The invention relates to a check valve apparatus and method of manufacture, and more particularly to a hydraulic tensioner for applying proper tension to an endless, flexible, power transmission member, such as a timing belt or timing chain, encircling a driving sprocket and at least one driven sprocket as used for an internal combustion engine of a motor vehicle.
There is a desire to provide a disk style check valve having a surface area acting directly on a body of a hydraulic tensioner to reduce the number of parts required in a check valve assembly.
Current hydraulic tensioners use a drop-in check valve assembly. A check valve assembly can be assembled directly into a body of the hydraulic tensioner in order to reduce the number of parts required in the check valve assembly. To overcome the limitation of current technology, a disk style check valve can have a larger contacting surface area acting directly on the tensioner body, eliminating the requirement of a mating component such as a valve seat. However, a mating component can be inserted to reduce wear associated with the disk style check valve acting directly on the tensioner body. Current check valve assemblies are mated to a plastic component forming either a seal with the tensioner body or vent if a metered backflow is required in the tensioner. The plastic component can be eliminated by using at least one orifice of a given size directly formed in the disk style check valve to deliver a metered backflow. The orifices can be formed in the disk style check valve through a stamping, or deep drawing process, with a secondary machining. Smaller diameters can be created through a water jet or laser cutting process. A metered backflow can be provided by forming, machining, or lasering a flow path or tortuous path on the bottom of the disk style check valve or on a mating component, which can be either the tensioner body or the inserted valve seat.
A hydraulic tensioner for an endless loop, flexible, power transmission member of an internal combustion engine of a motor vehicle can have a body defining an inlet fluid passage with an inlet fluid passage port having a valve seat and check valve assembly. The check valve assembly can include a retainer located within the body defining an outlet fluid passage in fluid communication with the inlet fluid passage through a cavity defined by the retainer. The check valve assembly can include at least one valve disk having at least one valve sealing surface and at least one biasing member received within the cavity for biasing the at least one valve disk toward the inlet fluid passage port. The at least one valve disk can be received within the cavity for reciprocal movement with respect to the inlet fluid passage port of the body and normally biased toward the inlet fluid passage port. The at least one biasing member can allow reciprocal movement of the at least one valve disk from a closed seated position sealing the inlet fluid passage port to an open unseated position spaced from the inlet fluid passage port opening the inlet fluid passage and allowing fluid flow through the inlet fluid passage.
A check valve assembly can include a hydraulic tensioner having a body defining a fluid passage in fluid communication with an inlet passage having an inlet fluid passage port. The check valve assembly can include a retainer located within the fluid passage of the hydraulic tensioner, at least one valve disk having at least one valve sealing surface directly engageable with the body of the hydraulic tensioner, and at least one biasing member. The retainer can define an outlet fluid passage in fluid communication with the inlet fluid passage through a cavity defined by the retainer. The at least one valve disk can be received within the cavity for reciprocal movement with respect to the inlet fluid passage port and normally biased toward the inlet fluid passage port. The at least one biasing member can be received within the cavity for biasing the at least one valve disk toward the inlet fluid passage port while allowing reciprocal movement of the at least one valve disk from a seated, closed position sealing the inlet fluid passage port to an open, unseated position spaced from the inlet fluid passage port allowing fluid flow through the inlet fluid passage port.
A hydraulic tensioner having a body defining an inlet fluid passage port can be assembled. The hydraulic tensioner can support a check valve assembly for an endless loop, flexible, power transmission member of an internal combustion engine of a motor vehicle. The method of assembling can include positioning a retainer within the body, the retainer defining an outlet fluid passage in fluid communication with the inlet fluid passage port through a cavity defined by the retainer. The method can include inserting at least one check valve disk having at least one valve sealing surface and biasing the at least one valve disk toward the inlet fluid passage port. The at least one valve disk can be received within the cavity for reciprocal movement with respect to the inlet fluid passage port of the body and normally biased toward the inlet fluid passage port. The at least one valve disk can be biased toward the inlet fluid passage port while allowing reciprocal movement of the at least one valve disk from a closed seated position sealed with respect to the inlet fluid passage port to an open unseated position spaced from the inlet fluid passage port allowing fluid flow through the inlet fluid passage port.
Other applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
Referring now to
Referring now to
Referring now to
Referring now to
The check valve assembly 20 can include at least one mating surface 14b associated with the inlet fluid passage. The at least one valve sealing surface 32 can be sealingly engageable with the at least one mating surface 14b. The at least one biasing member 34 can allow reciprocal movement of the at least one valve disk 30 from a closed seated position sealing against fluid flow through the inlet fluid passage port 14a to an open unseated position spaced from the at least one mating surface 14b allowing fluid flow through the inlet fluid passage port 14a. The at least one valve seat 14b can include a metered fluid passage 38 allowing a metered backflow of fluid pressure in the hydraulic tensioner 10. The metered fluid passage 38 can be formed in the at least one valve disk 30 and in fluid communication with the inlet fluid passage 14.
A check valve assembly 20 can be assembled in a hydraulic tensioner 10. The hydraulic tensioner 10 can have a body 12 defining an inlet fluid passage port 14a and supporting the check valve assembly 20 for an endless loop, flexible, power transmission member of an internal combustion engine of a motor vehicle. The method can include positioning a retainer 22 within the body 12 and inserting at least one check valve disk 30. The retainer 22 can define an outlet fluid passage 24 in fluid communication with the inlet fluid passage port 14a through a cavity 26 defined by the retainer 22. The at least one valve disk 30 can be received within the cavity 26 for reciprocal movement with respect to the inlet fluid passage port 14a of the body 12 and normally biased toward the inlet fluid passage port 14a. The method can further include biasing the at least one valve disk 30 toward the inlet fluid passage port 14a while allowing reciprocal movement of the at least one valve disk 30 from a closed seated position sealed with respect to the inlet fluid passage port 14a to an open unseated position spaced from the inlet fluid passage port 14a allowing fluid flow through the inlet fluid passage port 14a. The method can further include forming at least one mating surface 14b associated with the inlet fluid passage 14. The at least one valve sealing surface 32 can be sealingly engageable with the at least one mating surface 14b. The at least one biasing member 34 can allow reciprocal movement of the at least one valve disk 30 from a seated sealed position to an unseated position spaced from the at least one mating surface 14b allowing fluid flow therethrough.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/30908 | 5/5/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62161619 | May 2015 | US |