Integrated disposable component system for use in dialysis systems

Abstract
The present application discloses novel systems for conducting the filtration of blood using manifolds. The manifolds integrate various sensors and have fluid pathways formed therein to direct fluids from various sources through the requisite blood filtration or ultrafiltration system steps.
Description
FIELD

The present application relates generally to the field of blood purification systems and methods. More specifically, the present invention relates to novel methods and systems for conducting hemofiltration and hemodialysis.


BACKGROUND

Blood purification systems, which are used for conducting hemodialysis, hemodiafiltration or hemofiltration, involve the extracorporeal circulation of blood through an exchanger having a semi permeable membrane. Such systems further include a hydraulic system for circulating blood and a hydraulic system for circulating replacement fluid or dialysate comprising the main electrolytes of the blood in concentrations close to those in the blood of a healthy subject. Most of the conventionally available blood purification systems are, however, quite bulky in size and difficult to operate. Further, the design of these systems makes them unwieldy and not conducive to the use and installation of disposable components.


The conventional design of prior art hemodiafiltration systems employs single pass systems. In single pass systems, the dialysate passes by the blood in the dialyzer one time and then is disposed. Single pass systems are fraught with a plurality of disadvantages, arising from the use of large amounts of water:

    • Assuming a 50% rejection rate by the R.O. (Reverse Osmosis) system, at least 1000 to 1500 ml/min of water is required.
    • A water purification system for providing a continuous flow of 100 to 800 ml/minute of purified water is required.
    • An electrical circuit of at least 15 amps is required, in order to pump 100 to 800 ml of water/minute, and
    • A floor drain or any other reservoir capable of accommodating at least 1500 ml/min of used dialysate and RO rejection water.


U.S. Pat. No. 4,469,593 to Ishihara, et al discloses “a blood purification apparatus [that] includes an extracorporeal circulation system, a blood purifier provided in the system for purifying blood by dialysis or filtration through a semi permeable membrane, a circulation blood volume measuring instrument for measuring changes in a circulating blood volume within a patient's body, a control section comprising a memory for storing a program for a pattern of changes in the circulating blood volume during blood purification, the program being matched to the condition of a patient, and a regulator connected to the extracorporeal circulation system and the control section, for controlling the circulating blood volume, the regulator being controlled by the control section on the basis of the circulating blood volume measured during blood purification and the programmed amount. In this apparatus, optimum blood purification is carried out while maintaining the circulating blood volume at a prescribed level.”


U.S. Pat. No. 5,114,580 to Ahmad, et al discloses “[a] hemodialysis system that has a blood circuit and a hemofiltrate circuit interconnected at a hemofilter and an air collection chamber. If an infusion of sterile fluid to the returning blood is needed during the dialysis treatment, filtrate in the filtrate circuit is pumped back into the blood circuit. This is also done to purge the blood circuit of blood and return it to the patient at the conclusion of a dialysis treatment. A blood pump in the blood circuit incorporates a flexible vessel in conjunction with pinch valves which self expand in a controlled manner from a compressed condition to fill with blood from the patient in a suction stroke controlled by the patient's blood delivery rate. Compression of the vessel by an external member then forces the blood through the rest of the blood circuit.”


U.S. Pat. No. 6,303,036 to Collins, et al discloses “[a]n apparatus and method for hemodiafiltration . . . [that] includes a first dialyzer cartridge containing a semi-permeable membrane that divides the dialyzer into a blood compartment and a dialysate compartment. Fluid discharged from the blood compartment of the first dialyzer cartridge is mixed with sterile substitution fluid to form a fluid mixture and the mixture enters a second dialyzer cartridge. The second dialyzer cartridge contains a second semi-permeable membrane which divides the second dialyzer cartridge into a blood compartment and a dialysate compartment. Hemodiafiltration occurs in both cartridges.”


None of these systems, however, address the aforementioned disadvantages of prior art blood purification systems. Conventional systems are also less reliable because of the necessity of using a myriad of tubes comprising the fluid circuits of the purification systems, thus increasing the risks of leakage and breakage.


Further, conventional blood purification systems do not have built-in functionality to check the integrity and authenticity of the disposables employed in the system. Still further, conventional systems lack the capability to allow the user of the system to interact with a remote patient care facility.


Accordingly, there is a need for a multiple-pass sorbent-based hemodiafiltration system that lowers the overall water requirements relative to conventional systems. There is also a need for a novel manifold that can be used in a single pass sorbent-based hemodiafiltration system as well as in the multiple-pass system of the present invention, which offers a lightweight structure with molded blood and dialysate flow paths to avoid a complicated mesh of tubing. It is also desirable that the novel manifold has integrated blood purification system components, such as sensors, pumps and disposables, thus enhancing fail-safe functioning of a patient's blood treatment.


SUMMARY

The present application discloses novel systems for conducting the filtration of blood using manifolds. In one embodiment, the manifold comprises a first flow path formed in a plastic substrate comprising a plurality of sensors integrated therein and tubing that receives blood from a first inlet port and passes blood to a dialyzer; a component space formed in the plastic substrate for receiving a dialyzer; a second flow path formed in the plastic substrate comprising at least one blood leak sensor integrated therein and tubing that receives a first fluid from a dialyzer and passes the first fluid to a first outlet port and a second outlet port, wherein the first outlet port is in fluid communication with a collection reservoir and the second outlet port is in fluid communication with a dialysate regeneration system; a third flow path formed in the plastic substrate comprising tubing that receives a second fluid from a second inlet port and passes the second fluid to the dialyzer; and a fourth flow path formed in the plastic substrate comprising at least one sensor and tubing that receives purified blood from the dialyzer and passes the purified blood to a third outlet port.


Optionally, a pump, such as a peristaltic pump, is in fluid communication with the first flow path. The sensors integrated into the first flow path are at least one of a pressure transducer and a flow meter. The transducers are directly molded into the manifold and are made of synthetic rubber. A flow meter is integrated into the second flow path. At least two pumps are in fluid communication with the second flow path. The fourth flow path further comprises tubing for receiving fluid from a third inlet port. The third inlet port is connected to a substitution fluid container.


In another embodiment, the present application discloses a manifold for conducting filtration of blood comprising a first inlet port, a first flow path formed in a plastic substrate comprising a plurality of sensors integrated therein wherein the first flow path forms a pathway for transporting blood from the first inlet port and to a component space formed in the plastic substrate, a second flow path formed in the plastic substrate comprising at least one blood leak sensor integrated therein wherein the second flow path forms a pathway for transporting a first fluid from the component space to a first outlet port and a second outlet port, a third flow path formed in the plastic substrate comprising tubing wherein the third flow path forms a pathway for transporting a second fluid from a second inlet port to the component space, and a fourth flow path formed in the plastic substrate comprising at least one sensor, wherein the fourth flow path forms a pathway for transporting purified blood from the component space to a third outlet port.


In another embodiment, the present application discloses a system for conducting ultrafiltration having a manifold comprising a first flow path formed in a plastic substrate comprising a plurality of sensors integrated therein and tubing that passes blood to a first outlet port, wherein the first outlet port is in fluid communication with a first pump external to the manifold, receives blood from a first inlet port, wherein the first inlet port is in fluid communication with the first pump, and passes the blood to a dialyzer; a component space formed in the plastic substrate for receiving a dialyzer; a second flow path formed in the plastic substrate comprising at least one sensor integrated therein and tubing that receives a first fluid from the dialyzer and passes the first fluid to a second outlet port, wherein second outlet port is in fluid communication with a second pump; and a third flow path formed in the plastic substrate comprising at least one sensor and tubing that receives the first fluid from a second inlet port, wherein the second inlet port is in fluid communication with the second pump, and passes said first fluid to a third outlet port.


Optionally, the first flow path comprises at least two pressure sensors. The at least one sensor of the third flow path is a blood leak sensor. The system further comprises a fourth flow path formed in the substrate comprising at least one sensor and tubing that receives a second fluid from said dialyzer and passes said second fluid to a fourth outlet port. The at least one sensor in the fourth flow path is an air detector. The third flow path further comprises a flow meter. The at least one sensor in the second flow path is a pressure sensor. The system further comprises a housing for containing the first pump, said second pump, and the manifold.


In another embodiment, the present application discloses a manifold for conducting ultrafiltration comprising a first flow path formed in a plastic substrate comprising at least one sensor integrated therein wherein the first flow path forms a pathway for passing blood from a first inlet port to a component space, a component space formed in the plastic substrate, a second flow path formed in the plastic substrate comprising at least one sensor integrated therein wherein the second flow path forms a pathway for passing a first fluid from the component space to a second outlet port; and a third flow path formed in the plastic substrate comprising at least one blood leak sensor and flow meter, wherein the third flow path forms a pathway for passing said first fluid from a second inlet port to a third outlet port.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:



FIG. 1a is a functional block diagram of one embodiment of a multiple-pass sorbent-based hemodiafiltration system of the present invention;



FIG. 1b is an illustration of one embodiment of a hemodiafiltration manifold of the present invention;



FIGS. 2a and 2b are a functional diagram and an illustration, respectively, of one embodiment of an ultrafiltration manifold used to support an ultrafiltration treatment system;



FIG. 2c shows a modular assembly of an ultrafiltration manifold in one embodiment of the present invention;



FIG. 2d shows a larger view of a mid-body module in one embodiment of the ultrafiltration manifold of the present invention;



FIG. 3 is a functional block diagram showing one embodiment of an ultrafiltration treatment system of the present invention; and



FIG. 4 is a functional block diagram showing one embodiment of an electronic-based lockout system of the present invention.





DETAILED DESCRIPTION

The present application discloses a plurality of novel embodiments which can be practiced independently or in novel combination with each other.


In one embodiment, the present application discloses a multiple-pass, sorbent-based hemodiafiltration system, advantageously combining hemofiltration and hemodialysis in a multiple pass configuration.


In another embodiment, the present application discloses novel manifold supports for blood purification systems, such as, but not limited to hemodiafiltration and ultrafiltration. In one embodiment, the novel manifold of the present invention comprises a composite plastic manifold, into which the blood and dialysate flow paths are molded. This plastic based manifold can be used with the multiple-pass sorbent-based hemodiafiltration system of the present invention.


In another embodiment, blood purification system components, such as sensors, pumps, and disposables are integrated into the molded novel manifold. Preferably, disposable items such as but not limited to dialyzer and sorbent cartridges, are detachably loadable on to the manifold. In one embodiment, sensors, such as but not limited to those for pressure and air monitoring and blood leak detection are also integrated with the manifold. In another embodiment, blood circuit pumps are integrated with the manifold. In another embodiment, the valve membranes are integrated with the manifold.


In yet another embodiment, an ultrafiltration system is integrated into a novel manifold by molding both blood and ultrafiltrate flow paths in the manifold. In one embodiment, a hemofilter cartridge is placed into the manifold so that it can be removed and replaced.


In one embodiment, the manifolds disclosed herein comprise single, composite plastic structures, also referred to as substrates or housings, that can be made by combining two plastic substrate halves.


In another embodiment, the present application discloses a dialysis system that supports an electronic-based lockout system. Accordingly, in one embodiment, a reader is mounted on the system housing(s) and/or manifold(s), such as but not limited to the hemodiafiltration and ultrafiltration manifolds, and reads identification indicia on disposable items that are loaded onto the dialysis housing(s) and/or manifolds. The reader communicates with a database over a network, such as a public network or private network, to check if the disposable items are valid, accurate, or of sufficient integrity to be safe and ready for use. This is done by querying information on the disposable items from the remote database, based on the identification indicia of the items. If the disposable item has an “invalid” or “compromised” status, (based on the information received from the database) the .system “locks out” the use of the loaded disposable, and thus does not allow the user to proceed with using the system for treatment.


Reference will now be made to specific embodiments of the present invention. The present invention is directed toward multiple embodiments. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein.



FIG. 1a is a functional block diagram of one embodiment of a multiple-pass sorbent-based hemodiafiltration system of the present invention. In one embodiment, hemodiafiltration system 100 employs a dialyzer cartridge comprising a high flux membrane to remove toxins from the blood both by diffusion and by convection. The removal of toxins by diffusion is accomplished by establishing a concentration gradient across the semi-permeable membrane by allowing a dialysate solution to flow on one side of the membrane in one direction while simultaneously allowing blood to flow on the other side of the membrane in opposite direction. To enhance removal of toxins using hemodiafiltration, a substitution fluid is continuously added to the blood either prior to the dialyzer cartridge (pre-dilution) or after the dialyzer cartridge (post-dilution). An amount of fluid equal to that of the added substitution fluid is “ultra-filtered” across the dialyzer cartridge membrane, carrying the added solutes with it.


Now referring to FIG. 1a, in one embodiment, the blood containing toxins is pumped from a blood vessel of a patient by a blood pump 101 and is transferred to flow through dialyzer cartridge 102. Optionally, inlet and outlet pressure sensors 103, 104 in the blood circuit measure the pressure of blood both before it enters the dialyzer cartridge 102 at the blood inlet tube 105 and after leaving the dialyzer cartridge 102 at the blood outlet tube 106. Pressure readings from sensors 103, 104, 128 are used as a monitoring and control parameter of the blood flow. An ultrasonic flow meter 121 may be interposed in the portion of blood inlet tube 105 that is located directly upstream from the blood pump 101. The ultrasonic flow meter 121 is positioned to monitor and maintain a predetermined rate of flow of blood in the impure blood supply line. A substitution fluid 190 may be continuously added to the blood either prior to the dialyzer cartridge (pre-dilution) or after the dialyzer cartridge (post-dilution).


In one embodiment, as shown in FIGS. 1a and 1b, dialyzer cartridge 102 comprises a semi-permeable membrane 108 that divides the dialyzer 102 into a blood chamber 109 and a dialysate chamber 111. As blood passes through the blood chamber 109, uremic toxins are filtered across the semi-permeable membrane 108 on account of convection. Additional blood toxins are transferred across the semi-permeable membrane 108 by diffusion, primarily induced by a difference in concentration of the fluids flowing through the blood and dialysate chambers 109, 111 respectively. The dialyzer cartridge used may be of any type suitable for hemodialysis, hemodiafiltration, hemofiltration, or hemoconcentration, as are known in the art. In one embodiment, the dialyzer 102 contains a high flux membrane. Examples of suitable dialyzer cartridges include, but are not limited to, Fresenius® F60, F80 available from Fresenius Medical Care of Lexington, Mass., Baxter CT 110, CT 190, Syntra® 160 available from Baxter of Deerfield, Ill., or Minntech Hemocor HPH® 1000, Primus® 1350, 2000 available from Minntech of Minneapolis, Minn.


In one embodiment of the present invention, dialysate pump 107 draws spent dialysate from the dialyzer cartridge 102 and forces the dialysate into a dialysate regeneration system 110 and back into the dialyzer cartridge 102 in a multiple pass loop, thus generating “re-generated” or fresh dialysate. Optionally, a flow meter 122 is interposed in the spent dialysate supply tube 112 upstream from dialysate pump 107, which monitors and maintains a predetermined rate of flow of dialysate. A blood leak sensor 123 is also interposed in spent dialysate supply tube 112.


The multi-pass dialysate regeneration system 110 of the present invention comprises a plurality of cartridges and/or filters containing sorbents for regenerating the spent dialysate. By regenerating the dialysate with sorbent cartridges, the hemodiafiltration system 100 of the present invention requires only a small fraction of the amount of dialysate of a conventional single-pass hemodialysis device. In one embodiment, each sorbent cartridge in the dialysate regeneration system 110 is a miniaturized cartridge containing a distinct sorbent. For example, the dialysate regeneration system may employ five sorbent cartridges, wherein each cartridge separately contains activated charcoal, urease, zirconium phosphate, hydrous zirconium oxide and activated carbon. In another embodiment each cartridge may comprise a plurality of layers of sorbents described above and there may be a plurality of such separate layered cartridges connected to each other in series or parallel in the dialysate regeneration system. Persons of ordinary skill in the art would appreciate that activated charcoal, urease, zirconium phosphate, hydrous zirconium oxide and activated carbon are not the only chemicals that could be used as sorbents in the present invention. In fact, any number of additional or alternative sorbents, including polymer-based sorbents, could be employed without departing from the scope of the present invention.


The sorbent-based multiple-pass hemodiafiltration system of the present invention provides a plurality of advantages over conventional single-pass systems. These include:

    • No requirement of a continuous water source, a separate water purification machine or a floor drain as the system of present invention continuously regenerates a certain volume of dialysate. This allows for enhanced portability.
    • The present system requires low amperage electrical source, such as 15 amps, because the system recycles the same small volume of dialysate throughout the diafiltration procedure. Therefore, extra dialysate pumps, concentrate pumps and large heaters used for large volumes of dialysate in single pass dialysis systems are not required.
    • The present system can use low volumes of tap water, in the range of 6 liters, from which dialysate can be prepared for an entire treatment.
    • The sorbent system uses sorbent cartridges that act both as a water purifier and as a means to regenerate used dialysate into fresh dialysate.


While the current embodiment has separate pumps 101, 107 for pumping blood and dialysate through the dialyzer, in an alternate embodiment, a single dual-channel pulsatile pump that propels both blood and dialysate through the hemodiafiltration system 100 may be employed. Additionally, centrifugal, gear, or bladder pumps may be used.


In one embodiment, excess fluid waste is removed from the spent dialysate in the spent dialysate tube 112 using a volumetric waste micro-pump 114 and is deposited into a waste collection reservoir 115, which can be periodically emptied via an outlet such as a tap. An electronic control unit 116 comprising a microprocessor monitors and controls the functionality of all components of the system 100.


In one embodiment, dia-filtered blood exiting dialyzer cartridge 102 is mixed with regulated volumes of sterile substitution fluid that is pumped into the blood outlet tube 106 from a substitution fluid container 117 via a volumetric micro-pump 118. Substitution fluid is typically available as a sterile/non-pyrogenic fluid contained in flexible bags. This fluid may also be produced on-line by filtration of a non-sterile dialysate through a suitable filter cartridge rendering it sterile and non-pyrogenic.



FIG. 1b is an illustration of one embodiment of a hemodiafiltration manifold of the present invention. In one embodiment, hemodiafiltration manifold 120 comprises the blood and dialysate flow paths shown in the hemodialfiltration system 100 shown in FIG. 1a. As shown in FIG. 1b, the blood and dialysate flow paths are molded in a single compact plastic unit. Fluid flows in and out of the manifold at defined inlet and outlet ports, such as to and from a patient, to a waste reservoir, to a dialysate regeneration system, or from a substitution fluid reservoir. The sensors, such as dialyzer blood inlet pressure transducers 103, 128 and blood outlet pressure transducer 104; flow meters 121, 122; blood leak sensor 123; disposable sorbent cartridges of the dialysate regeneration system 110, which is external to the manifold; and volumetric pumps 101, 107, 114 and 118 are all integrated into the molding of the manifold 120. The disposable dialyzer 102 is directly integrated with the corresponding space in the manifold 120 to complete the blood and dialysate circuits, as shown in FIG. 1b. Preferably, pressure transducers 103, 104 are directly molded into the manifold with a multi-shot plastic injection molding process which reduces the need for manual assembly of these components. In one embodiment, the diaphragm of the transducers are made of synthetic rubber, such as polyisoprene, and co-molded into the ABS plastic substrate. Collection reservoir 115 and substitution fluid container 117 are also external to the manifold 120.



FIG. 3 is a functional block diagram showing one embodiment of an ultrafiltration treatment system 300 of the present invention. As shown in FIG. 3, blood from a patient is drawn into blood inlet tubing 301 by a pump, such as a peristaltic blood pump, 302 that forces the blood into a hemofilter cartridge 304 via blood inlet port 303. Inlet and outlet pressure transducers 305, 306 are connected in-line just before and after the blood pump 302. The hemofilter 304 comprises a semi-permeable membrane that allows excess fluid to be ultrafiltrated from the blood passing therethrough, by convection. Ultrafiltered blood is further pumped out of the hemofilter 304 through blood outlet port 307 into blood outlet tubing 308 for infusion back to into the patient. Regulators, such as clamps, 309, 310 are used in tubing 301 and 308 to regulate fluid flow therethrough.


A pressure transducer 311 is connected near the blood outlet port 307 followed by an air bubble detector 312 downstream from the pressure transducer 311. An ultrafiltrate pump, such as a peristaltic pump, 313 draws the ultrafiltrate waste from the hemofilter 304 via UF (ultrafiltrate) outlet port 314 and into the UF outlet tubing 315. A pressure transducer 316 and a blood leak detector 317 are transposed into the UF outlet tubing 315. Ultrafiltrate waste is finally pumped into a waste collection reservoir 318 such as a flask or soft bag, attached to the leg of an ambulatory patient and equipped with a drain port to allow intermittent emptying. The amount of ultrafiltrate waste generated can be monitored using any measurement technique, including a scale or flow meter. The microcontroller monitors and manages the functioning of the blood and UF pumps, pressure sensors as well as air and blood leak detectors. Standard luer connections such as luer slips and luer locks are used for connecting tubing to the pumps, the hemofilter and to the patient.



FIGS. 2a and 2b are a functional diagrams and an illustration, respectively, of one embodiment of an ultrafiltration manifold 200 used to support an ultrafiltration treatment system. In one embodiment, the ultrafiltration manifold 200 is an easy to assemble compact plastic unit that has built-in molded blood and waste flow paths. Optionally, the sensors, pumps and hemofilter cartridges can also be integrated with the compact plastic unit by insertion into concave moldings in the unit. In one embodiment, the ultrafiltration system of the present invention is capable of operating more than 8 hours per treatment and for up to 72 hours continuously. It should be appreciated that fluid flows in and out of the manifold through defined inlet and outlet ports, such as to and from external pumps, to a waste UF reservoir, or to a patient return line.



FIG. 2c shows a modular assembly of an ultrafiltration manifold in one embodiment of the present invention. As shown in FIG. 2c, the housing 290 comprises blood and waste pumps 203, 213 respectively in a pumping section 230; a module 240 comprises molded flow paths for blood and ultrafiltrate wastes and a hemofilter module 250 comprising a hemofilter cartridge 208. This modular design allows quick and easy assembly of various modules into a single compact structure 290.



FIG. 2d shows an enlarged view of a mid-body module 240 in one embodiment of the ultrafiltration manifold of the present invention. In one embodiment, mid-body module 240 comprises built-in molded flow paths 241 for carrying blood and waste. Connection ports 242 are also molded into the mid-body module for connecting (via luer connectors and tubing) to pumps at one end of mid-body module 240 and to a hemofilter cartridge at the other end of mid-body module 240.


Referring back to FIGS. 2a and 2b simultaneously, blood is drawn into the manifold 200 via blood inlet port 201 and molded flow path 202 using a blood volumetric pump 203. Blood volumetric pump 203 pumps blood into hemofilter cartridge 208 via the molded flow path 204. Inlet pressure sensors 206, 207 are also integrated into manifold 200 in molded flow paths 202, 204.


In one embodiment the hemofilter cartridge 208 comprises a hollow tube further comprising a plurality of hollow fiber tubes whose walls act as a semi-permeable membrane. The plurality of semi-permeable, hollow fiber tubes divide the hemofilter cartridge 208 into blood flow regions 205 within the hollow fiber tubes and a filtrate or permeate region 209 outside the hollow fiber tubes. As blood passes through blood regions 205, plasma water passes across the semi-permeable membranes of the hollow fiber tubes. The hemofilter cartridge 208 is a small hemofilter. More concentrated blood flows out from the cartridge 208 through molded flow path 210 and out of the manifold 200 through a blood outlet port 211. An air detector 212 is also integrated into blood return flow path 210.


The following are exemplary physical specifications of a hemofilter 208 in accordance with one embodiment of the present invention:


















Membrane Surface Area (m2)
≤0.1



Prime Volume (ml)
≤10



Molecular Weight cut-off (Daltons)
65,000



Pressure Drop3 (mmHg)
≤50 (Qb = 50 ml/min



Maximum Transmembrane Pressure
≥500



(mmHg)



Overall Unit Length (cm)
12-15



Filtration rate
8-10 ml/min




@100 mmHg




@ 50 ml/min Qb



Tubing Connections



Blood
Male Luer



Filtrate
Slip fit (straight)



Sterilization:
ETO or gamma



Membrane Material:
Polysulfone




(preferred)



Housing material
Polycarbonate



Potting material
Polyurethane



Sieving coefficients



Urea
1.00



Creatinine
1.00



Vit B12
0.98



Middle molecule/size
≥0.20




17,000



Albumin
≤.03










Referring back to FIGS. 2a and 2b, ultrafiltrate waste from the permeate region 209 is drawn out by waste volumetric pump 213 through molded flow path 214, which, in one embodiment, has an integrated pressure sensor 215 located in-line of flow path 214. The ultrafiltrate waste is pumped through molded flow path 216, which, in one embodiment, has an integrated blood leak detector 217 and waste ultrafiltrate flow meter 218, in-line with flow path 216 leading out of the manifold 200 through a waste outlet port 219.


In one embodiment, the hemofilter cartridge 208 is disposable and can be removably integrated into the corresponding molded concavity in the manifold 200 to complete the ultrafiltration circuit. The manifold 200 also provides an interface to a redundant pinch valve to prevent air from entering the patient's vascular system. The pinch valve is designed such that it is in closed (occluded) position when no electrical power is applied.


The molded flow paths 202, 204, 210, 214 and 216 define the blood and ultrafiltrate flow circuits of the manifold 200. In one embodiment, these flow paths comprise disposable tubing and a plurality of interfacing components, such as joints, that are suitable for blood and ultrafiltrate contact for at least 3 days. The joints preferably are designed to have at least 5 lbs. strength and seal to 600 mmHg (that is, greater than hemofilter maximum trans-membrane pressure). In one embodiment, the blood set tubing corresponding to flow paths 202, 204 and 210 have suitable length and internal diameter for supplying a blood flow of 50 mL/minute. In one embodiment the prime volume of blood set tubing, including the hemofilter 205, is less than 40 mL. The blood set tubing interfaces with the blood volumetric pump 203. Blood pump 203 tubing, in one embodiment, is of Tygon brand, formulation S-50-HL, size ⅛″ ID× 3/16″ OD× 1/32″ Wall.


Similarly, in one embodiment, the ultrafiltrate set tubing corresponding to flow paths 214 and 216 are capable of supplying an ultrafiltrate flow of 500 mL/Hr (8.33 mL/minute). The ultrafiltrate set tubing also interfaces with the waste volumetric pump 213. Waste pump 213 tubing, in one embodiment, is of Tygon brand, formulation S-50-HL, size 3/32″ ID× 5/32″ OD× 1/32″ Wall.


Since the ultrafiltration manifolds of the present invention comprise molded flow paths for blood, dialysate, waste fluids, and substitution fluids, the entire flow path can be easily manufactured as portable composite manifolds. The manifolds are also easy to handle since all flexible tubing outside the manifolds are attached on one side of the manifolds. Use of manifolds with built-in molded flow paths enhances fail-safe treatment as the chances of disconnection, misassembly and leakage are minimized in comparison to prior art systems that use a myriad of flexible tubing. Use of the novel manifolds also enhances ease of use leading to enhanced portability.


In one embodiment the dialysis manifolds shown in FIGS. 1b and 2b are standalone compact units such that they can be individually and separately used to process blood from a patient. In another embodiment the two manifolds are connectable to each other to function as a dual stage blood processing system. In one example, blood is drawn from an arterial site in a patient and passed through a dialyzer where a large amount of waste fluid is convected out. The manifold is used to return an equal amount of fluid back to the blood, before the blood is reinfused. The manifold measures and dumps the waste fluid into a waste bag.


In another embodiment of the present invention, the novel manifolds described above also comprise an electronic-based lockout (“e-lockout”) system. FIG. 4 is a functional block diagram showing one embodiment of the e-lockout system of the present invention. In one embodiment e-lockout system 400 comprises a reader 401 that detects and reads identification data 406 embedded in disposable items 402, such as disposable manifolds, disposable sorbents used in dialysate regeneration and/or dialyzers. The identification data 406 may be stored on disposable items 402 via barcode, RFID tags, EEPROM, microchip or any other identification means that uniquely identifies the disposable items 402 to be used in the dialysis system 403. The reader 401 is correspondingly a barcode reader, RFID reader, microchip reader, or any other reader that corresponds to the identification technology employed as is known to persons of ordinary skill in the art. In one embodiment, the reader 401 is connected with a transceiver for wirelessly connecting to a remote database 405 through a network 404 such as Internet or any other public or private network known to persons of ordinary skill in the art. In another embodiment, the reader 401 is directly aligned with the identification data 406 [not shown].


The database 405, located remote from the dialysis system, stores a plurality of information about the disposable items 402 that can be used in the system 403. The information comprises unique identification data 406 along with information for the corresponding disposable item such as authenticity, usability in terms of whether the item is likely to be in working condition, or not or if the item has been recalled by the manufacturer owing to a defect, its expiry date, if any, and/or any other such value-added information that would advantageously be evident to persons of ordinary skill in the art.


In operation, when a disposable item 402, such as a dialyzer, manifold, or a hemofilter cartridge, is loaded into the system 403 the reader 401 detects the disposable item 402 through identification data 406 embedded onto item 402. This identification data 406 is read by reader 401, which, in turn, communicates, either wired or wirelessly, with database 405 to request more information on the item 402 stored therein, based on identification data 406, or confirm the validity or integrity of the item 402 based on identification data 406.


For example, in one embodiment, dialyzer cartridge 402 identified by the reader 401 may have been called back by the manufacturer on account of some defect. This call-back information is stored on the database 405 and is returned back to the reader 401 as a result of the request signal sent by the reader 401 to the database 405 trough the network 404. As a result of the call-back information received from the database 405 the microprocessor controlling the blood purification system supported by the system 403 does not allow the user to proceed with treatment. This is achieved, in one embodiment, by suspending functioning of the pumps that propel fluids through the fluid circuits of the blood purification system 403. Additionally, an audio/visual alarm may also be displayed to this effect.


In another example, dialyzer cartridge 402 identified by the reader 401 may not be authentic as a result of which; the microprocessor would not allow functioning of the blood purification system of the system 403. Thus, the e-lockout system 400 of the present invention prevents usage of the system 403 in case the disposable items 402 attached to the manifold 403 are in a compromised state.


While there has been illustrated and described what is at present considered to be a preferred embodiment of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made, and equivalents may be substituted for elements thereof without departing from the true scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the central scope thereof. Therefore, it is intended that this invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out the invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. An apparatus adapted to filter blood, the apparatus comprising: a dialyzer configured to filter blood;a first flow path encompassed in a substrate, wherein the first flow path is configured to carry blood from and to a patient through the dialyzer;a dialysate regeneration system comprising a plurality of cartridges containing sorbents and configured to regenerate dialysate;a second flow path having first and second portions encompassed in the substrate and a third portion, wherein the first portion extends from a first output port of the dialyzer to a first port on the substrate and the second portion extends from a first input port of the dialyzer to a second port on the substrate, wherein the third portion is defined by a first tube extending from the first port to the dialysate regeneration system and a second tube extending from the second port to the dialysate regeneration system, and wherein the first flow path and second flow path are fluidically isolated from each other;at least one diaphragm positioned in the molded, substrate and over at least one of the first or second flow paths;a waste collection reservoir configured to receive waste fluid;a fluid reservoir configured to supply fluid, wherein each of the waste reservoir, fluid reservoir, dialysate regeneration system, and dialyzer is in fluid communication with the substrate; anda pump having first and second channels, wherein the first channel is configured to draw dialysate from the dialyzer through the first portion of the second flow path and force dialysate, via the third portion of the second flow path, into and out of the dialysate regeneration system and then back into the dialyzer via the second portion of the second flow path, wherein the second channel is configured to propel blood through the first flow path, and wherein the pump is in pressure communication with the dialysate regeneration system.
  • 2. The apparatus of claim 1, wherein the substrate comprises a third port, the apparatus further comprising a third tube having a first end fixedly attached to the third port and a second end fixedly attached to a second input port of the dialyzer.
  • 3. The apparatus of claim 1, wherein the substrate comprises a fourth port, the apparatus further comprising a fourth tube having a first end fixedly attached to the fourth port and a second end adapted to be removably attached to an input port of the waste collection reservoir.
  • 4. The apparatus of claim 1, further comprising a fifth tube having a first end fixedly attached to the first output port of the dialyzer and a second end fixedly attached to the first port.
  • 5. The apparatus of claim 1, wherein the substrate comprises a third port and a fifth port, the apparatus further comprising a third tube having a first end fixedly attached to the third port and a second end fixedly attached to a second input port of the dialyzer and a sixth tube having a first end fixedly attached to the fifth port and a second end fixedly attached to a second output port of the dialyzer.
  • 6. The apparatus of claim 1 further comprising embedded data, wherein the embedded data uniquely identifies a disposable portion of the apparatus, and wherein the embedded data comprises data stored by at least one of a barcode, a Radio Frequency Identification (RFID) tag, an electrically erasable programmable read-only memory (EEPROM), and a microchip.
  • 7. An apparatus adapted to filter blood comprising: a waste collection reservoir configured to receive waste fluid;a fluid reservoir configured to supply fluid;a dialysate regeneration system comprising a plurality of cartridges containing sorbents and configured to regenerate dialysate;a dialyzer configured to filter blood;a plastic substrate in fluid communication with the waste collection reservoir, fluid reservoir, dialysate regeneration system, and dialyzer, wherein the plastic substrate comprises: first and second inlet ports;first and second outlet ports;a first flow path comprising at least one sensor molded therein wherein the first flow path forms a pathway for transporting blood from the first inlet port to the dialyzer and from the dialyzer to the first outlet port;a second flow path comprising at least one sensor molded therein, first and second portions formed in the substrate and a third portion external to the substrate, wherein the first portion forms a pathway for transporting a first fluid from the dialyzer to the second outlet port and the second portion forms a pathway for transporting the first fluid from the second inlet port to the dialyzer, and wherein the third portion is defined by first and second tubes that respectively enable the dialysate regeneration system to be in fluid communication with the second outlet port and the second inlet port; andanda pump having first and second channels, wherein the first channel is configured to draw the first fluid from the dialyzer through the first portion of the second flow path and force the first fluid, via the third portion of the second flow path, into the dialysate regeneration system and then back into the dialyzer via the second portion of the second flow path, wherein the second channel is configured to move blood through the first flow path, and wherein the pump is in pressure communication with the dialysate regeneration system.
  • 8. The apparatus of claim 7 further comprising a third tube that enables the first inlet port to be in fluid communication with the dialyzer.
  • 9. The apparatus of claim 7 further comprising a fourth tube that enables a third outlet port to be in fluid communication with the waste collection reservoir.
  • 10. The apparatus of claim 7 wherein the rigid substrate comprises embedded data and wherein the embedded data uniquely identifies a disposable portion of the apparatus, and wherein the embedded data comprises data stored by at least one of a barcode, a Radio Frequency Identification (RFID) tag, an electrically erasable programmable read-only memory (EEPROM), and a microchip.
  • 11. The apparatus of claim 7 wherein the at least one sensor comprises a transducer diaphragm.
  • 12. The apparatus of claim 11 wherein the transducer diaphragm comprises polyisoprene.
  • 13. An apparatus adapted to filter blood, the apparatus comprising: a dialyzer configured to filter blood;a first flow path encompassed in a substrate, wherein the first flow path is configured to carry blood from and to a patient through the dialyzer;a dialysate regeneration system comprising a plurality of cartridges containing sorbents and configured to regenerate dialysate;a second flow path having first and second portions encompassed in the substrate and a third portion, wherein the first portion extends from the dialyzer to a first port on the substrate and the second portion extends from the dialyzer to a second port on the substrate, wherein the third portion is defined by a first tube extending from the first port to the dialysate regeneration system and a second tube extending from the second port to the dialysate regeneration system, and, wherein the first flow path and second flow path are fluidically isolated from each other;at least one sensor molded into at least one of the first or second flow paths using a multi-shot plastic injection molding process;a waste collection reservoir configured to receive waste fluid;a fluid reservoir configured to supply fluid, wherein each of the waste reservoir, fluid reservoir, dialysate regeneration system, and dialyzer is in fluid communication with the substrate; anda pump having first and second channels, wherein the first channel is configured to draw dialysate from the dialyzer through the first portion of the second flow path and force dialysate, via the third portion of the second flow path, into and out of the dialysate regeneration system and then back into the dialyzer via the second portion of the second flow path, wherein the second channel is configured to propel blood through the first flow path, and wherein the pump is in pressure communication with the third portion of the second flow path and with the dialysate regeneration system.
  • 14. The apparatus of claim 13 wherein the sensor comprises a flow meter.
  • 15. The apparatus of claim 13 wherein the substrate comprises a third port, the apparatus further comprising a third tube having a first end fixedly attached to the third port and a second end fixedly attached to a blood input port of the dialyzer.
  • 16. The apparatus of claim 13 wherein the substrate comprises a fourth port, the apparatus further comprising a fourth tube having a first end fixedly attached to the fourth port and a second end adapted to be removably attached to an input port of the waste collection reservoir.
  • 17. The apparatus of claim 13 further comprising a fifth tube having a first end fixedly attached to a dialysate output port of the dialyzer and a second end fixedly attached to the first port.
  • 18. The apparatus of claim 13 wherein the molded, rigid substrate comprises a third port and a fifth port, the apparatus further comprising a third tube having a first end fixedly attached to the third port and a second end fixedly attached to a blood input port of the dialyzer and a sixth tube having a first end fixedly attached to the fifth port and a second end fixedly attached to a blood output port of the dialyzer.
  • 19. The apparatus of claim 7, further comprising a fifth tube that enables the dialyzer to be in fluid communication with the second outlet port.
  • 20. The apparatus of claim 7, further comprising a third tube that enables the first inlet port to be in fluid communication with the dialyzer and a sixth tube that enables the first outlet port in fluid communication with the dialyzer.
CROSS-REFERENCE

The present application is a continuation of U.S. patent application Ser. No. 15/141,464, filed on Apr. 28, 2016, which is a continuation application of U.S. patent application Ser. No. 13/337,227, filed on Dec. 26, 2011 and issued as U.S. Pat. No. 9,352,282 on May 31, 2016, which is a continuation of U.S. patent application Ser. No. 12/237,914, filed on Sep. 25, 2008 and issued as U.S. Pat. No. 8,105,487 on Jan. 31, 2012, which calls priority to U.S. Patent Provisional Application No. 60/975,157, filed on Sep. 25, 2007.

US Referenced Citations (674)
Number Name Date Kind
2276843 Hathaway Mar 1942 A
2328381 Jaffe Aug 1943 A
2569105 James Sep 1951 A
2977791 Dubsky Apr 1961 A
3200591 Ray Aug 1965 A
3216281 Teichert Nov 1965 A
3242456 Duncan Mar 1966 A
3308798 Snider Mar 1967 A
3384424 Raines May 1968 A
3388803 Scott Jun 1968 A
3420492 Ray Jan 1969 A
3464448 Schmitz Sep 1969 A
3511469 Bell May 1970 A
3514674 Ito May 1970 A
3597124 Adams Aug 1971 A
3669878 Marantz Jun 1972 A
3669880 Marantz Jun 1972 A
3709222 De Vries Jan 1973 A
3728654 Tada Apr 1973 A
3746175 Markley Jul 1973 A
3752189 Marr Aug 1973 A
3803913 Tracer Apr 1974 A
3814376 Reinicke Jun 1974 A
3841799 Spinosa Oct 1974 A
3850835 Marantz Nov 1974 A
3884808 Scott May 1975 A
3894431 Muston Jul 1975 A
3902490 Jacobsen Sep 1975 A
3918037 Hall Nov 1975 A
3927955 Dominic Dec 1975 A
3946731 Lichtenstein Mar 1976 A
3961918 Johnson Jun 1976 A
3983361 Wild Sep 1976 A
3989622 Marantz Nov 1976 A
3989625 Mason Nov 1976 A
3994799 Yao Nov 1976 A
4000072 Sato Dec 1976 A
4047099 Berger Sep 1977 A
4071444 Ash Jan 1978 A
4079007 Hutchisson Mar 1978 A
4083777 Hutchisson Apr 1978 A
4094775 Mueller Jun 1978 A
4099700 Young Jul 1978 A
4113614 Rollo Sep 1978 A
4118314 Yoshida Oct 1978 A
4155852 Fischel May 1979 A
4159748 Staudinger Jul 1979 A
4187057 Xanthopoulos Feb 1980 A
4209392 Wallace Jun 1980 A
4212738 Henne Jul 1980 A
4247393 Wallace Jan 1981 A
4253493 English Mar 1981 A
4259985 Bergmann Apr 1981 A
4267040 Schael May 1981 A
4269708 Bonomini May 1981 A
4326955 Babb Apr 1982 A
4348283 Ash Sep 1982 A
4354562 Newman Oct 1982 A
4368737 Ash Jan 1983 A
4371385 Johnson Feb 1983 A
4381999 Boucher May 1983 A
4387777 Ash Jun 1983 A
4390073 Rosen Jun 1983 A
4397189 Johnson Aug 1983 A
4397519 Cooney Aug 1983 A
4402694 Ash Sep 1983 A
4403765 Fisher Sep 1983 A
4403984 Ash Sep 1983 A
4413988 Handt Nov 1983 A
4430098 Bowman Feb 1984 A
4436620 Bellotti Mar 1984 A
4443333 Mahurkar Apr 1984 A
4460555 Thompson Jul 1984 A
4464172 Lichtenstein Aug 1984 A
4466804 Hino Aug 1984 A
4469593 Ishihara Sep 1984 A
4477342 Allan Oct 1984 A
4480483 McShane Nov 1984 A
4498902 Ash Feb 1985 A
4531799 Gray Jul 1985 A
4535637 Feller Aug 1985 A
4559039 Ash Dec 1985 A
4563170 Aigner Jan 1986 A
4581141 Ash Apr 1986 A
4586576 Inoue May 1986 A
4596550 Troutner Jun 1986 A
4599055 Dykstra Jul 1986 A
4606826 Sano Aug 1986 A
4630799 Nolan Dec 1986 A
4650587 Polak Mar 1987 A
4661246 Ash Apr 1987 A
4666598 Heath May 1987 A
4680122 Barone Jul 1987 A
4683053 Polaschegg Jul 1987 A
4710164 Levin Dec 1987 A
4731072 Aid Mar 1988 A
4740755 Ogawa Apr 1988 A
4750705 Zippe Jun 1988 A
4762618 Gummesson Aug 1988 A
4765421 Newton Aug 1988 A
4765907 Scott Aug 1988 A
4777953 Ash Oct 1988 A
4802540 Grabovac Feb 1989 A
4806247 Schoendorfer Feb 1989 A
4808089 Buchholtz Feb 1989 A
4815547 Dillon Mar 1989 A
4823597 White Apr 1989 A
4826663 Alberti May 1989 A
4828543 Weiss May 1989 A
4828693 Lindsay May 1989 A
4831884 Drenthen May 1989 A
4840542 Abbott Jun 1989 A
4854322 Ash Aug 1989 A
4861242 Finsterwald Aug 1989 A
4881839 Grimm Nov 1989 A
4882937 Leon Nov 1989 A
4885942 Magori Dec 1989 A
4894164 Polaschegg Jan 1990 A
4897189 Greenwood Jan 1990 A
4909713 Finsterwald Mar 1990 A
4914819 Ash Apr 1990 A
4931777 Chiang Jun 1990 A
4943279 Samiotes Jul 1990 A
4950244 Fellingham Aug 1990 A
4950395 Richalley Aug 1990 A
4968422 Runge Nov 1990 A
4985015 Obermann Jan 1991 A
4990258 Bjare Feb 1991 A
4994035 Mokros Feb 1991 A
4995268 Ash Feb 1991 A
4997570 Polaschegg Mar 1991 A
5000274 Bullivant Mar 1991 A
5002054 Ash Mar 1991 A
5009101 Branam Apr 1991 A
5011607 Shinzato Apr 1991 A
5024586 Meiri Jun 1991 A
5032261 Pyper Jul 1991 A
5074368 Bullivant Dec 1991 A
5100554 Polaschegg Mar 1992 A
5114580 Ahmad May 1992 A
5138138 Theilacker Aug 1992 A
5147613 Heilmann Sep 1992 A
5152174 Labudde Oct 1992 A
5157332 Reese Oct 1992 A
5161779 Graner Nov 1992 A
5170789 Narayan Dec 1992 A
5188604 Orth Feb 1993 A
5198335 Sekikawa Mar 1993 A
5211643 Reinhardt May 1993 A
5215450 Tamari Jun 1993 A
5220843 Rak Jun 1993 A
5228308 Day Jul 1993 A
5230341 Polaschegg Jul 1993 A
5230614 Zanger Jul 1993 A
5258127 Gsell Nov 1993 A
5259961 Eigendorf Nov 1993 A
5277820 Ash Jan 1994 A
5284470 Beltz Feb 1994 A
5284559 Lim Feb 1994 A
5295505 Polaschegg Mar 1994 A
5304114 Cosman Apr 1994 A
5304349 Polaschegg Apr 1994 A
5308315 Khuri May 1994 A
5322258 Bosch Jun 1994 A
5322519 Ash Jun 1994 A
5336165 Twardowski Aug 1994 A
5339699 Carignan Aug 1994 A
5346472 Keshaviah Sep 1994 A
5347115 Sherman Sep 1994 A
5352364 Kruger Oct 1994 A
5360445 Goldowsky Nov 1994 A
5385005 Ash Jan 1995 A
D355816 Ash Feb 1995 S
5391143 Kensey Feb 1995 A
5405315 Khuri Apr 1995 A
5405320 Twardowski Apr 1995 A
5408576 Bishop Apr 1995 A
5415532 Loughnane May 1995 A
5441636 Chevallet Aug 1995 A
5445630 Richmond Aug 1995 A
5460493 Deniega Oct 1995 A
5468388 Goddard Nov 1995 A
5469737 Smith Nov 1995 A
5476444 Keeling Dec 1995 A
5518015 Berget May 1996 A
D370531 Ash Jun 1996 S
5536412 Ash Jul 1996 A
5540265 Polaschegg Jul 1996 A
5545131 Davankov Aug 1996 A
5577891 Loughnane Nov 1996 A
5580460 Polaschegg Dec 1996 A
5591344 Kenley Jan 1997 A
5609770 Zimmerman Mar 1997 A
5614677 Wamsiedler Mar 1997 A
5629871 Love Mar 1997 A
5616305 Mathieu Apr 1997 A
5624551 Baumann Apr 1997 A
5624572 Larson Apr 1997 A
5632897 Mathieu May 1997 A
5644285 Maurer Jul 1997 A
5647853 Feldmann Jul 1997 A
5650704 Pratt Jul 1997 A
5674390 Matthews Oct 1997 A
5679245 Manica Oct 1997 A
5685835 Brugger Nov 1997 A
5690821 Kenley Nov 1997 A
5693008 Brugger Dec 1997 A
5695473 Olsen Dec 1997 A
5698083 Glass Dec 1997 A
5711883 Folden Jan 1998 A
5713850 Heilmann Feb 1998 A
5725773 Polaschegg Mar 1998 A
5725776 Kenley Mar 1998 A
5744027 Connell Apr 1998 A
5760313 Guentner Jun 1998 A
5762782 Kenley Jun 1998 A
5765591 Wasson Jun 1998 A
5770806 Hiismaeki Jun 1998 A
5782796 Din Jul 1998 A
5794669 Polaschegg Aug 1998 A
5840068 Cartledge Nov 1998 A
5858186 Glass Jan 1999 A
5876419 Carpenter Mar 1999 A
5902336 Mishkin May 1999 A
5906978 Ash May 1999 A
5919369 Ash Jul 1999 A
5928177 Brugger Jul 1999 A
5938938 Bosetto Aug 1999 A
5944684 Roberts Aug 1999 A
5945343 Munkholm Aug 1999 A
5947953 Ash Sep 1999 A
5951870 Utterberg Sep 1999 A
5980481 Gorsuch Nov 1999 A
5984891 Keilman Nov 1999 A
5989423 Kamen Nov 1999 A
5989438 Fumiyama Nov 1999 A
6012342 Blight Jan 2000 A
6042561 Ash Mar 2000 A
6044691 Kenley Apr 2000 A
6047108 Sword Apr 2000 A
6062256 Miller May 2000 A
6069343 Kolowich May 2000 A
6086753 Ericson Jul 2000 A
6116269 Maxson Sep 2000 A
6117100 Powers Sep 2000 A
6117122 Din Sep 2000 A
6118082 Bissette Sep 2000 A
6121555 Nowosielski Sep 2000 A
6156007 Ash Dec 2000 A
6168578 Diamond Jan 2001 B1
6187199 Goldau Feb 2001 B1
6190349 Ash Feb 2001 B1
6196922 Hantschk Mar 2001 B1
6196992 Keilman Mar 2001 B1
6200485 Kitaevich Mar 2001 B1
6217540 Yazawa Apr 2001 B1
6228047 Dadson May 2001 B1
6234989 Brierton May 2001 B1
6240789 Morlan Jun 2001 B1
6254567 Treu Jul 2001 B1
6264611 Ishikawa Jul 2001 B1
6264680 Ash Jul 2001 B1
6280406 Dolcek Aug 2001 B1
6284131 Hogard Sep 2001 B1
6287516 Matson Sep 2001 B1
6289749 Sanders Sep 2001 B1
6303036 Collins Oct 2001 B1
6325774 Bene Dec 2001 B1
6332985 Sherman Dec 2001 B1
6341758 Shih Jan 2002 B1
6348162 Ash Feb 2002 B1
6354565 Doust Mar 2002 B1
6406631 Collins Jun 2002 B1
6409699 Ash Jun 2002 B1
6416293 Bouchard Jul 2002 B1
6468427 Frey Oct 2002 B1
6471872 Kitaevich Oct 2002 B2
6487904 Myhre Dec 2002 B1
6491656 Morris Dec 2002 B1
6491673 Palumbo Dec 2002 B1
6497675 Davankov Dec 2002 B1
6517044 Lin Feb 2003 B1
6517045 Northedge Feb 2003 B1
6551513 Nikaido Apr 2003 B2
6554789 Brugger Apr 2003 B1
6561997 Weitzel May 2003 B1
6565395 Schwarz May 2003 B1
6572576 Brugger Jun 2003 B2
6572641 Brugger Jun 2003 B2
6579253 Burbank Jun 2003 B1
6579460 Willis Jun 2003 B1
6582385 Burbank Jun 2003 B2
6589482 Burbank Jul 2003 B1
6595943 Burbank Jul 2003 B1
6607495 Skalak Aug 2003 B1
6610036 Branch Aug 2003 B2
6623470 Munis Sep 2003 B2
6627164 Wong Sep 2003 B1
6632192 Gorsuch Oct 2003 B2
6638477 Treu Oct 2003 B1
6638478 Treu Oct 2003 B1
6649063 Brugger Nov 2003 B2
6653841 Koerdt Nov 2003 B1
6673314 Burbank Jan 2004 B1
6681624 Furuki Jan 2004 B2
6685664 Levin Feb 2004 B2
6690280 Citrenbaum Feb 2004 B2
6695803 Robinson Feb 2004 B1
6702561 Stillig Mar 2004 B2
6706007 Gelfand Mar 2004 B2
6730266 Matson May 2004 B2
6743193 Brugger Jun 2004 B2
6752172 Lauer Jun 2004 B2
6758975 Peabody Jul 2004 B2
6764460 Dolecek Jul 2004 B2
6773412 OMahony Aug 2004 B2
6776912 Baurmeister Aug 2004 B2
6796955 OMahony Sep 2004 B2
6818196 Wong Nov 2004 B2
6830553 Burbank Dec 2004 B1
6836201 Devenyi Dec 2004 B1
6841172 Ash Jan 2005 B1
6843779 Andrysiak Jan 2005 B1
6852090 Burbank Feb 2005 B2
6872346 Stillig Mar 2005 B2
6878283 Thompson Apr 2005 B2
6886801 Hallback et al. May 2005 B2
6890315 Levin May 2005 B1
6899691 Bainbridge May 2005 B2
6923782 Omahony Aug 2005 B2
6948697 Herbert Sep 2005 B2
6955655 Burbank Oct 2005 B2
6958049 Ash Oct 2005 B1
6960179 Gura Nov 2005 B2
6960328 Bortun Nov 2005 B2
6979309 Burbank Dec 2005 B2
7004924 Brugger Feb 2006 B1
7007549 Kwon Mar 2006 B2
7033498 Wong Apr 2006 B2
7037428 Robinson May 2006 B1
7040142 Burbank May 2006 B2
7059195 Liu Jun 2006 B1
7087026 Callister Aug 2006 B2
7087033 Brugger Aug 2006 B2
7097148 DeWall Aug 2006 B2
7101519 Wong Sep 2006 B2
7112273 Weigel Sep 2006 B2
7115095 Egler Oct 2006 B2
7135156 Hai Nov 2006 B2
7144386 Korkor Dec 2006 B2
7146861 Cook Dec 2006 B1
7147613 Burbank Dec 2006 B2
7169303 Sullivan Jan 2007 B2
7175809 Gelfand Feb 2007 B2
7214312 Brugger May 2007 B2
7226538 Brugger Jun 2007 B2
7241272 Karoor Jul 2007 B2
7252767 Bortun Aug 2007 B2
7267658 Treu Sep 2007 B2
7270015 Feller Sep 2007 B1
7273465 Ash Sep 2007 B2
7276042 Polaschegg Oct 2007 B2
7300413 Burbank Nov 2007 B2
7309323 Gura Dec 2007 B2
7314208 Rightley Jan 2008 B1
7317967 DiGianfilippo Jan 2008 B2
7332096 Blickhan Feb 2008 B2
7337674 Burbank Mar 2008 B2
7338460 Burbank Mar 2008 B2
7347849 Brugger Mar 2008 B2
7351218 Bene Apr 2008 B2
7387022 Korniyenko Jun 2008 B1
7494590 Felding Feb 2009 B2
7531098 Robinson May 2009 B2
7566432 Wong Jul 2009 B2
7597677 Gura Oct 2009 B2
7605710 Crnkovich Oct 2009 B2
7618531 Sugioka Nov 2009 B2
7628378 Adams Dec 2009 B2
7645253 Gura Jan 2010 B2
7648476 Bock Jan 2010 B2
7696762 Quackenbush Apr 2010 B2
7713226 Ash May 2010 B2
7736507 Wong Jun 2010 B2
7755488 Dvorsky Jul 2010 B2
7766873 Moberg Aug 2010 B2
7776210 Rosenbaum Aug 2010 B2
7780619 Brugger Aug 2010 B2
7794141 Perry Sep 2010 B2
7861740 Phallen Jan 2011 B2
7873489 Dolgos Jan 2011 B2
7874999 Busby Jan 2011 B2
7886611 OMahony Feb 2011 B2
7896829 Gura Mar 2011 B2
7901376 Steck Mar 2011 B2
7914477 Briggs Mar 2011 B2
7922898 Jonsson Apr 2011 B2
7922899 Vasta Apr 2011 B2
7935074 Plahey May 2011 B2
7959129 Matsumoto Jun 2011 B2
7981082 Wang Jul 2011 B2
7981280 Carr Jul 2011 B2
7995816 Roger Aug 2011 B2
7998101 Ash Aug 2011 B2
8021319 Delnevo Sep 2011 B2
8029454 Kelly Oct 2011 B2
8034161 Gura Oct 2011 B2
8034235 Rohde Oct 2011 B2
8062513 Yu Nov 2011 B2
8066658 Karoor Nov 2011 B2
8070707 Gelfand Dec 2011 B2
8075509 Molducci Dec 2011 B2
8078333 Kienman Dec 2011 B2
8083677 Rohde Dec 2011 B2
8105260 Tonelli Jan 2012 B2
8105487 Fulkerson Jan 2012 B2
8114288 Robinson Feb 2012 B2
8118276 Sanders Feb 2012 B2
8123947 Rohde Feb 2012 B2
8152751 Roger Feb 2012 B2
8142383 Dannenmaier Mar 2012 B2
8187184 Muller May 2012 B2
8192401 Morris Jun 2012 B2
8197431 Bennison Jun 2012 B2
8206338 Childers Jun 2012 B2
8210493 Miyagawa Jul 2012 B2
8221320 Bouton Jul 2012 B2
8240636 Smith Aug 2012 B2
8273049 Demers Sep 2012 B2
8316725 Wade Nov 2012 B2
8323492 Childers Dec 2012 B2
8342478 Cordray Jan 2013 B1
8376978 Roger Feb 2013 B2
8449487 Hovland May 2013 B2
8491184 Kamen Jul 2013 B2
8597505 Fulkerson Dec 2013 B2
8622365 Fukano Jan 2014 B2
8696626 Kirsch Apr 2014 B2
9308307 Fulkerson Apr 2016 B2
9354640 Byler May 2016 B2
9360129 Smith Jun 2016 B2
9517296 Fulkerson Dec 2016 B2
10019020 Byler Jul 2018 B2
10034973 Robinson Jul 2018 B2
10258731 Fulkerson Apr 2019 B2
20010038083 Sakurai Nov 2001 A1
20020050412 Emery May 2002 A1
20020068364 Arai Jun 2002 A1
20020085951 Gelfand Jul 2002 A1
20020112609 Wong Aug 2002 A1
20020113016 Takai Aug 2002 A1
20020139419 Flinchbaugh Oct 2002 A1
20020147423 Burbank Oct 2002 A1
20020158019 Collins Oct 2002 A1
20020187069 Levin Dec 2002 A1
20020193679 Malave Dec 2002 A1
20030001590 Mengle Jan 2003 A1
20030012905 Zumbrum Jan 2003 A1
20030042181 Metzner Mar 2003 A1
20030048185 Citrenbaum Mar 2003 A1
20030056585 Furuki Mar 2003 A1
20030113931 Pan Jun 2003 A1
20030113932 Sternberg Jun 2003 A1
20030128125 Burbank Jul 2003 A1
20030216677 Pan Nov 2003 A1
20030220598 Busby Nov 2003 A1
20030220606 Busby Nov 2003 A1
20030236482 Gorsuch Dec 2003 A1
20040018100 Takagi Jan 2004 A1
20040019312 Childers Jan 2004 A1
20040021108 Hallback Feb 2004 A1
20040031756 Suzuki Feb 2004 A1
20040167465 Mihai Aug 2004 A1
20040195055 Gilles Oct 2004 A1
20050006296 Sullivan Jan 2005 A1
20050010190 Yeakley Jan 2005 A1
20050045548 Brugger Mar 2005 A1
20050070837 Ferrarini Mar 2005 A1
20050086008 Digianfilippo Apr 2005 A1
20050092079 Ales May 2005 A1
20050101901 Gura May 2005 A1
20050113734 Brugger May 2005 A1
20050131332 Kelly Jun 2005 A1
20050133439 Blickhan Jun 2005 A1
20050150309 Beard Jul 2005 A1
20050209547 Burbank Sep 2005 A1
20050230292 Beden Oct 2005 A1
20050240233 Lippert Oct 2005 A1
20060064053 Bollish Mar 2006 A1
20060091056 Brugger May 2006 A1
20060113249 Childers Jun 2006 A1
20060117859 Liu Jun 2006 A1
20060122552 OMahony Jun 2006 A1
20060195064 Plahey Aug 2006 A1
20060226057 Robinson Oct 2006 A1
20060226090 Robinson Oct 2006 A1
20060241543 Gura Oct 2006 A1
20060289342 Sugioka Dec 2006 A1
20070060786 Gura Mar 2007 A1
20070088333 Levin Apr 2007 A1
20070112297 Plahey May 2007 A1
20070158249 Ash Jul 2007 A1
20070158268 DeComo Jul 2007 A1
20070161113 Ash Jul 2007 A1
20070179425 Gura Aug 2007 A1
20070213654 Lundtveit Sep 2007 A1
20070253463 Perry Nov 2007 A1
20070276328 Childers Nov 2007 A1
20080006570 Gura Jan 2008 A1
20080021366 Gura Jan 2008 A1
20080041136 Kopelman Feb 2008 A1
20080041792 Crnkovich Feb 2008 A1
20080051689 Gura Feb 2008 A1
20080058696 Gura Mar 2008 A1
20080065006 Roger Mar 2008 A1
20080077068 Orr Mar 2008 A1
20080149563 Ash Jun 2008 A1
20080154170 Lannoy Jun 2008 A1
20080195021 Roger Aug 2008 A1
20080195060 Roger Aug 2008 A1
20080208103 Demers Aug 2008 A1
20080217245 Rambod Sep 2008 A1
20080230450 Burbank Sep 2008 A1
20080258735 Quackenbush Oct 2008 A1
20080264498 Thompson Oct 2008 A1
20080290974 Adams Nov 2008 A1
20090004053 Kenley Jan 2009 A1
20090008306 Cicchello Jan 2009 A1
20090008331 Wilt Jan 2009 A1
20090010627 Lindsay Jan 2009 A1
20090076434 Mischelevich Mar 2009 A1
20090079578 Dvorsky Mar 2009 A1
20090080757 Roger Mar 2009 A1
20090082646 Bouton Mar 2009 A1
20090082647 Busby Mar 2009 A1
20090082649 Muller Mar 2009 A1
20090082653 Rohde Mar 2009 A1
20090082676 Bennison Mar 2009 A1
20090083331 Oh Mar 2009 A1
20090095679 Demers Apr 2009 A1
20090101549 Kamen Apr 2009 A1
20090101552 Fulkerson Apr 2009 A1
20090101577 Fulkerson Apr 2009 A1
20090105627 Rohde Apr 2009 A1
20090107902 Childers Apr 2009 A1
20090112155 Zhao Apr 2009 A1
20090112507 Edney Apr 2009 A1
20090113335 Sandoe Apr 2009 A1
20090114037 Smith May 2009 A1
20090120864 Fulkerson May 2009 A1
20090124963 Hogard May 2009 A1
20090127193 Updyke May 2009 A1
20090127793 Ferris May 2009 A1
20090137940 Orr May 2009 A1
20090173682 Robinson Jul 2009 A1
20090282980 Gura Nov 2009 A1
20090294339 Biewer Dec 2009 A1
20090312694 Bedingfield Dec 2009 A1
20100022936 Gura Jan 2010 A1
20100078381 Merchant Apr 2010 A1
20100078387 Wong Apr 2010 A1
20100084330 Wong Apr 2010 A1
20100094193 Gura Apr 2010 A1
20100100034 Wich-Heiter Apr 2010 A1
20100101664 Yamamoto Apr 2010 A1
20100116048 Fulkerson May 2010 A1
20100116740 Fulkerson May 2010 A1
20100129247 Lauer May 2010 A1
20100133153 Beden Jun 2010 A1
20100140149 Fulkerson Jun 2010 A1
20100179464 Smith Jul 2010 A1
20100184198 Joseph Jul 2010 A1
20100192686 Kamen Aug 2010 A1
20100209300 Dirac Aug 2010 A1
20100234786 Fulkerson Sep 2010 A1
20100252490 Fulkerson Oct 2010 A1
20100312161 Jonsson Dec 2010 A1
20100326911 Rosenbaum Dec 2010 A1
20100326916 Wrazel Dec 2010 A1
20100331754 Fulkerson Dec 2010 A1
20110000830 Ikeda Jan 2011 A1
20110000832 Kelly Jan 2011 A1
20110009799 Mullick Jan 2011 A1
20110017665 Updyke Jan 2011 A1
20110028881 Basaglia Feb 2011 A1
20110028882 Basaglia Feb 2011 A1
20110041928 Volker Feb 2011 A1
20110046533 Stefani Feb 2011 A1
20110054352 Ko Mar 2011 A1
20110054378 Fulkerson Mar 2011 A1
20110071465 Wang Mar 2011 A1
20110083746 Hoang Apr 2011 A1
20110087187 Beck Apr 2011 A1
20110092907 Krogh Apr 2011 A1
20110093294 Elahi Apr 2011 A1
20110098545 Ross Apr 2011 A1
20110098624 McCotter Apr 2011 A1
20110098625 Masala Apr 2011 A1
20110098635 Helmore Apr 2011 A1
20110105877 Wilt May 2011 A1
20110105981 Wagner May 2011 A1
20110105983 Kelly May 2011 A1
20110105984 Patel May 2011 A1
20110106002 Helmore May 2011 A1
20110106047 Burbank May 2011 A1
20110106466 Furmanksi May 2011 A1
20110107251 Guaitoli May 2011 A1
20110108482 Lovell May 2011 A1
20110125073 Rambod May 2011 A1
20110126714 Brugger Jun 2011 A1
20110132838 Curtis Jun 2011 A1
20110132841 Rohde Jun 2011 A1
20110137224 Ibragimov Jun 2011 A1
20110137264 Chelak Jun 2011 A1
20110139704 Choi Jun 2011 A1
20110140896 Menzel Jun 2011 A1
20110141116 Dalesch Jun 2011 A1
20110152739 Roncadi Jun 2011 A1
20110155657 Collins Jun 2011 A1
20110160649 Pan Jun 2011 A1
20110166507 Childers Jul 2011 A1
20110168614 Pouchoulin Jul 2011 A1
20110171713 Bluchel Jul 2011 A1
20110189048 Curtis Aug 2011 A1
20110208072 Pfeiffer Aug 2011 A1
20110208106 Levin Aug 2011 A1
20110213289 Toyoda Sep 2011 A1
20110218475 Brugger Sep 2011 A1
20110218487 Shang Sep 2011 A1
20110226680 Jonsson Sep 2011 A1
20110230814 Kopperschmidt Sep 2011 A1
20110232388 Butterfield Sep 2011 A1
20110237997 Beden Sep 2011 A1
20110237998 Wariar Sep 2011 A1
20110240537 Ferrarini Oct 2011 A1
20110240555 Ficheux Oct 2011 A1
20110269167 Bene Nov 2011 A1
20110272337 Palmer Nov 2011 A1
20110272352 Braig Nov 2011 A1
20110275984 Biewer Nov 2011 A1
20110284464 Roncadi Nov 2011 A1
20110297593 Kelly Dec 2011 A1
20110297598 Lo Dec 2011 A1
20110297599 Lo Dec 2011 A1
20110300010 Jamagin Dec 2011 A1
20110300230 Peterson Dec 2011 A1
20110303588 Kelly Dec 2011 A1
20110303590 Childers Dec 2011 A1
20110303598 Lo Dec 2011 A1
20110309019 Ahrens Dec 2011 A1
20110315611 Fulkerson Dec 2011 A1
20110319823 Bojan Dec 2011 A1
20120010554 Vantard Jan 2012 A1
20120018377 Tsukamoto Jan 2012 A1
20120018378 Kelly Jan 2012 A1
20120022440 Childers Jan 2012 A1
20120029324 Akonur Feb 2012 A1
20120029937 Neftel Feb 2012 A1
20120031826 Childers Feb 2012 A1
20120035534 Yu Feb 2012 A1
20120037550 Childers Feb 2012 A1
20120043279 Kelly Feb 2012 A1
20120065567 Zarate Mar 2012 A1
20120075266 Shimizu Mar 2012 A1
20120214117 Broker Aug 2012 A1
20120259282 Alderete Oct 2012 A1
20130126413 Van Der Merwe May 2013 A1
20130140652 Erdler Jun 2013 A1
20130184638 Scarpaci Jul 2013 A1
20130199998 Kelly Aug 2013 A1
20130220907 Fulkerson Aug 2013 A1
20130233395 Dinh Sep 2013 A1
20130292319 Fulkerson Nov 2013 A1
20140199193 Wilt Jul 2014 A1
Foreign Referenced Citations (98)
Number Date Country
2183771 Nov 1994 CN
1146728 Apr 1997 CN
1235849 Nov 1999 CN
1471617 Jan 2004 CN
101175514 May 2008 CN
101269247 Sep 2008 CN
101311589 Nov 2008 CN
101801432 Aug 2010 CN
201600175 Oct 2010 CN
101977642 Feb 2011 CN
102596283 Jul 2012 CN
102639201 Aug 2012 CN
103476486 Dec 2013 CN
0110514 Jun 1984 EP
0121085 Oct 1984 EP
0121085 Oct 1984 EP
0808633 Nov 1997 EP
2237814 Oct 2010 EP
1579177 Nov 1980 GB
S50126866 Oct 1975 JP
S56138580 Oct 1981 JP
S5755010 Mar 1982 JP
S5913770 Jan 1984 JP
S59127978 Aug 1984 JP
S6037674 Mar 1985 JP
S60108870 Jun 1985 JP
S60108870 Jul 1985 JP
S63202882 Aug 1988 JP
S63192912 Dec 1988 JP
H02114269 Sep 1990 JP
H0413143 Feb 1992 JP
005176991 Jul 1993 JP
H05172268 Sep 1993 JP
H06230023 Aug 1994 JP
H07504507 May 1995 JP
H08511094 Nov 1996 JP
H11137673 May 1999 JP
2002119585 Apr 2002 JP
2002139165 May 2002 JP
2002523772 Jul 2002 JP
2002527148 Aug 2002 JP
2003502091 Jan 2003 JP
2004057284 Feb 2004 JP
3126509 Nov 2006 JP
2008055185 Mar 2008 JP
2008291911 Apr 2008 JP
2008511094 Apr 2008 JP
2008531192 Aug 2008 JP
2008531192 Aug 2008 JP
2008531192 Aug 2008 JP
2009521965 Jun 2009 JP
2012510826 May 2012 JP
2012510826 May 2012 JP
20103880 Jul 2010 MX
200824731 Jun 2008 TW
1980002806 Dec 1980 WO
9318380 Sep 1993 WO
199318380 Sep 1993 WO
1993018380 Sep 1993 WO
9420154 Sep 1994 WO
9428386 Dec 1994 WO
199428386 Dec 1994 WO
1996025214 Aug 1996 WO
1997027490 Jul 1997 WO
9823353 Jun 1998 WO
1999030757 Jun 1999 WO
0021590 Apr 2000 WO
20015069412 Jul 2001 WO
2003099354 Dec 2003 WO
2003101510 Dec 2003 WO
2004009158 Jan 2004 WO
2005065126 Jul 2005 WO
2005089832 Sep 2005 WO
200609362 Sep 2006 WO
2006120415 Nov 2006 WO
2007028056 Mar 2007 WO
2007140241 Dec 2007 WO
2008053259 May 2008 WO
2008129830 Oct 2008 WO
2009042181 Apr 2009 WO
2009045589 Apr 2009 WO
2009065598 May 2009 WO
2009073567 Jun 2009 WO
2009091963 Jul 2009 WO
2009157877 Dec 2009 WO
201042666 Apr 2010 WO
2010042666 Apr 2010 WO
2010042666 Apr 2010 WO
2010042667 Apr 2010 WO
2010062698 Jun 2010 WO
2010062698 Jun 2010 WO
2010081121 Jul 2010 WO
2010081121 Jul 2010 WO
2010114932 Oct 2010 WO
2012108910 Aug 2012 WO
2014105267 Jul 2014 WO
2014105755 Jul 2014 WO
2014161008 Oct 2014 WO
Non-Patent Literature Citations (33)
Entry
Timby et al., Introductory Medical-Surgical Nursing, Lippincott Wiliams Wilkins, Ninth Edition, Chapter 28, p. 433.
Anthony J. Wing et al., ‘Dialysate Regeneration’, Replacement of Renal Function by Dialysis, Chapter 17, 323-340 (William Drukker et al., eds., Martinus Nijhoff Publishers, 2nd ed., 1983).
CD Medical, Inc., ‘Operator's Manual Drake Willock 480 Ultrafiltration Control Single Patient Delivery System’, 1988.
Cobe Laboratories, Inc., ‘CentrySystem 3 Dialysis Control Unit Operators Manual’, Sep. 1988.
Fresenius AG, ‘Acumen Acute Dialysis Machine Operating Instructions’, Version 1.0, May 1996.
Manns et al., ‘The acu-men: A New Device for Continuous Renal Replacement Therapy in Acute Renal Failure’, Kidney International, vol. 54 (1998), 268-274.
NxStage Medical, Inc., ‘NxStage System One User's Guide’, Software Version 4.3, Part 1 through Part 6-20, 2006.
NxStage Medical, Inc., ‘NxStage System One User's Guide’, Software Version 4.3, Part 6-20 through Part C-17, 2006.
REDY 2000 Operator's Manual (1991) (Sorbent cartridge-based hemodialysis system).
REDY 2000 Service Manual (1989) (Sorbent cartridge-based hemodialysis system).
Renal Solutions, Inc., ‘Dialysate Tubing Set and Dialysate Reservoir Bag for the Allient Sorbent Hemodialysis System’, Instructions, 2004.
Renal Solutions, Inc., 510(K) for the SORB+ and HISORB+ Cartridges, Mar. 31, 2003.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Home User Manual, 2006, Chapters 1-3.
Reyes et al., ‘Acid-Base Derangements During Sorbent Regenerative Hemodialysis in Mechanically Ventilated Patients’, Critical Care Medicine, vol. 19, No. 4, 1991, 554-559 (col. 2, lines 17-22).
Seratron Dialysis Control System Operations Manual (cumulative 1980).
Ward et al., ‘Sorbent Dialysis Regenerated Dialysis Delivery Systems’, Peritoneal Dialysis Bulletin, Chapter 8, 3(2): S41-S48 (Apr.-Jun. 1983).
COBE Renal Care, Inc., “Sorbent Dialysis Primer”, Edition 4, Sep. 1993.
Fresenius USA, Inc., “Fresenius 2008H Hemodialysis Machine”, Part No. 490005, Revision H, 1994-2001.
Renal Solutions, Inc., Portions of 510(k) Allient Sorbent Hemodialysis System (Allient Main Controller Software Architecture Overview), Renal Solutions, Inc., Dec. 17, 2004.
Renal Solutions, Inc., Portions of 510(k) Allient Sorbent Hemodialysis System (Sections A-I), Dec. 17, 2004.
Renal Solutions, Inc., Portions of 510(k) Allient Sorbent Hemodialysis System (Sections M.3 and M.4), Renal Solutions, Inc., Dec. 17, 2004.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Home User Manual, 2006, Chapters 4.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Home User Manual, 2006, Chapters 5 to end.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapter 3.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapter 4, 4-1 to 4-33.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapter 4, 4-34 to 4-69.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapter 5.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual, 2008, Chapters 1 to 2.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual Model 1500, 2008, Chapter 3, 3-2 to 3-30.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual Model 1500, 2008, Chapter 3, 3-31 to 3-70.
Renal Solutions, Portions of the Allient Sorbent Hemodialysis System, Operator Manual Model 1500, 2008, Chapters 1 to 2.
Renal Solutions, Special 510(k) Device Modification, Allient Sorbent Hemodialysis System, Mar. 15, 2007.
International Search Report for PCT/US14/35051, dated Sep. 5, 2014.
Related Publications (1)
Number Date Country
20190134566 A1 May 2019 US
Provisional Applications (1)
Number Date Country
60975157 Sep 2007 US
Continuations (3)
Number Date Country
Parent 15141464 Apr 2016 US
Child 16011271 US
Parent 13337227 Dec 2011 US
Child 15141464 US
Parent 12237914 Sep 2008 US
Child 13337227 US