigerant and meters the refrigerant as a liquid for entry to the source heat exchanger 122.
At 405, the metered liquid refrigerant is conveyed to source heat exchanger 122 acting as an evaporator to vaporize the refrigerant by exchanging heat with the relatively warmer source liquid from source loop 145.
At 406, refrigerant gas is conveyed to reversing valve 160 (powered off), which diverts the refrigerant gas back to compressor 110 to continue the cycle.
At 501, hot, compressed refrigerant gas leaving compressor 110 is conveyed through active desuperheater heat exchanger where relatively low water flow is allowed to flow through storage loop 135 by controlling the speed of pump 131. The refrigerant is desuperheated by exchanging heat with the relatively cooler water flowing at a relatively low rate through the storage loop 135.
At 502, the desuperheated refrigerant gas is conveyed to reversing valve 160 (reversing valve 160 is powered on), where the refrigerant is then conveyed to source heat exchanger 122.
At 503, the desuperheated refrigerant gas enters source heat exchanger 122 acting as a condenser to cause the refrigerant to condense to a liquid by exchanging heat with the relatively cooler source liquid from source loop 145.
At 504, liquid refrigerant (at relatively high pressure) exits source heat exchanger 122 and is conveyed to expansion valve 170. Expansion valve 170 separates high and low pressure refrigerant and meters the refrigerant as a liquid for entry to the load heat exchanger 123.
At 505, the metered liquid refrigerant is conveyed to load heat exchanger 123 acting as an evaporator to vaporize the refrigerant by exchanging heat with the relatively warmer load liquid from load loop (not shown) or by the relatively warmer air being blown over the coils of load heat exchanger 123 if load heat exchanger 123 is an air coil heat exchanger. In the latter case, for example, as the liquid refrigerant absorbs heat from the air flowing over the coils of load heat exchanger 123, the air flowing over the coils of load heat exchanger 123 by fan 180 becomes cooled and the refrigerant changes phase to become a vapor. The structure may then be cooled as fan 180 blows the cooled air through a duct system that distributes the cooled air to one or more spaces within the structure to be cooled.
At 506, refrigerant gas is conveyed to reversing valve 160 (powered on), which diverts the refrigerant gas back to compressor 110 to continue the cycle.
At 601, hot, compressed refrigerant gas leaving compressor 110 is conveyed through active desuperheater heat exchanger 121 acting as a condenser, where relatively high water flow is allowed to flow through storage loop 135 by controlling the speed of pump 131. The refrigerant is condensed to a liquid by desuperheater heat exchanger 121 by exchanging heat with the relatively cooler water flowing at a relatively high rate through the storage loop 135. In turn, the water flowing through storage loop 135 may gain a substantial amount of heat when traversing through desuperheater heat exchanger 121. The heated water may be stored and/or circulated through storage tank 140.
At 602, the liquid refrigerant is conveyed to reversing valve 160 (reversing valve 160 is powered on), where the refrigerant is then conveyed to source heat exchanger 122.
At 603, the liquid refrigerant (at relatively high pressure) is conveyed through inactive source heat exchanger 122 (i.e., source loop 145 is inactive), and at 604 is conveyed to expansion valve 170. Expansion valve 170 separates high and low pressure refrigerant and meters the refrigerant as a liquid for entry to the load heat exchanger 123.
At 605, the metered liquid refrigerant is conveyed to load heat exchanger 123 acting as an evaporator to vaporize the refrigerant by exchanging heat with the relatively warmer load liquid from load loop (not shown) or by the relatively warmer air being blown over the coils of load heat exchanger 123 if load heat exchanger 123 is an air coil heat exchanger. In the latter case, for example, as the liquid refrigerant absorbs heat from the air flowing over the coils of load heat exchanger 123, the air flowing over the coils of load heat exchanger 123 by fan 180 becomes cooled and the refrigerant changes phase to become a vapor. The structure may then be cooled as fan 180 blows the cooled air through a duct system that distributes the cooled air to one or more spaces within the structure to be cooled.
At 606, refrigerant gas is conveyed to reversing valve 160 (powered on), which diverts the refrigerant gas back to compressor 110 to continue the cycle.
At 701, hot, compressed refrigerant gas leaving compressor 110 is conveyed through active desuperheater heat exchanger 121 acting as a condenser, where relatively high water flow is allowed to flow through storage loop 135 by controlling the speed of pump 131. The refrigerant is condensed to a liquid by desuperheater heat exchanger 121 by exchanging heat with the relatively cooler water flowing at a relatively high rate through the storage loop 135. In turn, the water flowing through storage loop 135 may gain a substantial amount of heat when traversing through desuperheater heat exchanger 121. The heated water may be stored and/or circulated through storage tank 140.
At 702, the liquid refrigerant (at relatively high pressure) is conveyed to reversing valve 160 (reversing valve 160 is powered off). At 703, the liquid refrigerant is then conveyed to inactive load heat exchanger 123 (i.e., load loop (not shown) is inactive if load heat exchanger 123 is a refrigerant-to-liquid heat exchanger, and fan 180 is inactive if load heat exchanger 123 is a refrigerant-to-air heat exchanger).
At 704, liquid refrigerant (at relatively high pressure) exits load heat exchanger 123 and is conveyed to expansion valve 170. Expansion valve 170 separates high and low pressure refrigerant and meters the refrigerant as a liquid for entry to the load heat exchanger 123.
At 705, the metered liquid refrigerant is conveyed to source heat exchanger 122 acting as an evaporator to vaporize the refrigerant by exchanging heat with the relatively warmer source liquid from source loop 145.
At 706, refrigerant gas is conveyed to reversing valve 160 (powered off), which diverts the refrigerant gas back to compressor 110 to continue the cycle.
In embodiments in which one or more fans 180 are included in the heat pump system, controller 101 may be configured to (wired or wirelessly) communicate with the one or more fans 180 (including each of the fans in a fan array) to control (1) an on/off state of the fan motor, and (2) the speed of the motor that drives the respective fan. Controlling the speed of the motor, and thus the amount of air passed over the coils of the source heat exchanger 122 and/or load heat exchanger 123 (if such heat exchangers are configured as refrigerant-to-air heat exchangers) by one or more fans 180, will control the amount of heat exchange that occurs in these heat exchangers. A variable frequency drive (VFD) may be coupled to each motor that drives the one or more fans 180. The VFD may be configured to drive the motor at any one of a number of different frequencies, including but not limited to line voltage frequency, to control the speed at which the motor operates to cause the amount of heat exchange in the source and/or load heat exchangers 122, 123 to match the demand placed on heat pump system 100. In other embodiments, the motor is driven by a PWM signal according to a predetermined duty cycle to control the speed of the motor that drives the one or more fans 180.
Controller 101 may be configured to (wired or wirelessly) communicate with compressor 110 to control (1) the on/off operational state of the compressor 110, and (2) the speed at which compressor 110 operates to compress refrigerant according to the demand placed on heat pump system 100 and the operational mode of heat pump system 100. A variable frequency drive (VFD) may be coupled to compressor 110 to drive the compressor at any one of a number of different frequencies, including but not limited to line voltage frequency, to control the speed at which compressor 110 operates to match the demand placed on heat pump system 100. In other embodiments, the compressor is driven by a PWM signal according to a predetermined duty cycle to control the speed of the compressor 110.
Controller 101 may be configured to (wired or wirelessly) communicate with expansion valve 170 to precisely control the size of the orifice through which refrigerant flows in refrigerant circuit 115. Controller 101 may send and receive signals to and from a motor connected to expansion valve 170 to precisely open and close a refrigerant discharge port of expansion valve 170 and to report the position of the motor and/or valve to controller 170.
Controller 101 may be configured to (wired or wirelessly) communicate with variable speed pumps 131, 132 to control the rate at which the pumps cause water and/or liquid to flow in storage loop 135 and source loop 145, respectively. Variable speed pumps 131, 132 may be driven by a PWM signal according to a predetermined duty cycle to control the speed of the pumps 131, 132 and therefore the discharge flow rate of these pumps.
Controller 101 may be configured to (wired or wirelessly) communicate with reversing valve 160 to control the direction of refrigerant flow in refrigerant circuit 115.
Controller 101 may be configured to (wired or wirelessly) communicate with the one or more thermostats 195 (e.g., an outdoor thermostat and/or one or more indoor thermostats for temperature controlled zones) for (1) detecting temperature differences between an outdoor temperature and an indoor temperature, and (2) for processing calls for space heating, space cooling, and/or water heating according to preprogrammed settings or manual, on-the-fly settings received from a user.
Controller 101 may be configured to (wired or wirelessly) communicate with the one or more temperature sensors 190 for detecting and processing the temperature at any one or more desired locations along refrigeration circuit 115, at any one or more desired locations along storage loop 135 including the temperature of water in the storage tank 140, at any one or more desired locations along source loop 145 including the temperature of liquid, for example, of source 150, and at any one or more desired locations along load loop (not shown).
Controller 101 may be configured to (wired or wirelessly) communicate with the one or more pressure sensors 191 for detecting and processing the static pressure at any one or more desired locations along refrigeration circuit 115.
Controller 101 may be configured to (wired or wirelessly) communicate with the one or more flow rate sensors 192 for detecting and processing the flow rate of water or other liquid along storage loop 135 and/or along source loop 145.
Controller 101 may be configured to (wired or wirelessly) communicate with the one or more voltage sensors 193 for detecting and processing the voltage across any electrical device that consumes electrical energy in heat pump system 100. For example, one or more voltage sensors may be deployed to detect the voltage provided to compressor 110, pumps 131, 132, reversing valve 160, motor that drives expansion valve 170, and the one or more motors that drive the one or more fans 180.
Controller 101 may be configured to (wired or wirelessly) communicate with the one or more current sensors 194 for detecting and processing the current drawn by any device in heat pump system 100 that consumes electrical energy. For example, one or more current sensors may be deployed to detect the current drawn by compressor 110, pumps 131, 132, reversing valve 160, motor that drives expansion valve 170, and the one or more motors that drive the one or more fans 180.
Heat pump system 100 is capable of matching the space heating, space cooling, and water heating demand by controlling the components of heat pump system 100 anywhere in the range of about 0% capacity to about 100% capacity of such components of heat pump system 100. For example, if controller 101 determines that the heat pump system 100 must deliver 23% of the capacity of compressor 110 to meet a given space conditioning (i.e., space heating or space cooling) demand, then the controller 101 may command the compressor 110 to function at 23% of its capacity.
Simultaneous water heating may also be provided by heat pump system 100. For example, controller 101 may be configured to use excess capacity of the compressor 110 by driving the compressor 110 to, for example, 33% of its capacity to provide 23% of its capacity to meet space conditioning (i.e., space heating or space cooling) needs and to provide 10% of its capacity to simultaneously meet the demand for domestic water heating. The compressor 110 may be called upon to run longer to provide the 10% domestic water heating. Heat pump system 100 enables space conditioning (i.e., space heating or space cooling) and simultaneous domestic water heating by continuously putting at least some heat energy into domestic water circulating through desuperheater heat exchanger 121.
If domestic water heating demand is high, heat pump system 100 can adjust the amount of water flowing through storage loop 135 to force full condensing of the refrigerant exiting the desuperheater heat exchanger 121. When fully condensing the refrigerant in this way, the condensed refrigerant may be evaporated by load heat exchanger 123 to provide space cooling concurrently with high volume domestic water heating (as shown in
Any process descriptions or blocks in the figures, should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included within the scope of the embodiments described herein, in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those having ordinary skill in the art.
The embodiments described herein are possible examples of implementations and are merely set forth for a clear understanding of the principles of the features described herein. Many variations and modifications may be made to the above-described embodiment(s) without substantially departing from the spirit and principles of the techniques, processes, devices, and systems described herein. All such modifications are intended to be included herein within the scope of this disclosure and protected by the following claims.
This application is a continuation of U.S. patent application Ser. No. 16/539,956, filed on Aug. 13, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/724,459, filed on Aug. 29, 2018. All of these applications are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1723649 | Earl | Aug 1929 | A |
3354774 | Smitzer et al. | Nov 1967 | A |
3460353 | Ogata et al. | Aug 1969 | A |
3916638 | Schmidt | Nov 1975 | A |
3938352 | Schmidt | Feb 1976 | A |
4072187 | Lodge | Feb 1978 | A |
4091636 | Margen | May 1978 | A |
4173865 | Sawyer | Nov 1979 | A |
4179894 | Hughes | Dec 1979 | A |
4257239 | Partin et al. | Mar 1981 | A |
4299098 | Derosier | Nov 1981 | A |
4399664 | Derosier | Aug 1983 | A |
4441901 | Endoh | Apr 1984 | A |
4476920 | Drucker et al. | Oct 1984 | A |
4493193 | Fisher | Jan 1985 | A |
4528822 | Glamm | Jul 1985 | A |
4538418 | Lawrence et al. | Sep 1985 | A |
4575001 | Oskarsson et al. | Mar 1986 | A |
4584844 | Lemal | Apr 1986 | A |
4592206 | Yamazaki et al. | Jun 1986 | A |
4598557 | Robinson et al. | Jul 1986 | A |
4645908 | Jones | Feb 1987 | A |
4646537 | Crawford | Mar 1987 | A |
4646538 | Blackshaw et al. | Mar 1987 | A |
4685307 | Jones | Aug 1987 | A |
4693089 | Bourne et al. | Sep 1987 | A |
4698978 | Jones | Oct 1987 | A |
4727727 | Reedy | Mar 1988 | A |
4766734 | Dudley | Aug 1988 | A |
4776180 | Patton et al. | Oct 1988 | A |
4796437 | James | Jan 1989 | A |
4798059 | Morita | Jan 1989 | A |
4798240 | Gerstmann et al. | Jan 1989 | A |
4799363 | Nakamura | Jan 1989 | A |
4835976 | Torrence | Jun 1989 | A |
4856578 | McCahill | Aug 1989 | A |
4893476 | Bos et al. | Jan 1990 | A |
4909041 | Jones | Mar 1990 | A |
4909312 | Biedenbach et al. | Mar 1990 | A |
4920757 | Gazes et al. | May 1990 | A |
4924681 | De Vit et al. | May 1990 | A |
4938032 | Mudford | Jul 1990 | A |
5038580 | Hart | Aug 1991 | A |
5044425 | Tatsumi et al. | Sep 1991 | A |
5081848 | Rawlings et al. | Jan 1992 | A |
5088296 | Hamaoka | Feb 1992 | A |
5099651 | Fischer | Mar 1992 | A |
5105629 | Parris et al. | Apr 1992 | A |
5136855 | Lenarduzzi | Aug 1992 | A |
5172564 | Reedy | Dec 1992 | A |
5187944 | Jarosch | Feb 1993 | A |
5224357 | Galiyano et al. | Jul 1993 | A |
5239838 | Tressler | Aug 1993 | A |
5269153 | Cawley | Dec 1993 | A |
5305822 | Kogetsu et al. | Apr 1994 | A |
5309732 | Sami | May 1994 | A |
5323844 | Sumitani et al. | Jun 1994 | A |
5339890 | Rawlings | Aug 1994 | A |
5355688 | Rafalovich et al. | Oct 1994 | A |
5372016 | Rawlings | Dec 1994 | A |
5438846 | Datta | Aug 1995 | A |
5461876 | Dressler | Oct 1995 | A |
5463619 | Van et al. | Oct 1995 | A |
5465588 | McCahill et al. | Nov 1995 | A |
5477914 | Rawlings | Dec 1995 | A |
5497629 | Rafalovich et al. | Mar 1996 | A |
5507337 | Rafalovich et al. | Apr 1996 | A |
5533355 | Rawlings | Jul 1996 | A |
5564282 | Kaye | Oct 1996 | A |
5613372 | Beal et al. | Mar 1997 | A |
5619864 | Reedy | Apr 1997 | A |
5628200 | Pendergrass | May 1997 | A |
5651265 | Grenier | Jul 1997 | A |
5669224 | Lenarduzzi | Sep 1997 | A |
5689966 | Zess et al. | Nov 1997 | A |
5706888 | Ambs et al. | Jan 1998 | A |
5729985 | Yoshihara et al. | Mar 1998 | A |
5758514 | Genung et al. | Jun 1998 | A |
5802864 | Yarbrough et al. | Sep 1998 | A |
5927088 | Shaw | Jul 1999 | A |
5937665 | Kiessel et al. | Aug 1999 | A |
5983660 | Kiessel et al. | Nov 1999 | A |
6000154 | Berard et al. | Dec 1999 | A |
6016629 | Sylvester et al. | Jan 2000 | A |
6032472 | Heinrichs et al. | Mar 2000 | A |
6070423 | Hebert | Jun 2000 | A |
6082125 | Savtchenko | Jul 2000 | A |
6123147 | Pittman | Sep 2000 | A |
6149066 | Perry et al. | Nov 2000 | A |
6167715 | Hebert | Jan 2001 | B1 |
6212892 | Rafalovich | Apr 2001 | B1 |
6227003 | Smolinsky | May 2001 | B1 |
6253564 | Yarbrough et al. | Jul 2001 | B1 |
6347527 | Bailey et al. | Feb 2002 | B1 |
6385983 | Sakki et al. | May 2002 | B1 |
6418745 | Ratliff | Jul 2002 | B1 |
6434960 | Rousseau | Aug 2002 | B1 |
6474087 | Lifson | Nov 2002 | B1 |
6536221 | James | Mar 2003 | B2 |
6615602 | Wilkinson | Sep 2003 | B2 |
6644047 | Taira et al. | Nov 2003 | B2 |
6655164 | Rogstam | Dec 2003 | B2 |
6662864 | Burk et al. | Dec 2003 | B2 |
6668572 | Seo et al. | Dec 2003 | B1 |
6694750 | Lifson et al. | Feb 2004 | B1 |
6729151 | Thompson | May 2004 | B1 |
6751972 | Jungwirth | Jun 2004 | B1 |
6804975 | Park | Oct 2004 | B2 |
6817205 | Lifson et al. | Nov 2004 | B1 |
6826921 | Uselton | Dec 2004 | B1 |
6857285 | Hebert | Feb 2005 | B2 |
6892553 | Lifson et al. | May 2005 | B1 |
6915656 | Ratliff | Jul 2005 | B2 |
6931879 | Wiggs | Aug 2005 | B1 |
6938438 | Lifson et al. | Sep 2005 | B2 |
6941770 | Taras et al. | Sep 2005 | B1 |
7000423 | Lifson et al. | Feb 2006 | B2 |
7059151 | Taras et al. | Jun 2006 | B2 |
7114349 | Lifson et al. | Oct 2006 | B2 |
7150160 | Herbert | Dec 2006 | B2 |
7155922 | Harmon et al. | Jan 2007 | B2 |
7185505 | Kamimura | Mar 2007 | B2 |
RE39597 | Rousseau | May 2007 | E |
7210303 | Zhang et al. | May 2007 | B2 |
7228696 | Ambs et al. | Jun 2007 | B2 |
7228707 | Lifson et al. | Jun 2007 | B2 |
7234311 | Lifson et al. | Jun 2007 | B2 |
7254955 | Otake et al. | Aug 2007 | B2 |
7263848 | Bhatti | Sep 2007 | B2 |
7272948 | Taras et al. | Sep 2007 | B2 |
7275385 | Abel et al. | Oct 2007 | B2 |
7325414 | Taras et al. | Feb 2008 | B2 |
7454919 | Ookoshi et al. | Nov 2008 | B2 |
7484374 | Pham et al. | Feb 2009 | B2 |
7617697 | McCaughan | Nov 2009 | B2 |
7654104 | Groll et al. | Feb 2010 | B2 |
7716943 | Seefeldt | May 2010 | B2 |
7752855 | Matsuoka et al. | Jul 2010 | B2 |
7770405 | Dillon | Aug 2010 | B1 |
7823404 | Hanson | Nov 2010 | B2 |
7845190 | Pearson | Dec 2010 | B2 |
7854137 | Lifson et al. | Dec 2010 | B2 |
7856834 | Haley | Dec 2010 | B2 |
7878010 | Nishimura et al. | Feb 2011 | B2 |
7913501 | Ellis et al. | Mar 2011 | B2 |
7937960 | Matsui | May 2011 | B2 |
7946121 | Yamaguchi et al. | May 2011 | B2 |
7954333 | Yoshimi | Jun 2011 | B2 |
7958737 | Lifson et al. | Jun 2011 | B2 |
7975495 | Voorhis et al. | Jul 2011 | B2 |
7975506 | James et al. | Jul 2011 | B2 |
7980086 | Kotani et al. | Jul 2011 | B2 |
7997092 | Lifson et al. | Aug 2011 | B2 |
7997093 | Kasahara | Aug 2011 | B2 |
8033123 | Kasahara et al. | Oct 2011 | B2 |
8037713 | Haley et al. | Oct 2011 | B2 |
8069682 | Yoshimi et al. | Dec 2011 | B2 |
8074459 | Murakami et al. | Dec 2011 | B2 |
8079228 | Lifson et al. | Dec 2011 | B2 |
8079229 | Lifson et al. | Dec 2011 | B2 |
8082751 | Wiggs | Dec 2011 | B2 |
8136364 | Lifson et al. | Mar 2012 | B2 |
8156757 | Doty et al. | Apr 2012 | B2 |
8191376 | Fox et al. | Jun 2012 | B2 |
8215121 | Yoshimi et al. | Jul 2012 | B2 |
8220531 | Murakami et al. | Jul 2012 | B2 |
8286438 | McCahill | Oct 2012 | B2 |
8402779 | Nishimura et al. | Mar 2013 | B2 |
8418482 | Bush et al. | Apr 2013 | B2 |
8418486 | Taras et al. | Apr 2013 | B2 |
8424326 | Mitra et al. | Apr 2013 | B2 |
8459052 | Bush et al. | Jun 2013 | B2 |
8528359 | Lifson et al. | Sep 2013 | B2 |
8555703 | Yonemori et al. | Oct 2013 | B2 |
8561425 | Mitra et al. | Oct 2013 | B2 |
8650893 | Hanson | Feb 2014 | B2 |
8695404 | Kadle et al. | Apr 2014 | B2 |
8701432 | Olson | Apr 2014 | B1 |
8726682 | Olson | May 2014 | B1 |
8733429 | Harrison et al. | May 2014 | B2 |
8756943 | Chen et al. | Jun 2014 | B2 |
8769982 | Ignatiev et al. | Jul 2014 | B2 |
8910419 | Oberst | Dec 2014 | B1 |
8919139 | Yamada et al. | Dec 2014 | B2 |
8959950 | Doty et al. | Feb 2015 | B2 |
8984903 | Itoh et al. | Mar 2015 | B2 |
9052125 | Dostal | Jun 2015 | B1 |
9303908 | Kasahara | Apr 2016 | B2 |
9383026 | Eggleston | Jul 2016 | B2 |
9459032 | Nishimura et al. | Oct 2016 | B2 |
9551514 | Tartakovsky | Jan 2017 | B2 |
9562700 | Watanabe | Feb 2017 | B2 |
9599377 | Kato | Mar 2017 | B2 |
9625195 | Hiraki et al. | Apr 2017 | B2 |
9791195 | Okada et al. | Oct 2017 | B2 |
9797611 | Gault | Oct 2017 | B2 |
9909785 | Kato | Mar 2018 | B2 |
9909792 | Oya | Mar 2018 | B2 |
10072856 | Akin et al. | Sep 2018 | B1 |
10118462 | Kohigashi et al. | Nov 2018 | B2 |
10119738 | Hammond et al. | Nov 2018 | B2 |
10126012 | Ikawa et al. | Nov 2018 | B2 |
10132511 | Tartakovsky | Nov 2018 | B2 |
10151663 | Scancarello | Dec 2018 | B2 |
10234164 | Takeuchi et al. | Mar 2019 | B2 |
10345004 | Hern et al. | Jul 2019 | B1 |
10408484 | Honda et al. | Sep 2019 | B2 |
10465961 | Kujak | Nov 2019 | B2 |
10480807 | Goel et al. | Nov 2019 | B2 |
10488065 | Chen et al. | Nov 2019 | B2 |
10488072 | Yajima et al. | Nov 2019 | B2 |
10508847 | Yajima et al. | Dec 2019 | B2 |
10514176 | Weinert | Dec 2019 | B2 |
10527310 | Nagaoka et al. | Jan 2020 | B2 |
10670282 | Yamada et al. | Jun 2020 | B2 |
10677679 | Gupte et al. | Jun 2020 | B2 |
10684052 | Walser et al. | Jun 2020 | B2 |
10731884 | Blanton | Aug 2020 | B2 |
10753631 | Ikawa et al. | Aug 2020 | B2 |
10753661 | Hammond et al. | Aug 2020 | B2 |
10767882 | Kowald et al. | Sep 2020 | B2 |
10816232 | Crawford et al. | Oct 2020 | B2 |
10866002 | Taras et al. | Dec 2020 | B2 |
10866004 | Shiohama et al. | Dec 2020 | B2 |
10871314 | Taras et al. | Dec 2020 | B2 |
10914482 | Yamamoto et al. | Feb 2021 | B2 |
10928092 | Yajima et al. | Feb 2021 | B2 |
10935260 | Taras et al. | Mar 2021 | B2 |
10935454 | Kester | Mar 2021 | B2 |
10941953 | Goel et al. | Mar 2021 | B2 |
10996131 | Mcquade et al. | May 2021 | B2 |
11015828 | Sakae et al. | May 2021 | B2 |
11015852 | Sakae et al. | May 2021 | B2 |
11022354 | Yamada et al. | Jun 2021 | B2 |
11041647 | Weinert | Jun 2021 | B2 |
11041666 | Sakae et al. | Jun 2021 | B2 |
11060746 | Maddox et al. | Jul 2021 | B2 |
11060775 | Delgoshaei | Jul 2021 | B2 |
11079149 | Papas et al. | Aug 2021 | B2 |
11092566 | Chen et al. | Aug 2021 | B2 |
11098915 | Crawford | Aug 2021 | B2 |
11098937 | Uehara et al. | Aug 2021 | B2 |
11125457 | Alfano et al. | Sep 2021 | B1 |
11131470 | Minamida et al. | Sep 2021 | B2 |
11231197 | Mcquade et al. | Jan 2022 | B2 |
11248816 | Ikawa et al. | Feb 2022 | B2 |
11268718 | Minamida et al. | Mar 2022 | B2 |
11274866 | Yamada et al. | Mar 2022 | B2 |
11274871 | Sakae et al. | Mar 2022 | B2 |
11280523 | Sakae et al. | Mar 2022 | B2 |
11287153 | Delgoshaei | Mar 2022 | B2 |
11293674 | Yamada et al. | Apr 2022 | B2 |
11326798 | Green et al. | May 2022 | B2 |
11365897 | Blanton | Jun 2022 | B2 |
11408624 | Hovardas et al. | Aug 2022 | B2 |
11415345 | Yajima | Aug 2022 | B2 |
11428435 | Eskew et al. | Aug 2022 | B2 |
11441803 | Goel et al. | Sep 2022 | B2 |
11761666 | Atchison et al. | Sep 2023 | B2 |
20020078705 | Schlosser et al. | Jun 2002 | A1 |
20030061822 | Rafalovich | Apr 2003 | A1 |
20030221436 | Xu | Dec 2003 | A1 |
20030221445 | Smolinsky | Dec 2003 | A1 |
20040140082 | Hua | Jul 2004 | A1 |
20050125083 | Kiko | Jun 2005 | A1 |
20060010908 | Taras et al. | Jan 2006 | A1 |
20060218949 | Ellis et al. | Oct 2006 | A1 |
20060225445 | Lifson et al. | Oct 2006 | A1 |
20070017243 | Kidwell et al. | Jan 2007 | A1 |
20070074536 | Bai | Apr 2007 | A1 |
20070146229 | Lin | Jun 2007 | A1 |
20070251256 | Pham et al. | Nov 2007 | A1 |
20070289319 | Kim et al. | Dec 2007 | A1 |
20070295477 | Mueller et al. | Dec 2007 | A1 |
20080016895 | Kim et al. | Jan 2008 | A1 |
20080041072 | Seefeldt | Feb 2008 | A1 |
20080173034 | Shaw | Jul 2008 | A1 |
20080196418 | Lifson et al. | Aug 2008 | A1 |
20080197206 | Murakami et al. | Aug 2008 | A1 |
20080209930 | Taras et al. | Sep 2008 | A1 |
20080256975 | Lifson et al. | Oct 2008 | A1 |
20080282718 | Beagle | Nov 2008 | A1 |
20080286118 | Gu et al. | Nov 2008 | A1 |
20080289795 | Hardin et al. | Nov 2008 | A1 |
20080296396 | Corroy et al. | Dec 2008 | A1 |
20080302113 | Yin et al. | Dec 2008 | A1 |
20080302118 | Chen et al. | Dec 2008 | A1 |
20080302129 | Mosemann et al. | Dec 2008 | A1 |
20080307813 | Lifson et al. | Dec 2008 | A1 |
20080309210 | Luisi et al. | Dec 2008 | A1 |
20090000611 | Kaiser | Jan 2009 | A1 |
20090031739 | Kasahara et al. | Feb 2009 | A1 |
20090044550 | Nishimura et al. | Feb 2009 | A1 |
20090095000 | Yoshimi et al. | Apr 2009 | A1 |
20090100849 | Nishimura et al. | Apr 2009 | A1 |
20090107656 | Marois | Apr 2009 | A1 |
20090208331 | Haley et al. | Aug 2009 | A1 |
20090294097 | Rini et al. | Dec 2009 | A1 |
20090314014 | Ericsson | Dec 2009 | A1 |
20090314017 | Nishimura et al. | Dec 2009 | A1 |
20100005821 | McCahill | Jan 2010 | A1 |
20100005831 | Vaisman et al. | Jan 2010 | A1 |
20100024470 | Lifson et al. | Feb 2010 | A1 |
20100038052 | Johnson et al. | Feb 2010 | A1 |
20100058781 | Lifson et al. | Mar 2010 | A1 |
20100064710 | Slaughter | Mar 2010 | A1 |
20100064722 | Taras | Mar 2010 | A1 |
20100077788 | Lewis | Apr 2010 | A1 |
20100114384 | Maxwell | May 2010 | A1 |
20100132399 | Mitra et al. | Jun 2010 | A1 |
20100199715 | Lifson et al. | Aug 2010 | A1 |
20100251750 | Lifson et al. | Oct 2010 | A1 |
20100281894 | Huff | Nov 2010 | A1 |
20100287969 | Ueda et al. | Nov 2010 | A1 |
20100326100 | Taras et al. | Dec 2010 | A1 |
20110023515 | Kopko et al. | Feb 2011 | A1 |
20110036119 | Fujimoto et al. | Feb 2011 | A1 |
20110041523 | Taras et al. | Feb 2011 | A1 |
20110061413 | Setoguchi | Mar 2011 | A1 |
20110079032 | Taras et al. | Apr 2011 | A1 |
20110088426 | Lochtefeld | Apr 2011 | A1 |
20110094248 | Taras et al. | Apr 2011 | A1 |
20110094259 | Lifson et al. | Apr 2011 | A1 |
20110107780 | Yamaguchi et al. | May 2011 | A1 |
20110132007 | Weyna et al. | Jun 2011 | A1 |
20110174014 | Scarcella et al. | Jul 2011 | A1 |
20110192176 | Kim et al. | Aug 2011 | A1 |
20110203299 | Jing et al. | Aug 2011 | A1 |
20110209490 | Mijanovic et al. | Sep 2011 | A1 |
20110259025 | Noh et al. | Oct 2011 | A1 |
20110289950 | Kim et al. | Dec 2011 | A1 |
20110289952 | Kim et al. | Dec 2011 | A1 |
20120011866 | Scarcella et al. | Jan 2012 | A1 |
20120067965 | Rajasekaran et al. | Mar 2012 | A1 |
20120103005 | Kopko et al. | May 2012 | A1 |
20120139491 | Eberhard et al. | Jun 2012 | A1 |
20120198867 | Ng et al. | Aug 2012 | A1 |
20120205077 | Zinger et al. | Aug 2012 | A1 |
20120247134 | Gurin | Oct 2012 | A1 |
20120291460 | Aoyagi | Nov 2012 | A1 |
20130014451 | Russell et al. | Jan 2013 | A1 |
20130031934 | Huff et al. | Feb 2013 | A1 |
20130092329 | Eastland | Apr 2013 | A1 |
20130098085 | Judge et al. | Apr 2013 | A1 |
20130104574 | Dempsey et al. | May 2013 | A1 |
20130160985 | Chen et al. | Jun 2013 | A1 |
20130180266 | Bois | Jul 2013 | A1 |
20130269378 | Wong | Oct 2013 | A1 |
20130305756 | Gomes et al. | Nov 2013 | A1 |
20140013782 | Kopko et al. | Jan 2014 | A1 |
20140013788 | Kopko et al. | Jan 2014 | A1 |
20140033753 | Lu et al. | Feb 2014 | A1 |
20140033755 | Wong | Feb 2014 | A1 |
20140053585 | Huff | Feb 2014 | A1 |
20140060101 | Styles et al. | Mar 2014 | A1 |
20140123689 | Ellis et al. | May 2014 | A1 |
20140245770 | Chen et al. | Sep 2014 | A1 |
20140260392 | Hawkins et al. | Sep 2014 | A1 |
20150052937 | Hung | Feb 2015 | A1 |
20150059373 | Maiello et al. | Mar 2015 | A1 |
20150068740 | Broder | Mar 2015 | A1 |
20150204586 | Burg et al. | Jul 2015 | A1 |
20150252653 | Shelton | Sep 2015 | A1 |
20150285539 | Kopko | Oct 2015 | A1 |
20150330689 | Kato et al. | Nov 2015 | A1 |
20150338139 | Xu et al. | Nov 2015 | A1 |
20160076950 | Jacquet | Mar 2016 | A1 |
20160238276 | Andrew et al. | Aug 2016 | A1 |
20160265819 | Durrani | Sep 2016 | A1 |
20170010029 | Reytblat et al. | Jan 2017 | A9 |
20170227250 | Karamanos | Aug 2017 | A1 |
20170336092 | Ikawa et al. | Nov 2017 | A1 |
20170370622 | Shin et al. | Dec 2017 | A1 |
20180010829 | Taras et al. | Jan 2018 | A1 |
20180128506 | Taras et al. | May 2018 | A1 |
20180313555 | Henderson | Nov 2018 | A1 |
20180328600 | Swanson | Nov 2018 | A1 |
20180334794 | Janabi | Nov 2018 | A1 |
20190032981 | Hammond et al. | Jan 2019 | A1 |
20190170600 | Tice et al. | Jun 2019 | A1 |
20190170603 | Gupte et al. | Jun 2019 | A1 |
20190178509 | Taras et al. | Jun 2019 | A1 |
20190346158 | Kamada | Nov 2019 | A1 |
20190351731 | Jeong | Nov 2019 | A1 |
20200041187 | Huckaby et al. | Feb 2020 | A1 |
20200072510 | Brown | Mar 2020 | A1 |
20200263891 | Noor et al. | Aug 2020 | A1 |
20200355411 | Inoue et al. | Nov 2020 | A1 |
20200378667 | Hammond et al. | Dec 2020 | A1 |
20210018234 | Lingrey et al. | Jan 2021 | A1 |
20210041115 | Yoshioka et al. | Feb 2021 | A1 |
20210071920 | Yamada et al. | Mar 2021 | A1 |
20210095872 | Taras et al. | Apr 2021 | A1 |
20210131696 | She et al. | May 2021 | A1 |
20210131706 | Yamada et al. | May 2021 | A1 |
20210131709 | Taras et al. | May 2021 | A1 |
20210180807 | Taras et al. | Jun 2021 | A1 |
20210207831 | Lord et al. | Jul 2021 | A1 |
20210231330 | Stephens et al. | Jul 2021 | A1 |
20210270501 | Brown et al. | Sep 2021 | A1 |
20210293418 | Fuse et al. | Sep 2021 | A1 |
20210293430 | Yamada | Sep 2021 | A1 |
20210293446 | Fard | Sep 2021 | A1 |
20210302051 | Yamada et al. | Sep 2021 | A1 |
20210318012 | Yamada et al. | Oct 2021 | A1 |
20210325081 | Kagawa et al. | Oct 2021 | A1 |
20210341170 | Hikawa et al. | Nov 2021 | A1 |
20210348820 | Kobayashi et al. | Nov 2021 | A1 |
20210356154 | Kobayashi et al. | Nov 2021 | A1 |
20220090833 | Yajima | Mar 2022 | A1 |
20220099346 | Alfano et al. | Mar 2022 | A1 |
20220128277 | Fukuyama et al. | Apr 2022 | A1 |
20220186989 | Yamaguchi et al. | Jun 2022 | A1 |
20220243939 | Notaro et al. | Aug 2022 | A1 |
20220243940 | Notaro et al. | Aug 2022 | A1 |
20220243952 | Kojima | Aug 2022 | A1 |
20220247846 | Lim | Aug 2022 | A1 |
20220268492 | Yajima | Aug 2022 | A1 |
20220348052 | Fox et al. | Nov 2022 | A1 |
20220380648 | Kumakura et al. | Dec 2022 | A1 |
20230020557 | Kaji et al. | Jan 2023 | A1 |
20230052745 | Kitagawa et al. | Feb 2023 | A1 |
20230072254 | Lamont et al. | Mar 2023 | A1 |
20230094980 | Birnkrant et al. | Mar 2023 | A1 |
20230097829 | Ohkubo et al. | Mar 2023 | A1 |
20230097844 | Birnkrant | Mar 2023 | A1 |
20230106462 | Hovardas et al. | Apr 2023 | A1 |
20230160587 | Delgoshaei et al. | May 2023 | A1 |
20230184618 | Gupte et al. | Jun 2023 | A1 |
20230194137 | Fan et al. | Jun 2023 | A1 |
20230205237 | Karamanos et al. | Jun 2023 | A1 |
20230213252 | Mcquade | Jul 2023 | A1 |
20230213254 | Ma | Jul 2023 | A1 |
20230221025 | Nakano et al. | Jul 2023 | A1 |
20230221026 | Blanton | Jul 2023 | A1 |
20230235907 | Dewald et al. | Jul 2023 | A1 |
20230243534 | Song et al. | Aug 2023 | A1 |
20230243539 | Buda | Aug 2023 | A1 |
20230250981 | Notaro et al. | Aug 2023 | A1 |
20230266026 | Notaro et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
2013200092 | Apr 2013 | AU |
1178268 | Nov 1984 | CA |
1987397 | Jun 2007 | CN |
201944952 | Aug 2011 | CN |
102353126 | Feb 2012 | CN |
203231582 | Oct 2013 | CN |
103471275 | Dec 2013 | CN |
203396155 | Jan 2014 | CN |
203432025 | Feb 2014 | CN |
115435444 | Dec 2022 | CN |
115468229 | Dec 2022 | CN |
115493250 | Dec 2022 | CN |
115523604 | Dec 2022 | CN |
115638523 | Jan 2023 | CN |
115711454 | Feb 2023 | CN |
218511135 | Feb 2023 | CN |
115751508 | Mar 2023 | CN |
115751603 | Mar 2023 | CN |
115854484 | Mar 2023 | CN |
115854488 | Mar 2023 | CN |
218672483 | Mar 2023 | CN |
115930357 | Apr 2023 | CN |
115978709 | Apr 2023 | CN |
115978710 | Apr 2023 | CN |
116007066 | Apr 2023 | CN |
116025999 | Apr 2023 | CN |
218915295 | Apr 2023 | CN |
116085938 | May 2023 | CN |
116085939 | May 2023 | CN |
116123663 | May 2023 | CN |
116221902 | Jun 2023 | CN |
116241979 | Jun 2023 | CN |
116242010 | Jun 2023 | CN |
116294062 | Jun 2023 | CN |
116294111 | Jun 2023 | CN |
116336607 | Jun 2023 | CN |
219415010 | Jul 2023 | CN |
116538638 | Aug 2023 | CN |
116558042 | Aug 2023 | CN |
116608539 | Aug 2023 | CN |
219693510 | Sep 2023 | CN |
102007050446 | Apr 2009 | DE |
202022106612 | Mar 2023 | DE |
134015 | Mar 1985 | EP |
1736720 | Dec 2006 | EP |
1983275 | Oct 2008 | EP |
2108897 | Jun 2017 | EP |
3358279 | Jun 2020 | EP |
3447403 | Jun 2021 | EP |
4036486 | Aug 2022 | EP |
4180727 | May 2023 | EP |
4194769 | Jun 2023 | EP |
2946857 | Jul 2023 | ES |
201917005053 | Apr 2019 | IN |
201917012216 | Jul 2019 | IN |
201917018373 | Jul 2019 | IN |
202117017393 | Jan 2022 | IN |
202117017768 | Jan 2022 | IN |
202117018393 | Jan 2022 | IN |
202118001637 | Jan 2022 | IN |
2000046417 | Feb 2000 | JP |
2000274786 | Oct 2000 | JP |
2000314563 | Nov 2000 | JP |
2001248931 | Sep 2001 | JP |
3610812 | Jan 2005 | JP |
3744330 | Feb 2006 | JP |
2010101515 | May 2010 | JP |
2010101606 | May 2010 | JP |
2010133601 | Jun 2010 | JP |
2010230181 | Oct 2010 | JP |
2015094574 | May 2015 | JP |
2015175531 | Oct 2015 | JP |
2017075760 | Apr 2017 | JP |
2020051737 | Apr 2020 | JP |
2021103053 | Jul 2021 | JP |
2022039608 | Mar 2022 | JP |
2022176373 | Nov 2022 | JP |
2023025165 | Feb 2023 | JP |
2023060225 | Apr 2023 | JP |
2023076482 | Jun 2023 | JP |
2023116473 | Aug 2023 | JP |
100963221 | Jun 2010 | KR |
20190090972 | Aug 2019 | KR |
102551281 | Jul 2023 | KR |
102551284 | Jul 2023 | KR |
102551286 | Jul 2023 | KR |
102569930 | Aug 2023 | KR |
9600370 | Jan 1996 | WO |
200190663 | Nov 2001 | WO |
2006033782 | Mar 2006 | WO |
2007007576 | Jan 2007 | WO |
2008045086 | Apr 2008 | WO |
2008048252 | Apr 2008 | WO |
2010005918 | Jan 2010 | WO |
2010004716 | Jan 2010 | WO |
2010054498 | May 2010 | WO |
2010104709 | Sep 2010 | WO |
2013142760 | Sep 2013 | WO |
2014031559 | Feb 2014 | WO |
2014031708 | Feb 2014 | WO |
2016158092 | Oct 2016 | WO |
2016159152 | Oct 2016 | WO |
2018135850 | Jul 2018 | WO |
2020067039 | Apr 2020 | WO |
2020158653 | Aug 2020 | WO |
2020179826 | Sep 2020 | WO |
2021050617 | Mar 2021 | WO |
2021050618 | Mar 2021 | WO |
2021050886 | Mar 2021 | WO |
2021054199 | Mar 2021 | WO |
2021106957 | Jun 2021 | WO |
2021125354 | Jun 2021 | WO |
2021172516 | Sep 2021 | WO |
2021215528 | Oct 2021 | WO |
2021234857 | Nov 2021 | WO |
2022064784 | Mar 2022 | WO |
2023059724 | Apr 2023 | WO |
2023069273 | Apr 2023 | WO |
2023084127 | May 2023 | WO |
2023127329 | Jul 2023 | WO |
2023127345 | Jul 2023 | WO |
2023140145 | Jul 2023 | WO |
2023157565 | Aug 2023 | WO |
2023157568 | Aug 2023 | WO |
2023161248 | Aug 2023 | WO |
2023161249 | Aug 2023 | WO |
Entry |
---|
“Heat Pump Mechanics” http://www.geo4va.vt.edu/A3/A3.htm#A3sec3c (Accessed Apr. 20, 2011) (19pages). |
“Heat pumps in residential and commercial buildings” http://www.heatpumpcentre.org/en/aboutheatpumps/heatpumpsinresidential/Sidor/default.aspx (Accessed Apr. 20, 2011) (2 pages). |
Honeywell, VFF1, VFF2, VFF3, VFF6 Resilient Seat Butterfly Valves with Flanged Connections Jan. 2013, p. 1, 1st column, last paragraph. (Year: 2013) (20 pages). |
International Preliminary Report on Patentability issued in International Application No. PCT/US2013/033433 dated Sep. 23, 2014 (7 Pages). |
International Search Report and Written Opinion issued in International Application No. PCT/US2013/033433 dated Aug. 9, 2013 (11 Pages). |
Korean Intellectual Property Office, International Search Report in International Application No. PCT/US2009/049734 (dated Jan. 20, 2010) (2 pages). |
Korean Intellectual Property Office, International Search Report in International Application No. PCT/US2010/026010 (dated Sep. 28, 2010) (2 pages). |
Michael F. Taras, “Reheat Which Concept is Best,” ASHRAE Journal: 35-40 (Dec. 2004) (7 pages). |
Murphy et al., “Air-Source Integrated Heat Pump for Net-Zero-Energy Houses Technology Status Report,” Oak Ridge National Laboratory, ORNL-TM-2007-112 (Jul. 2007) (93 pages). |
Murphy et al., “Ground-Source Integrated Heat Pump for Net-Zero-Energy Houses Technology Status Report,” Oak Ridge National Laboratory, ORNL-TM-2007-177 (Dec. 2007) (78 pages). |
Third Party Submission dated Nov. 10, 2014 filed in U.S. Appl. No. 13/848,342 (13 Pages). |
“134-XS and 134-S Series Compressors ECOnomizer (EA-12-03-E),” 134-XS and 134-S series—Application and Maintenance Manual, Technical report EA1203E, RefComp Refrigerant Compressors, undated but believed to be publicly available at least as early as Mar. 2014 (4 pages). |
B.P. Rasmussen et al., “Model-Driven System Identification of Transcritical Vapor Compression Systems,” IEEE Transactions on Control Systems Technology, May 2005, pp. 444-451, vol. 13 (8 pages). |
“Economized Vapor Injection (EVI) Compressors,” Emerson Climate Technologies Application Engineering Bulletin AE4-1327 R2, Revised Sep. 2006 (9 pages). |
Ekaterina Vi Nogradova, “Economizers in Chiller Systems,” Bachelor's Thesis, Mikkelin Ammattikorkeakoulu, Nov. 2012 (50 pages). |
“Enhanced Vapour Injection (EVI) for ZH*KVE Scroll Compressors,” Emerson Climate Technologies—Technical Information, C7.4.3/1107-0512/E, May 2012 (10 pages). |
Haraldsson et al., “Measurement of Performance and Evaluation of a Heat Pump—with Scroll Compressor EVI and Economizer,” Lunds Institute of Technology, 2006 (4 pages). |
John P. Elson et al., “Scroll Technology: An Overview of Past, Present and Future Developments,” International Compressor Engineering Conference, 2008, Paper 1871 (9 pages). |
Lund et al., “Geothermal (Ground-Source Heat Pumps—A World Overview,” GHC Bulletin, Sep. 2004 (edited and updated version of the article from Renewal Energy World, (Jul.-Aug. 2003), vol. 6 No. 4) (10 pages). |
Tolga N. Aynur, “Variable Refrigerant Flow Systems: A Review, Energy and Buildings,” Jan. 2010, pp. 1106-1112, vol. 42 (7 pages). |
Wei Yang et al., “The Design Method of U-Bend Geothermal Heat Exchanger of DX-GCHP in Cooling Model,” IEEE, 2011, pp. 3635-3637 (English Abstract) (3 pages). |
Amir Rafati et al., “Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring: A Review,” Energies 15.1 (2022): 341. (16 pages). |
Milan Jain et al., “Beyond control: Enabling smart thermostats for leakage detection,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3.1 (2019): 1-21. (21 pages). |
Shen Tian, et al., “A study on a real-time leak detection method for pressurized liquid refrigerant pipeline based on pressure and flow rate,” Applied Thermal Engineering 95(2016): 462-470. (17 pages). |
J. Navarro-Esbri et al., “A vapour compression chiller fault detection technique based on adaptive algorithms. Application to on-line refrigerant leakage detection,” International Journal of Refrigeration 29.5 (2006): 716-723. (8 pages). |
Animesh Pal et al., “Environmental Assessment and Characteristics of Next Generation Refrigerants,” Kyushu University Institutional Repository, (2018): 58-66. (10 pages). |
Matthew Wiggins, Ph.D et al., “HVAC Fault Detection,” ASHRAE Journal 54.2 (2012): 78-80. (3 pages). |
Shunsuke Kimura, “Development of a Remote Refrigerant Leakage Detection System for VRFs and Chillers,” Purdue University—International Refrigeration and Air Conditioning Conference Paper 2304, 2022. (10 pages). |
Rohit Chintala et al., “Automated fault detection of residential air-conditioning systems using thermostat drive cycles,” Energy and Buildings 236 (2021): 110691. (28 pages). |
Xudong Wang et al., “A2L Refrigerants Leaks and Ignitions Testing under Whole Room Scale,” Purdue University—International Refrigeration and Air Conditioning Conference Paper 1849, 2018. (11 pages). |
International Preliminary Report on Patentability dated Sep. 9, 2022 for PCT Application No. PCT/US2021/020017 (7 pages). |
International Search Report and Written Opinion dated May 19, 2021 for PCT Application No. PCT/US2021/020017 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20230221045 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
62724459 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16539956 | Aug 2019 | US |
Child | 18175203 | US |