Not applicable.
Not applicable.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present disclosure. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
The present inventive concept relates to the field of animal tracking devices. More particularly, the invention relates to a modular dog collar having a docking system for selectively and operatively connecting a stimulus unit to a tracking unit.
In order to train and/or control an animal, numerous collar mounted stimulation devices have been developed and marketed throughout the pet industry. The majority of such conventional devices have typically been grouped together under the general category of dog training systems. The conventional stimulation devices deliver stimulation to the animal in the form of shock, sound, vibration or spray to correct any of a variety of behaviors. Such stimulation devices are typically controlled by auto-activation based on feedback picked up from the animal by sensors in the collar mounted device, by manual control provided by a wireless link between the collar mounted device and a remote handheld unit, or a combination of both.
In addition to the need to train or control an animal's behavior, there is also a need to track an animal's location and movement in real time. Dog location systems are currently available on the market. Such dog location systems can typically be divided into three technologies: telemetry-based, GNSS (Global Network Satellite Systems)/telemetry-based, and GNSS/cell phone-based.
Regardless of the stimulation system used, or the tracking technology used, it is common for a user to want to use an animal training system in conjunction with an animal tracking system for the same animal. Of course, a user may employ two separate systems for the same animal, wherein one system provides the animal training, i.e., the stimulus, and the other system provides the animal tracking. Each of these systems operates independently and requires its own control device, such as two separate dedicated wireless remote handheld control units. This implementation is cumbersome as it would two remote handheld control units and, most likely, two separate dog collar attachments.
In many dog competitions, it is not permissible to outfit the competing dog with any type of stimulus unit during a performance. This renders the dual system illegal for competition. This would also render any system that attempts to integrate the circuitry or control for the tracking system and the training system into a single unit illegal.
Therefore, a need exists for an integrated dog tracking and training system which provides for the selective coupling and decoupling of the stimulation components and the overall system A need further exists for a combined tracking system and stimulation system wherein the stimulation (or training) system share circuitry, power and control, but wherein the stimulation system is a modular unit that may be selectively and quickly removed from a dog's collar or harness.
An integrated animal tracking unit and stimulus unit is disclosed herein. The two units are removably coupled together and controlled by a common device. The tracking unit is affixed to an animal encircling device, i.e., a dog collar or a harness.
The tracking unit may be a Global Navigation Satellite Systems (GNSS) device that provides location information to the control device. At the same time, the stimulus unit is preferably configured to deliver an electrical stimulus through a pair of probes that contact the skin surface of the animal.
The tracking unit, or module, is beneficially provided with a receiving portion, which enables the stimulus unit to be docked to the tracking unit, or module. To this end, the tracking module preferably includes an extending male portion that is received by the receiving female portion to couple the tracking unit and the stimulus unit together. The extending portion and receiving portion may be provided in a dovetail configuration, and may be slidably connected to couple the tracking unit and the stimulus unit together. The tracking unit and the stimulus unit may be further secured together by one or more fastening members, such as screws.
When docked together, the training module may under one embodiment share the electrical circuitry and, preferably, the power supply of the tracking module.
So that the manner in which the present inventions can be better understood, certain illustrations, charts and/or flow charts are appended hereto. It is to be noted, however, that the drawings illustrate only selected embodiments of the inventions and are therefore not to be considered limiting of scope, for the inventions may admit to other equally effective embodiments and applications.
Definitions
For purposes of the present disclosure, it is noted that spatially relative terms, such as “up,” “down,” “right,” “left,” “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over or rotated, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Description Of Selected Specific Embodiments
Various embodiments of the present general inventive concept, as described herein, provide an animal tracking and control apparatus having a tracking unit to track an animal, and a stimulus unit to provide a stimulus to the animal. The tracking unit and stimulus unit are configured to be removably coupled together. In other words, the tracking unit and stimulus unit are formed such that the two units are able to be docked together. The coupling of the two units as modules may be referred to interchangeably throughout this description as docking.
The tracking unit and stimulus unit may transmit and/or receive signals to/from a common control device. In the various embodiments described herein, the control device is described as a remote handheld control device, or more simply a handheld transceiver. The single handheld transceiver communicates with both the stimulus unit and the tracking unit, and may send/receive signals to/from the units using different channels or different ID codes. Also, it is understood that the control device is not limited to any ornamental features shown in the handheld transceiver described in the drawings.
The animal tracking and control apparatus may be provided to any animal, but is typically described herein as being provided to a dog. For example, the animal tracking and control apparatus may be secured to an animal encircling device such as a dog collar which is worn by a dog, in order to track the dog's movements and provide a control stimulus to the dog. This is merely one non-limiting example of how the animal tracking and control apparatus may be utilized.
In an example embodiment in which the animal tracking and control apparatus is secured to the animal by an animal encircling device, such as a dog collar, either the tracking unit or the stimulus unit may be secured to the dog collar, and the other of the tracking unit or the stimulus unit is removably coupled to the unit secured to the dog collar. As an example, if the tracking unit is secured to the dog collar, the stimulus unit may be removed so that only the tracking unit is provided to the dog wearing the dog collar. Further, the animal tracking module may be provided with a cover to be removably coupled to the tracking module in lieu of the stimulus unit being in a coupled configuration.
In the examples illustrated and discussed throughout this description in which the animal tracking and control apparatus is secured to an animal encircling device such as a dog collar, the tracking unit is described as being secured to the dog collar. The dog collar is secured to the tracking unit by securing members such as screws, a molded collar that is permanently fastened to the tracking unit, a pass through woven collar, an attached woven collar, or a pass through molded collar.
The animal tracking unit may operate similarly to a typical Global Navigation Satellite System (GNSS) device. Various GNSS tracking systems, which employ GNSS systems such as the Global Positioning System (GPS) of the United States, the Russian GLONASS, etc., have been typically used to monitor the movement of a mobile subject such as an animal, often relative to a selected containment area. In such systems, the position and speed of the animal are monitored through the use of the GNSS satellites, and the position and speed of the animal may be displayed on a monitoring device. If a containment area is also employed, the containment area may also be displayed on the monitoring device.
The animal stimulus unit may operate similarly to various animal control apparatuses. For instance, the animal stimulus unit may provide the animal with various stimuli such as vibrations, sound or spray. Further, these various stimuli may be selectively provided to the animal, and the levels of the various stimuli may be adjusted. For example, a vibration provided to a dog to control a certain behavior may be increased if the dog does not respond to the previously used level of vibration stimulus. The animal stimulus unit may be provided with one or more protrusions to extend toward the animal's skin to make contact through the coat.
The previously described control device may be a handheld transceiver which sends/receives signals to/from the animal tracking module and stimulus module, and may have a display such as a graphic user interface (GUI) which may show the location of one or more animals equipped with the tracking module.
The handheld transceiver may have a plurality of controls to allow various operations such as switching the display emphasis between various hunting dogs being tracked and providing various stimuli levels to different dogs. The handheld transceiver may communicate with the tracking module using a different channel than the one used to communicate with the stimulus module.
Thus, an integrated animal tracking and control system provides a user or owner with an animal tracking or animal tracking/training system that can be user configured. In any of a number of example configurations, there is only one collar (or other animal encircling device) mounted device which is provided to the animal, and only one remote handheld control unit. The collar mounted device may under one embodiment include both the tracking unit and the stimulus unit in a configuration in which those units are docked together, and includes only one of the units in a configuration in which the units are not docked together. Such an apparatus and system greatly simplifies the mounting and operation of an animal training and/or tracking system. Such an apparatus and system also allows the sporting competitor to readily remove the training module for competition.
The tracking unit 10 of this example embodiment is also provided with holes 14 to receive screws to further secure the coupled stimulus unit 20 to the tracking unit 10. Although screws are described in this example embodiment, any type of adhesion member, such as bolts, brackets, clamps, and so on, may be used to further secure the coupled, or docked, units. Also, in other example embodiments, no adhesion members may be used to further secure the docking of the units. It is understood that the shape and dimensions of the tracking unit 10, as well as the other example units illustrated in the following drawings, are merely simple examples for illustrative purposes, and corresponding units in various embodiments of the present general inventive concept may vary widely in size, shape, composition, and so on.
The tracking unit 10 may further be provided with an antenna 60 (as described later in
The stimulus unit 20 of this example embodiment is provided with through holes 24 through which screws may pass to further secure the docking of the tracking unit 10 and the stimulus unit 20. The screws, or other adhesion members, pass through the through holes 24 to the holes 14 of the tracking unit 10.
The stimulus unit 20 of this example embodiment is also provided with protrusions 26 which extend from the stimulus unit 20 to contact the skin of an animal and provide a stimulus, such as a vibration. The level of the stimulus may be adjusted through the control device communicating with the stimulus unit 20. The stimulus unit 20 may further have an antenna (not shown) to be used in transmitting and/or receiving control signals from the control device. It is understood that the protrusions 26 are merely an example of how the stimulus may be delivered to the animal.
Although not illustrated in these drawings, each of the tracking unit 10 and the stimulus unit 20 may be provided with on/off buttons, on/off indicators, charging jacks, and other similar features typically provided to electric/electronic devices. Also, the stimulus unit 20 may be provided with an internal or external antenna to be used in communication with the control device, and the tracking unit 10 may be provided with one or more internal and/or external antennas to be used in communication with the control device and/or GNSS satellites. One or more of the various antennas may be integrated with or supported by an animal encircling device to which the animal tracking and control apparatus is attached. These features have largely been omitted from the drawings to present a more clear illustration of the docking feature of the units.
The control device 120 determines a user's location from a built-in GPS antenna 129. The built-in GPS antenna receives location updates from a GPS antenna provided to the tracking unit 10 to track the location of the animal equipped with the tracking and control apparatus. The GPS antenna provided to the tracking unit 10 may be mounted on the dog collar 50. The display 122 may display the user's location, the location of one or more animals provided with the animal tracking and control apparatus relative to the user or to a predetermined area, a list of options for stimulating the respective animals, levels of stimulation, and so on. The stimulus buttons 125 may be used to send a signal to activate the stimulus unit 20 to deliver a stimulus to the animal. As previously described, the level of the stimulus is adjustable through the control device 120.
The control device 120 under an embodiment may communicate with the tracking unit 10 and the stimulus unit 20 on separate channels in order to minimize interference between the respective signals.
Although the user's location is represented in the illustrated embodiments as a cross-hair, it is possible to display the location and heading of the user using any number of icons, such as a human figure, arrow, circle, or other icon. The orientation of the direction arrow (e.g., up, down, left right, etc.) can represent the current heading or direction of the animal and user relative to one another, and the icons can be color coded so the user knows which icon corresponds to each dog by the color of the icon matching the color of the text.
The display 122 can include an incremented scale to provide a visual representation of the actual distance between the user and the respective animals, and can display the actual calculated distances from the user for each animal. The user has the option to keep the scale at a fixed distance (e.g., 100 yards), or the user can select Auto where the scale will automatically adjust in real time once the animal goes outside the scale. The unit can periodically check to see if any of the animals are outside the scale and can zoom to a level where all the animals are visible on the screen. If the animal is lost or off-screen, a graphical indicator, such as an outline of the icon or a blinking icon representing the animal can be provided to the user, or a separate tab can be provided showing the animal's location in relation to the scaled display.
In
The display can include a GPS fix indicator 134, compass indicator 135, and battery indicator 136. The display can also include separate battery level indicators 137 corresponding to the battery level of the individual GPS units, respectively. In various example embodiments, the GPS fix indicator 134 can indicate whether the control device 120 has achieved a ‘fix’ on the animals as determined by a GPS engine. The compass indicator 135 can indicate the current orientation of the control device 120 as determined by the compass unit.
In
In the example embodiments, the change of position between the most recent data point and the prior data point can be used to provide a directional vector, or indicator, indicating the dog's recent movement. This vector information can be used to graphically display the dog's current heading in relation to the user. In the example embodiments, the dog's current heading can be indicated by an arrow while the historical location data points are displayed as dots or circles, although it is possible that any other shape or number of data points could be used without departing from the broader scope and teachings of the present general inventive concept.
The user can select to display a complete history of the paths taken by the respective animals, a partial history, or no history at all. The historical paths can take the form of a series of icons, historical data points, or a continuous path line or bread-crumb trail to show the path of the animal over time. For example, if the screen becomes cluttered with numerous paths, the user can selectively choose the length of paths shown, or no paths shown. The handheld control device can be programmed to automatically refresh the display screen at predetermined intervals or lengths of trails to maintain a fresh looking display.
Under an alternative embodiment to the animal tracking and control system described above, the stimulation unit may be a slave device to the tracking unit. The alternative embodiment comprises a stimulation unit/module (hereinafter referred to as a modular E-collar unit or stimulus unit) which mates with a stand-alone tracking unit/module (hereinafter referred to as a stand-alone GPS tracking unit or tracking unit) to form an integrated GPS tracking/E-collar system. As the principle difference from the tracking/control systems described above, the E-collar unit is entirely a slave device and has no smart circuitry, no independent power supply and no antenna. Accordingly, the modular E-collar unit is dependent upon the GPS tracking unit for its power supply, for its general operation and for communication to and from a remote hand held control device. The integrated system is further described below with reference to
As already noted above, the E-collar unit 204 preferably does not have its own firmware or microcontroller or other “smart circuitry.” Further, the E-collar unit 204 preferably does not have its own battery or other power supply. Still further, the E-collar unit 204 preferably does not have its own antenna. Instead, the E-collar unit 204 operates essentially as a slave system dependent on the GPS tracking unit 202 for operation and communication back to the hand held device. Note that such handheld device is not shown in
Once the E-collar unit is fastened to the GPS tracking unit, a microcontroller of the GPS tracking unit 202 automatically detects that the E-collar stimulus unit 204 has been installed and begins to communicate with the unit 204 based on instructions received from a hand held control device. A microcontroller (further disclosed in
Note that the stimulus applied by the E-collar stimulus unit may be electrical but embodiments are not so limited. Under alternative embodiments, the applied stimulus may be noise, tone or vibration. Further, when the E-collar unit is disengaged from the GPS tracking unit, the tracking unit may not apply any stimulus to an animal.
As indicated above, the GPS tracking unit communicates with a handheld control device. The handheld control device comprises under one embodiment a TEK 2.0 handheld unit.
The processor 2902 is coupled to memory modules 2910-2916. The memory modules include EEPROM (Electronically Erasable Read-Only Memory) 2910. EEPROM comprises a type of non-volatile memory used in computers and other electronic devices to store small amounts of data that must be saved when power is removed, e.g., calibration tables or device configuration. Under one embodiment, EEPROM 2910 stores settings and calibration data for the handheld control device. The memory modules also include LPDDR1 2916 which comprises low power double data rate synchronous DRAM (Dynamic Random Access Memory). LPDDR1 2916 provides the processor 2902 a 200 MHz bus for RAM memory usage. The memory module also includes an eMMC component 2914. Under one embodiment eMMC architecture provides MultiMediaCard flash memory for use in circuit boards as an embedded non-volatile memory system. The eMMC component 2914 provides memory for the device's operating system, maps and applications under one embodiment. The memory modules also include uSD card component 2912. Under one embodiment, a uSD card is removably coupled to a uSD card reader. This uSD card may store special maps and files of a user.
The processor 2902 is also coupled to a user interface 2908. The interface 2908 includes an On/Off button, switches, a rotary encoder and vibration motor. Under one embodiment, a user manipulates the rotary encoder to move one or more cursors among interface menu items. Under one embodiment, a user implements switches to make selections and settings for general operation of the device. Under one embodiment, a user manipulates buttons located on a side of the device to send stimulation commands to the GPS tracking unit for communication to the stimulus unit (E-collar unit 204). The user interface also includes a vibration module to provide alarms and warnings to the user.
The processor 2902 is also coupled to a GPS/GLONASS Module 2928. The GPS/GLONASS module comprises a parallel GPS/GNSS receiver with 99 channels for searching satellite transmissions and 33 channels for tracking the GPS tracking unit. The GPS/GLONASS module is coupled to a dedicated antenna 2930.
The processor 2902 is coupled to a Power Management Integrated Circuit (PMIC) 2920. Under an embodiment, power management integrated circuits (power management ICs or PMICs) are integrated circuits for managing power requirements of a host circuit/system. The PMIC 2920 may include an integrated linear recharger for the Lithium-ion battery 2922 coupled to the PMIC. Further, the PMIC regulates all used voltages for the processor and accessories. The Lithium-ion battery includes an integrated safety circuit and a Negative Temperature Coefficient (NTC) resistor.
The processor 2902 is also coupled to an Audio Codec module 2924. An audio codec is a device or computer program capable of coding or decoding a digital stream of audio. In software, an audio codec is a computer program implementing an algorithum that compresses and decompresses digital audio data according to a given audio file format or streaming media audio format. Under an embodiment, the audio codec 2924 generates sounds and processes MP3 files. The audio codec 2924 includes an integrated 1-Watt speaker amplifier.
The processor is coupled to a Bluetooth module 2932. Bluetooth is a wireless technology for exchanging data over short distances. The Bluetooth module includes integrated stack software and comprises class 1 and class 2 configurations.
The processor is coupled to a USB 2.0 connector 2918 for recharging the battery. The USB 2.0 connector also provides an interface to external devices.
The processor is coupled to an RF module 2940 The RF Module includes a TCXO 32 MHz transceiver. The transceiver integrated circuit (IC) works from an 866 to a 915 MHz band. The transceiver implements Gaussian frequency shift keying modulation. The transceiver module transmits data at a rate of 3000 bit/s. The transceiver module provides 25 kHz channel separation.
The transceiver IC 2942 is coupled to Surface Acoustic Wave (SAW) 2944, 2946 filters which filter incoming and outgoing transmissions. The SAW filters reduce spurious emissions and provide out-of-band interference rejection under one embodiment. SAW filters may be dedicated for each frequency band. A power amplifier 2948 amplifies RF signals from 10-20 MW to 0.5 W or 1 W. A Tx/Rx RF switch 2952 is integrated into the power amplifier under an embodiment. The power amplifier 2948 is coupled to a low pass filter 2954 which reduces spurious emissions of the power amplifier. The Tx/Rx switch is coupled to a low noise amplifier 2950 which amplifies received signals via the whip antenna 2956 from the GPS tracking unit.
The processor 2902 of the handheld device performs one or more of the following functions:
As indicated above, the handheld control device wirelessly communicates with the GPS tracking unit (and E-collar unit through the GPS tracking unit).
As seen in
The MCU 3002 is coupled to an EEPROM (Electronically Erasable Read-Only Memory) memory module 3010. EEPROM comprises a type of non-volatile memory used in computers and other electronic devices to store small amounts of data that must be saved when power is removed, e.g., calibration tables or device configuration. Under one embodiment, the EEPROM module 3010 stores settings and calibration data for the tracking unit.
The MCU 3002 is also coupled to a Power Management Integrated Circuit (PMIC) 3020. Under an embodiment, the PMIC 3020 may include an integrated linear recharger for the 3.7V Lithium ion battery 3022 coupled to the PMIC. The Lithium ion battery includes a safety circuit and Negative Temperature Coefficient (NTC) resistor.
The MCU 3002 is also coupled to a buzzer component 3070. The buzzer component 3070 generates sounds by using a driver circuit.
The MCU 3002 is coupled to an RF module 3058 which includes components 3042-3056. The RF module components are under one embodiment the same as (and function in a manner analogous to) the components of RF module 2940 shown in
The MCU 3002 is coupled to the E-collar unit 3080. The E-collar unit applies harmless electric stimulation to the dog when commands arrive via RF receiver circuitry of the tracking unit and are subsequently communicated to E-collar unit. The E-collar unit applies harmless vibration to the dog when commands arrive via RF receiver circuitry of the tracking unit and are subsequently communicated to E-collar unit.
The MCU 3002 performs one or more of the following functions:
Under an embodiment, the transceiver of the tracking unit's RF module transmits signals including positioning date to the remote handheld control device at defined intervals ranging from 2.5 seconds to 2 minutes; otherwise the transceiver listens for command signals transmitted by the remote device. A command signal may comprise an instruction to apply stimulus to an animal wearing the integrated GPS tracking/E-collar system.
The tracking unit may also include a 3D accelerometer and magnetometer component that functions to identify and report a stance or posture of an animal wearing the integrated system. For example, a dog on point assumes a different posture than a dog treeing an animal. The 3D accelerometer and magnetometer detect the posture and report the activity to the remote handheld control unit.
The tracking unit may also include a bark detection circuitry. The bark detection circuitry detects and reports barks per minute to a remote handheld controller. The bark per minute metric may be unique to certain animal behaviors. For example, the bark per minute is different for a dog that is tracking versus baying an animal. The microcontroller reports the bark per minute metric to the remote handheld transceiver. Accordingly, a user of the integrated GPS tracking/E-collar unit system may use the bark per minute metric to detect an activity of the animal when the animal is neither within visible or audible range of the user. For example, the bark per minute metric may indicate the vocalizing of a dog at bay.
According to various embodiments of the present general inventive concept, an animal tracking and control system and apparatus (also referred to as a GPS tracking/E-collar system and apparatus under an alternative embodiment) provides a user with an animal tracking, animal training, or animal tracking/training system that can be user configured. In any of a number of example configurations, there is only one collar (or other animal encircling device) mounted device which is provided to the animal, and only one control device to control the mounted device. The control device may be a remote handheld control unit. Such an apparatus and system greatly simplifies the mounting and operation of an animal training and/or tracking system. Such an apparatus and system also benefits the animal provided with the tracking and control apparatus, due to reduced bulk and weight resulting from not having to wear two separate devices with two separate securing members.
The concepts and techniques disclosed herein are not limited to the tracking and control of animals, and could be applied to various other applications and objects, without departing from the scope and spirit of the present general inventive concept. For example, although the description discusses a dog collar worn by a dog, the present general inventive concept is not limited to any particular type of animal, and further may be used by a human or mechanical mobile subject.
While the present general inventive concept has been illustrated by description of several example embodiments, it is not the intention of the applicant to restrict or in any way limit the scope of the inventive concept to such descriptions and illustrations. Instead, the descriptions, drawings, and claims herein are to be regarded as illustrative in nature, and not as restrictive, and additional embodiments will readily appear to those skilled in the art upon reading the above description and drawings.
Each patent, patent application, and/or publication mentioned in this specification is herein incorporated by reference in its entirety to the same extent as if each individual patent, patent application, and/or publication was specifically and individually indicated to be incorporated by reference.
U.S. patent application Ser. No. 13/311,129, filed on Dec. 5, 2011 is incorporated herein in its entirety by reference.
This application claims the benefit of U.S. Patent Application No. 61/926,797, dated Jan. 13, 2014. This application is filed as a continuation-in-part of U.S. patent application Ser. No. 13/311,129, filed on Dec. 5, 2011.
Number | Name | Date | Kind |
---|---|---|---|
2741224 | Puman | Apr 1956 | A |
3184730 | Irish | May 1965 | A |
3500373 | Arthur | Mar 1970 | A |
3735757 | MacFarland | May 1973 | A |
4426884 | Polchaninoff | Jan 1984 | A |
4783646 | Matsuzaki | Nov 1988 | A |
4794402 | Gonda et al. | Dec 1988 | A |
4802482 | Gonda et al. | Feb 1989 | A |
4947795 | Farkas | Aug 1990 | A |
4969418 | Jones | Nov 1990 | A |
5054428 | Farkus | Oct 1991 | A |
5159580 | Andersen et al. | Oct 1992 | A |
5161485 | McDade | Nov 1992 | A |
5182032 | Dickie et al. | Jan 1993 | A |
5207178 | McDade | May 1993 | A |
5207179 | Arthur et al. | May 1993 | A |
5526006 | Akahane et al. | Jun 1996 | A |
5559498 | Westrick et al. | Sep 1996 | A |
5576972 | Harrison | Nov 1996 | A |
5586521 | Kelley | Dec 1996 | A |
5601054 | So | Feb 1997 | A |
5642690 | Calabrese et al. | Jul 1997 | A |
5815077 | Christiansen | Sep 1998 | A |
5844489 | Yarnall, Jr. et al. | Dec 1998 | A |
5857433 | Files | Jan 1999 | A |
5872516 | Bonge, Jr. | Feb 1999 | A |
5886669 | Kita | Mar 1999 | A |
5923254 | Brune | Jul 1999 | A |
5927233 | Mainini et al. | Jul 1999 | A |
5933079 | Frink | Aug 1999 | A |
5934225 | Williams | Aug 1999 | A |
5949350 | Girard et al. | Sep 1999 | A |
5957983 | Tominaga | Sep 1999 | A |
5982291 | Williams et al. | Nov 1999 | A |
6019066 | Taylor | Feb 2000 | A |
6028531 | Wanderlich | Feb 2000 | A |
6047664 | Lyerly | Apr 2000 | A |
6075443 | Schepps et al. | Jun 2000 | A |
6166643 | Janning et al. | Dec 2000 | A |
6170439 | Duncan et al. | Jan 2001 | B1 |
6184790 | Gerig | Feb 2001 | B1 |
6196990 | Zicherman | Mar 2001 | B1 |
6215314 | Frandewich, Jr. | Apr 2001 | B1 |
6232880 | Anderson | May 2001 | B1 |
6271757 | Touchton et al. | Aug 2001 | B1 |
6327999 | Gerig | Dec 2001 | B1 |
6360697 | Williams | Mar 2002 | B1 |
6360698 | Staplefeld et al. | Mar 2002 | B1 |
6415742 | Lee et al. | Jul 2002 | B1 |
6426464 | Spellman et al. | Jul 2002 | B1 |
6431122 | Westrick et al. | Aug 2002 | B1 |
6459378 | Gerig | Oct 2002 | B2 |
6487992 | Hollis | Dec 2002 | B1 |
6561137 | Oakman | May 2003 | B2 |
6581546 | Dalland et al. | Jun 2003 | B1 |
6588376 | Groh | Jul 2003 | B1 |
6598563 | Kim et al. | Jul 2003 | B2 |
6600422 | Barry et al. | Jul 2003 | B2 |
6637376 | Lee, IV | Oct 2003 | B2 |
6657544 | Barry et al. | Dec 2003 | B2 |
6668760 | Groh et al. | Dec 2003 | B2 |
6799537 | Liao | Oct 2004 | B1 |
6807720 | Brune et al. | Oct 2004 | B2 |
6825768 | Stapelfeld et al. | Nov 2004 | B2 |
6874447 | Kobett | Apr 2005 | B1 |
6888502 | Beigel et al. | May 2005 | B2 |
6901883 | Gillis et al. | Jun 2005 | B2 |
6907844 | Crist et al. | Jun 2005 | B1 |
6907883 | Lin | Jun 2005 | B2 |
6923146 | Kobitz | Aug 2005 | B2 |
6928958 | Crist | Aug 2005 | B2 |
6956483 | Schmitt et al. | Oct 2005 | B2 |
6970090 | Sciarra | Nov 2005 | B1 |
7198009 | Crist et al. | Apr 2007 | B2 |
7222589 | Lee, IV | May 2007 | B2 |
7249572 | Goetzl | Jul 2007 | B2 |
7267081 | Steinbacher | Sep 2007 | B2 |
7296540 | Boyd | Nov 2007 | B2 |
7328671 | Kates | Feb 2008 | B2 |
7382328 | Lee et al. | Jun 2008 | B2 |
7411492 | Greenberg | Aug 2008 | B2 |
7434541 | Kates | Oct 2008 | B2 |
7518275 | Suzuki et al. | Apr 2009 | B2 |
7562640 | Lalor | Jul 2009 | B2 |
7602302 | Hokuf et al. | Oct 2009 | B2 |
7667607 | Gerig | Feb 2010 | B2 |
7705736 | Kedziora | Apr 2010 | B1 |
7814865 | Tracy et al. | Oct 2010 | B2 |
7864057 | Milnes | Jan 2011 | B2 |
7900585 | Lee, IV et al. | Mar 2011 | B2 |
7996983 | Lee, IV et al. | Aug 2011 | B2 |
8011327 | Mainini et al. | Sep 2011 | B2 |
8047161 | Moore | Nov 2011 | B2 |
8069823 | Mainini et al. | Dec 2011 | B2 |
8098164 | Gerig et al. | Jan 2012 | B2 |
8159355 | Gerig et al. | Apr 2012 | B2 |
8342134 | Lee, IV et al. | Jan 2013 | B2 |
8342135 | Peinetti et al. | Jan 2013 | B2 |
8436735 | Mainini | May 2013 | B2 |
8456296 | Piltonen et al. | Jun 2013 | B2 |
8714113 | Lee, IV et al. | May 2014 | B2 |
8736499 | Goetzl et al. | May 2014 | B2 |
8803692 | Goetzl et al. | Aug 2014 | B2 |
8807089 | Brown et al. | Aug 2014 | B2 |
8823513 | Jameson et al. | Sep 2014 | B2 |
20020010390 | Guice et al. | Jan 2002 | A1 |
20020015094 | Kuwano et al. | Feb 2002 | A1 |
20020036569 | Martin | Mar 2002 | A1 |
20020092481 | Spooner | Jul 2002 | A1 |
20020196151 | Troxler | Dec 2002 | A1 |
20030035051 | Cho et al. | Feb 2003 | A1 |
20030116099 | Kim et al. | Jun 2003 | A1 |
20030169207 | Beigel | Sep 2003 | A1 |
20030179140 | Patterson et al. | Sep 2003 | A1 |
20030218539 | Hight | Nov 2003 | A1 |
20040108939 | Giunta | Jun 2004 | A1 |
20040162875 | Brown | Aug 2004 | A1 |
20050000469 | Giunta | Jan 2005 | A1 |
20050007251 | Crabtree | Jan 2005 | A1 |
20050020279 | Markhovsky et al. | Jan 2005 | A1 |
20050035865 | Brennan et al. | Feb 2005 | A1 |
20050059909 | Burgess | Mar 2005 | A1 |
20050066912 | Korbitz et al. | Mar 2005 | A1 |
20050081797 | Laitinen et al. | Apr 2005 | A1 |
20050145196 | Crist et al. | Jul 2005 | A1 |
20050145200 | Napolez et al. | Jul 2005 | A1 |
20050172912 | Crist et al. | Aug 2005 | A1 |
20050217606 | Lee et al. | Oct 2005 | A1 |
20050235924 | Lee et al. | Oct 2005 | A1 |
20050263106 | Steinbacher | Dec 2005 | A1 |
20050280546 | Ganley et al. | Dec 2005 | A1 |
20050288007 | Benco et al. | Dec 2005 | A1 |
20060000015 | Duncan | Jan 2006 | A1 |
20060011145 | Kates | Jan 2006 | A1 |
20060027185 | Troxler | Feb 2006 | A1 |
20060092676 | Liptak et al. | May 2006 | A1 |
20060102101 | Kim | May 2006 | A1 |
20060112901 | Gomez | Jun 2006 | A1 |
20060191491 | Nottingham | Aug 2006 | A1 |
20060196445 | Kates | Sep 2006 | A1 |
20070011339 | Brown | Jan 2007 | A1 |
20070103296 | Paessel et al. | May 2007 | A1 |
20070204803 | Ramsay | Sep 2007 | A1 |
20070204804 | Swanson | Sep 2007 | A1 |
20070249470 | Niva et al. | Oct 2007 | A1 |
20070266959 | Brooks | Nov 2007 | A1 |
20080004539 | Ross | Jan 2008 | A1 |
20080036610 | Hokuf et al. | Feb 2008 | A1 |
20080055154 | Martucci et al. | Mar 2008 | A1 |
20080055155 | Hensley et al. | Mar 2008 | A1 |
20080058670 | Mainini | Mar 2008 | A1 |
20080061978 | Huang | Mar 2008 | A1 |
20080061990 | Milnes et al. | Mar 2008 | A1 |
20080119757 | Berry et al. | May 2008 | A1 |
20080129457 | Ritter et al. | Jun 2008 | A1 |
20080141949 | Taylor | Jun 2008 | A1 |
20080143516 | Mock et al. | Jun 2008 | A1 |
20080156277 | Mainini et al. | Jul 2008 | A1 |
20080163827 | Goetzl | Jul 2008 | A1 |
20080186167 | Ramachandra | Aug 2008 | A1 |
20080186197 | Rochelle et al. | Aug 2008 | A1 |
20080236514 | Johnson et al. | Oct 2008 | A1 |
20080252527 | Garcia | Oct 2008 | A1 |
20080272908 | Boyd | Nov 2008 | A1 |
20090000566 | Kim | Jan 2009 | A1 |
20090002188 | Greenberg | Jan 2009 | A1 |
20090012355 | Lin | Jan 2009 | A1 |
20090020002 | Williams et al. | Jan 2009 | A1 |
20090025651 | Lalor | Jan 2009 | A1 |
20090031966 | Kates | Feb 2009 | A1 |
20090082830 | Folkerts et al. | Mar 2009 | A1 |
20090102668 | Thompson et al. | Apr 2009 | A1 |
20090224909 | Derrick et al. | Sep 2009 | A1 |
20090289785 | Leonard | Nov 2009 | A1 |
20090289844 | Palsgrove et al. | Nov 2009 | A1 |
20100033339 | Gurley et al. | Feb 2010 | A1 |
20100107985 | O'Hare | May 2010 | A1 |
20100139576 | Kim et al. | Jun 2010 | A1 |
20100154721 | Gerig | Jun 2010 | A1 |
20100231391 | Dror | Sep 2010 | A1 |
20100238022 | Au et al. | Sep 2010 | A1 |
20100315241 | Jow | Dec 2010 | A1 |
20120000431 | Khoshkish | Jan 2012 | A1 |
20120006282 | Kates | Jan 2012 | A1 |
20120037088 | Altenhofen | Feb 2012 | A1 |
20120132151 | Touchton et al. | May 2012 | A1 |
20120312250 | Jesurum | Dec 2012 | A1 |
20130099920 | Song et al. | Apr 2013 | A1 |
20130141237 | Goetzl | Jun 2013 | A1 |
20130321159 | Schofield et al. | Dec 2013 | A1 |
20140020635 | Sayers et al. | Jan 2014 | A1 |
20140053788 | Riddell | Feb 2014 | A1 |
20140132608 | Mund et al. | May 2014 | A1 |
20140174376 | Touchton et al. | Jun 2014 | A1 |
20150107531 | Golden | Apr 2015 | A1 |
Entry |
---|
High Tech Products, Inc. Human Contain Model X-10 Rechargeable, Multi-Function Electronic Dog fence Ultra-System, Apr. 28, 2012. |
Form PCT/ISA/210, International Search Report, dated Apr. 13, 2015. |
Form PCT/ISA/237, Written Opinion of the International Searching Authority, dated Apr. 13, 2015. |
Extended European Search Report for European Application No. 11784149.4 dated Nov. 17, 2017, 7 pages. |
Extended European Search Report for European Application No. 15735439.0 dated Oct. 18, 2017, 9 pages. |
Extended European Search Report for European Application No. 17162289.7 dated Aug. 31, 2017, 7 pages. |
International Preliminary Report for Patentability Chapter II for International Application No. PCT/US2014/024875 dated Mar. 12, 2015, 17 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/043653 dated Dec. 19, 2017, 14 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2014/024875 dated Jun. 27, 2014, 12 pages. |
International Search Report for International Application No. PCT/US2014/020344 dated Jun. 5, 2014, 2 pages. |
International Search Report for International Application No. PCT/US20141066650 dated Feb. 19, 2015, 3 pages (Outgoing). |
International Search Report for International Application No. PCT/US2015/043653, Form PCT/ISA/210 dated Oct. 23, 2015, 2 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2015/043653, Form PCT/ISA/220 dated Oct. 23, 2015, 1 page. |
Notification of Transmittal of the International Search Report and Written Opinion for the International Application No. PCT/US2014/066650 dated Feb. 19, 2015, 1 page. |
Welch et al., “An Introduction to the Kalman Filter,” Department of Computer Science, Jul. 24, 2006, pp. 1-16. |
Written Opinion for International Application No. PCT/US2014/066650 dated Feb. 19, 2015, 15 pages(outgoing). |
Written Opinion for International Application No. PCT/US20151043653, Form PCT/ISA/237 dated Oct. 23, 2015, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20150040839 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61926797 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13311129 | Dec 2011 | US |
Child | 14340493 | US |