Following discovery of a desired subterranean resource, e.g. oil, natural gas, or other desired subterranean resources, well drilling and production systems often are employed to access and extract the resource or resources. For example, a wellbore may be drilled into a hydrocarbon bearing reservoir and then a pumping system may be deployed downhole. The pumping system is operated to pump oil and/or other fluids to the surface for collection when the natural drive energy of the reservoir is not strong enough to lift the well fluids to the surface. The pumping system may comprise an electric submersible pumping system having a submersible centrifugal pump powered by a separate submersible electric motor.
In general, the present disclosure provides a system and methodology for pumping fluids. According to an embodiment, an electric submersible pumping system is constructed with an outer housing which contains an integrated pump and motor. For example, the pump may comprise an impeller disposed within a stator of the motor. The integration of the pump and the motor enables elimination of various components of traditional electric submersible pumping systems to thus provide a simpler and more compact system for pumping fluids.
Certain embodiments will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some illustrative embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The disclosure herein generally relates to a system and methodology for pumping fluids, e.g. well fluids. According to an embodiment, an electric submersible pumping system is constructed for deployment in a borehole or other suitable location to pump desired fluids. The electric submersible pumping system may be constructed with an outer housing containing an integrated pump and motor. For example, the pump may comprise an impeller disposed within a stator of the motor. The integration of the pump and the motor enables elimination of various components of traditional electric submersible pumping systems to thus provide a simpler and more compact system for pumping fluids.
According to an embodiment of the integrated pump and motor, the stator is disposed within the outer housing and comprises a stack of stator laminations having a bore extending longitudinally through the stack. The stator further comprises a plurality of slots disposed around the bore combined with magnet wire disposed within the slots. An impeller is disposed within the stator and comprises an impeller body, a magnetic component about the impeller body, and a permanent magnet. By way of example, the permanent magnet may be mounted about the magnetic component. In this embodiment, the impeller is positioned within the bore extending through the stack of stator laminations to provide the integrated pump and motor. In various embodiments, the integrated pump and motor comprises a stack of impellers and corresponding diffusers located within the stator.
For well applications, the electric submersible pumping system may be used for lifting well fluids to, for example, a surface location. Embodiments of the electric submersible pumping system integrate an electrical motor with a pump to provide a simple pumping system of convenient size. In some embodiments, the electrical motor may be constructed with a stator having a magnetic core and a winding sealed from the ambient environment or made of materials which are not susceptible to the ambient environment. In various embodiments, centrifugal pump stages may be installed within an inside diameter of the stator.
By way of example, the centrifugal pump stages may comprise stationary diffusers which may be fixed to the stator, e.g. fixed within the inner diameter of the stator. In some embodiments, the stationary diffusers may be positioned within the stator and fixed along a stationary shaft. The impellers may be equipped with components that generate torque while being exposed to a rotating magnetic field resulting by applying electric power to the stator. Examples of components that generate torque include permanent magnets, squirrel cage rotors, switched reluctance or synchronous reluctance rotors, or other suitable torque generating components. In some embodiments, the impellers may be installed on a rotating shaft in packs and the packs may be radially stabilized by radial fluid film bearings installed in corresponding, stationary diffusers.
The stator may be constructed with multi-phase winding and may be fed with AC voltage to generate a rotational magnetic field within the stator inner diameter. The rotating magnetic field interacts with the torque generating components of the impellers, thus causing the impellers to rotate and to thus pump fluid through the integrated pump and motor.
Referring generally to
In the embodiment illustrated, the borehole 22 is in the form of a wellbore drilled into a geological formation 34 which contains a desirable fluid 36, e.g. a production fluid such as oil. The borehole 22 may be lined with a tubular casing 38 and perforations 40 may be formed through casing 38 to enable flow of fluids between the surrounding formation 34 and the borehole/wellbore 22. The electric submersible pumping system 20 may be deployed down into borehole 22 via a conveyance system 42. By way of example, the conveyance system 42 may comprise tubing 44 (e.g. coiled tubing, production tubing) or cable coupled with pumping section 24 via a connector 46.
Electric power may be provided to the motor 32 of pumping section 24 via a power cable 48. This allows the motor 32 to power pump 30, as described in greater detail below, so as to draw in fluid 36 through a suitable pump intake 50. The pump 30 may comprise an impeller or impellers which are rotated by an electromagnetic interaction with a rotating magnetic field generated by motor 32 to produce the fluid 36 through the integrated pump and motor 28. In well applications, the fluid 36 may be produced up through tubing 44 (or along an annulus surrounding tubing 44) to a desired collection location which may be at a surface 52 of the earth.
According to an embodiment, the pump 30 may be a multi-stage centrifugal pump. Each stage may comprise an impeller working in cooperation with a stationary diffuser. The impellers are driven by the magnetic field of the motor 32 such that vanes of the rotating impellers convert the driver/motor energy to kinetic energy which is applied to the fluid. The fluid is thus thrown outward by the impeller vanes in a direction away from the center of the impeller. The fluid discharged from the impeller may first contact the inner wall of the adjacent, cooperating diffuser. In some embodiments, the impeller may be rotatably mounted within the cooperating diffuser. The cooperating diffusers direct the flowing fluid from one impeller to the next until the flowing fluid is discharged from the pumping section 24. In some downhole centrifugal pumping systems, the number of pump stages may be determined by the total dynamic head (TDH), stage type performance characteristics, and desired flow rate. For deep wells where high TDH is desired, the overall pumping system may comprise a plurality of the pumping sections 24 connected in tandem hydraulically and electrically.
In embodiments of the disclosure, a motor stator and hydraulic centrifugal pump are combined in a single assembly. The stator may be represented by a laminated magnetic core with multi-phase winding distributed in slots. The winding may be fed by multi-phase AC voltage creating a rotating magnetic field over the space within the stator inner diameter (ID). The stator ID may be sealed from the ambient environment by a corrosion and erosion resistant material of cylindrical shape (e.g. a “can”). In some embodiments of the disclosure, the stator may be constructed from materials resistant to the ambient environment or from a stack of lamination packs individually sealed from the ambient environment by isolating material, e.g. plastic. According to an arrangement, magnetic lamination packs may alternate with non-magnetic packs located adjacent to non-torque producing components of the pump, e.g. diffusers, to reduce power loss in the magnetic core of the stator.
According to an embodiment, non-magnetic stationary diffusers may be installed inside the stator ID. The non-magnetic diffusers may be fixed at desired positions within the stator. For example, the non-magnetic diffusers may be fixed tangentially by, for example, engagement of locking keys with corresponding key grooves located along the stator ID. In some applications, the stack of diffusers may be compressed from the ends of the stack. Furthermore, some embodiments may lock the non-magnetic diffusers along a stationary shaft via keys or other locking mechanisms. In some embodiments, each diffuser may have a two-piece construction in which one part has vanes made of magnetic material and the other part, adjacent to the torque producing impeller, is made of a non-magnetic material, e.g. ceramic or other erosion and corrosion resistant material.
Each impeller installed inside the stator ID may be constructed of magnetic or non-magnetic material. Torque generating components or subassemblies such as permanent magnets, squirrel cage rotors, switched reluctance or synchronous reluctance rotors, or other torque generating components may be fixed on the impeller or formed as integral parts of the impeller. For example, permanent magnets or other torque generating components may be fixed in the front seal area (front skirt) or in the balance ring area of each impeller. The torque generating components are positioned to interact with the rotating magnetic field of the stator and to generate torque for driving the impellers. Rotating impellers and stationary diffusors are able to transform rotational kinetic energy into the hydrodynamic energy of the fluid flow.
In some embodiments of the disclosure, the entire impeller or the vanes of the impeller may be made of a magnetic material. By way of example, the entire impeller or portions of the impeller may be constructed from magnetic steel or other suitable magnetic material. The magnetic impeller is thus able to interact electromagnetically with a rotating magnetic field of the stator such that the impeller functions simultaneously as the impeller of centrifugal pump and the rotor of the motor.
Each impeller may have its own axial and radial support in the form of a bearing made of wear resistant material, e.g., a ceramic or carbide material. The plurality of impellers may be assembled collectively or in separate packs. Additionally, the entire group of impellers or packs of the impellers may be assembled in a floater configuration or in compression. In some applications, the impellers may be rotated about or with a corresponding central shaft. At least some of these configurations may allow for increases in rotating torque within pump stages to prevent the pump from getting stuck due to abrasives.
Embodiments of the disclosure allow for the elimination of traditional ESP components such as the motor protector, intake, separate pump and motor sections, shafts, couplings, and the motor lead extension. Embodiments of the disclosure also may allow for the overall system efficiency to remain at, or be higher than, the level of conventional ESP system efficiency due to the use of high efficiency electrical machine design with high-efficiency hydraulic pump design without compromising either electromagnetic or hydraulic design. Shaft-less design configurations may allow for pump stages with the head of, and higher efficiency than, a conventional centrifugal pump stage due to an increased working area. Pump and motor integration into a single section may reduce the number of parts and shorten the total length of the ESP. A reduction in the number of sections also may minimize installation time at the wellsite and reduce the probability of failure caused by human error, thus increasing reliability. Elimination of torque transmission components such as shafts and couplings may allow flexible connections between integrated pumping sections which, in turn, can facilitate use of the electric submersible pumping system 20 in wells having high dogleg severity.
Referring generally to
During operation, the plurality of impellers 54 receives fluid, e.g. well fluid through an intake 58 (which receives fluid from system pump intake 50) and directs the fluid to the next sequential diffuser 56 which, in turn, directs the fluid to the next sequential impeller 54. The fluid flows along a flow path 60 through sequential impellers 54 and diffusers 56 until being discharged through a discharge head 62. The flow path 60 may be in the form of a fluid conduit for transporting fluid from a first side to a second side of each impeller 54 and from a first side to a second side of each diffuser 56 sequentially. In this example, each impeller 54 further comprises a magnetic component 64 which may be disposed at various positions within the impeller 54 or along the exterior of impeller 54. By way of example, each magnetic component 64 may be annular in shape and have the form of a ring or cylinder disposed about a body 66 of the impeller 54.
As illustrated, each impeller 54 also may comprise a magnet 68, e.g. a permanent magnet, positioned at an external location with respect to the impeller body 66. By way of example, each magnet 68 may be annular in shape and in the form of a ring or cylinder positioned around the corresponding magnetic component 64.
Functionally, the magnetic component 64 and magnet 68 may be considered part of the motor 32. Because the magnetic components 64 and magnets 68 of impellers 54 are fixed to the impeller bodies 66, motor 32 is able to rotate the impellers 54 so as to pump fluid from intake 58 and out through discharge head 62. It should be noted the magnetic component 64 and magnet 68 may be combined with the corresponding impeller body 66 on an individual impeller 54 or on groups of impellers 54 selected from the overall group of impellers 54.
In this example, the motor 32 comprises a stator 70 disposed along the interior of outer housing 26. The stator 70 may be annular in form and have a central passage 71, e.g. a bore, therethrough. The stator 70 may be constructed with a magnetic core and/or with materials having desired magnetic or electric anisotropy. In some embodiments, the stator 70 is constructed with a plurality of stacked stator laminations 72. A magnet wire 74 (or magnet wires) may extend through the stator 70 in a generally lengthwise direction. By way of example, magnet wire passages, e.g. slots, may be formed longitudinally through the stator 70, e.g. through the stack of stator laminations 72, and the magnet wire 74 may be fed through the magnet wire passages to form a stator coil. Longitudinal ends of the magnet wire may be contained by coil end encapsulations 76, e.g. by a coil end encapsulation 76 located at each end of the stacked stator laminations 72.
The non-magnetic diffusers 56 may be held in stationary positions with respect to stator 70. By way of example, each diffuser 56 may be locked to the surrounding stator 70 via a key or other protuberance 78 of each diffuser 56 engaging a corresponding recess 80 located along an inside diameter of the stator 70. Consequently, the non-magnetic diffusers 56 are prevented from rotating during rotation of impellers 54 while operating the integrated pump and motor 28.
To cause operation of motor 32 and pumping of fluid via pump 30, electricity is supplied to magnet wire 74 via an electric cable 82 coupled with magnet wire 74 via a cable connector 84. Electric cable 82 may be the same as or part of overall power cable 48. The rotating magnetic field created by electricity flowing along the winding created by coiled magnet wire 74 extends to the inside diameter of stator 70 and interacts with magnetic impellers 54, e.g. with magnetic components 64 and corresponding magnets 68. For example, the magnets 68 may be oriented to provide appropriately positioned polarity along the outer surface of the impellers 54. In this manner, the stator 70, magnetic components 64, and corresponding magnets 68 function as an electric motor and cause rotation of the impellers 54. The structure of impellers 54 enables the impellers 54 to function as a rotor of the motor 32 while also facilitating pumping of fluid along pump 30. According to at least some embodiments described herein, the magnetic gap between the stator 70 and the magnets 68 is constant and continuous. In the example illustrated in
Referring generally to
In this embodiment, stator 70 may again comprise a winding of magnet wire 74 which is supplied with electricity via electric cable 82. The resulting magnetic field is used to rotate impellers 54 which cause the inflow of fluid through intake 58 and the discharge of fluid through discharge head 62. The flowing fluid, e.g. well fluid, passes through the plurality of non-magnetic diffusers 56 and magnetic impellers 54 before being discharged through discharge head 62.
Referring generally to
Referring generally to
Referring generally to
The hollow shaft 96 may be used with a variety of embodiments. For example, the shaft 86 or the shaft 92, described above, may be constructed as hollow shaft 96. In some embodiments, a valve 106 may be mounted at the top of pumping section 24 or at another suitable location. The valve 106 may be in the form of a check valve or other suitable valve which is closed to block passage 98 when the pumping system is activated. However, the valve 106 may be moved to an open position to allow tool 100 to be passed through the hollow shaft 96.
In
Referring generally to
Depending on the parameters of a given application, the torque producing component, e.g. impeller 54, may be constructed in a variety of forms. In embodiments described above, for example, a torque producing component or components may be created using an impeller body 66 combined with a magnetic component 64 and an annular permanent magnet 68. However, the torque producing component, e.g. magnetic components of impeller 54, may be constructed in various other configurations. Examples of such configurations include an induction cage, a reluctance rotor, or another suitable component able to generate torque when electricity is applied via cable 82.
Referring generally to
In
In
With respect to embodiments described herein, torque generating components (e.g. combined impeller body 66, magnetic components 64, and permanent magnet 68) may or may not be constructed to provide hydrodynamic functions of pump stage components such as impeller vanes. For example, permanent magnets 68 of impellers 54 may be constructed in the form of impeller vanes 118, may be mounted along the impeller vanes 118, or may be mounted at other suitable locations of the impellers 54 that do not participate in fluid pumping. In some embodiments, the impellers 54 may be constructed from a magnetic steel and function as a rotor of a synchronous reluctance motor. In this type of embodiment, the impellers 54 again generate torque when being exposed to a rotating magnetic field of the stator 70.
Various embodiments described herein enable the elimination of traditional ESP components such as motor protector (seal), traditional motor, traditional pump shafts, couplings, motor lead extensions, and/or other components. The integrated pump and motor 28 may be constructed to provide a combined section having a reduced number of component parts combined with a shortening of the overall length of the ESP system 20 relative to a traditional ESP system. However, multiple combined sections may be connected in tandem to provide sufficient head desired for a given pumping system.
Additionally, the integrated pump and motor 28 may be constructed with different types of fluid pumping structures, e.g. different types of impellers. For example, the fluid pumping structure 54 may be in the form of a helical rotor in a progressive cavity pump. In this type of embodiment, the helical rotor is equipped with a torque producing element, e.g. a permanent magnet element or a magnetic steel element, and surrounded by stator 70 with a winding of magnet wire 74 to produce a rotating magnetic field.
By eliminating certain traditional components, e.g. shafts, as described above, embodiments of ESP system 20 allow for the flexible connection of pumping section 24 with other components of a well string. This ability negates application restraints related to trajectory of the wellbore in three-dimensional space and facilitates use of the pumping system in wellbores with greater dogleg severity. A flexible connection between sections of the well string may be achieved by a variety of methods including use of materials which allow a certain level of deformation and flexibility, articulating joints which permit relative angular movement between connected sections, or other suitable flexible connections.
The various components of pumping system 20 may be constructed from a variety of materials. For example, the impeller body 66 may be constructed from steel, aluminum, plastic, ceramic, or other suitable materials for a given application. In some embodiments, the impellers 54 may be constructed with suitable types of magnetic material. For example, the impeller body 66 may be constructed from the same material as magnetic component 64. The magnetic components 64 also may be formed from various magnetic materials, such as magnetic steel. Similarly, the stator 70 may be constructed in various configurations using laminations 72 or other suitable structures. The electric cable 82 may have various materials and configurations and may be coupled with magnet wire 74 via various types of connectors 84, e.g. motor lead extensions. Additionally, the pumping section 24 may be combined with many other types of components in the overall pumping system.
Although a few embodiments of the system and methodology have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present document is based on and claims priority to U.S. Provisional Application Ser. No. 62/366,907, filed Jul. 26, 2016, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/036242 | 6/7/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/022198 | 2/1/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2887062 | Cametti | May 1959 | A |
4511307 | Drake | Apr 1985 | A |
4541782 | Mohn | Sep 1985 | A |
4678399 | Vandevier et al. | Jul 1987 | A |
4741668 | Bearden | May 1988 | A |
4872808 | Wilson | Oct 1989 | A |
5209650 | Lemieux | May 1993 | A |
5211546 | Isaacson | May 1993 | A |
5547350 | Rawal et al. | Aug 1996 | A |
5713727 | Veronesi et al. | Feb 1998 | A |
5722812 | Knox et al. | Mar 1998 | A |
6053705 | Schob | Apr 2000 | A |
6068444 | Sheth | May 2000 | A |
6244835 | Antaki | Jun 2001 | B1 |
6254359 | Aber | Jul 2001 | B1 |
6726449 | James et al. | Apr 2004 | B2 |
6811382 | Buchanan | Nov 2004 | B2 |
7021905 | Torrey et al. | Apr 2006 | B2 |
7326034 | Sheth | Feb 2008 | B2 |
7575413 | Semple et al. | Aug 2009 | B2 |
8454330 | Lyngholm | Jun 2013 | B2 |
8772997 | Rumbaugh | Jul 2014 | B2 |
9334865 | Johnson et al. | May 2016 | B2 |
20020066568 | Buchanan | Jun 2002 | A1 |
20080111434 | Head | May 2008 | A1 |
20090078412 | Kanayama | Mar 2009 | A1 |
20090162223 | Lyngholm | Jun 2009 | A1 |
20130115118 | Chien et al. | May 2013 | A1 |
20130236341 | Andersen | Sep 2013 | A1 |
20150023815 | Tetzlaff et al. | Jan 2015 | A1 |
20150104335 | Faller | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2623365 | Apr 2002 | CA |
101534024 | Sep 2009 | CN |
2678987 | Jan 1993 | FR |
1085042 | Sep 1967 | GB |
2254656 | Oct 1992 | GB |
2369862 | Jun 2002 | GB |
2015094249 | Jun 2015 | WO |
2018022198 | Feb 2018 | WO |
2020198446 | Oct 2020 | WO |
Entry |
---|
Search Report and Written Opinion of International Patent Application No. PCT/US2017/036242 dated Sep. 4, 2017, 15 pages. |
International Preliminary Report on Patentability of International Patent Application No. PCT/US2017/036242 dated Feb. 7, 2019, 12 pages. |
International Search Report and Written Opinion issued in the PCT Application PCT/US2020/024909, dated Jul. 13, 2020 (16 pages). |
Number | Date | Country | |
---|---|---|---|
20190271217 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62366907 | Jul 2016 | US |