Not Applicable.
Not applicable.
This disclosure relates to a support arrangement for agricultural vehicles, and in particular to an integrated structure for a fan and an axle.
Agricultural vehicles come in various forms for cutting and processing crop material. Combine harvesters (or “combines”), for example, are agricultural vehicles that may be configured to reap, thresh, and winnow various crops. Combines typically gather crop materials from the field with a header mounted to a feederhouse at the forward end of the combine. Various internal mechanisms may then separate and clean various portions of the gathered crop material. A particular combine may be able to gather and process different types of crops depending on the configuration of the particular header that is mounted to the combine. For example, a grain header can be attached for harvesting wheat and a corn header can be attached for harvesting corn.
Certain agricultural vehicles, including various combines, may include a cleaning system for separating chaff and trash from other portions of gathered material. In typical combines, for example, a cleaning system may include a separator, a cleaning shoe, and a cleaning fan. Crop material gathered by the combine may be directed through the separator to the cleaning shoe, where an air flow from a cleaning fan separates lighter chaff from heavier materials (e.g., grain). In typical designs, the cleaning shoe may include a chaffer and a sieve, through which crop material may be sifted. Heavier crop materials (e.g., grain) may fall through openings on the chaffer and the sieve (e.g., through transverse louvers) for transport to a grain tank, as air flow from the cleaning fan may blow lighter material (e.g., chaff) upwards and backwards towards the rear of the combine.
In order to achieve desired performance in cleaning (or other) operations, it may be useful to utilize relatively large cleaning shoes (or other devices). However, the size of a particular vehicle may limit the amount of space within which these devices may be disposed. Accordingly, it may be useful to arrange various devices and components within a combine (or other vehicle) such that available space is utilized with appropriate efficiency.
An integrated fan and axle arrangement for an agricultural vehicle is disclosed.
According to one aspect of the disclosure, the integrated fan and axle arrangement may be provided for an agricultural vehicle with an impeller with an axis of rotation that extends laterally across a chassis of the agricultural vehicle. The integrated fan and axle arrangement may have a front axle assembly configured to support one or more front wheels of the agricultural vehicle and the fan housing. The impeller may rotate within the fan housing to provide air flow within the agricultural vehicle. The laterally extending portion of the fan housing may form part of the front axle assembly, such that the laterally extending portion of the fan housing provides structural rigidity to the front axle assembly for the support of the one or more front wheels.
In certain embodiments, a plurality of blades may be attached to the impeller, where the plurality of blades defines an outer boundary of the impeller as the impeller rotates within the fan housing. The fan housing may have a fan scroll with one or more scroll plates, and the one or more scroll plates may define an air-flow gap between the fan scroll and the outer boundary of the impeller, and the impeller provides the air flow via the air-flow gap. The laterally extending portion of the fan housing that forms part of the front axle assembly may include at least one scroll plate of the one or more scroll plates.
In certain embodiments, the front axle assembly may include first and second side plates on opposite lateral sides of the front axle assembly. At least one scroll plate may extend laterally across the agricultural vehicle from a first end at the first side plate of the front axle assembly to a second end at the second side plate of the front axle assembly. The first and second side plates may extend past the at least one scroll plate toward the impeller.
In certain embodiments, the at least one scroll plate may have a scroll section and a support section, with the scroll section defining, at least in part, the air-flow gap between the fan scroll of the fan housing and the outer boundary of the impeller. The support section may extend away from the scroll section and the impeller such that the support section is excluded, at least in part, from the fan scroll of the fan housing.
In certain embodiments, the front axle assembly may have a first and second side plates located on opposite lateral sides of the front axle assembly; and wherein the support section of the at least one scroll plate extends, at least in part, away from the scroll section towards a lower edge of each of the first and second side plates. The front axle assembly may include first and second side plates on opposite lateral sides of the front axle assembly; and the impeller may be disposed, at least in part, above and laterally between the first and second side plates.
In certain embodiments, the front axle assembly may have an upper support structure extending laterally between the first and second side plates of the front axle assembly. The upper support structure and the laterally extending portion of the fan housing may also be disposed to define a passage between the upper support structure and the laterally extending portion of the fan housing, the passage extending from outside of the front axle assembly to an internal volume of the front axle assembly.
These and other features and advantages of the present disclosure will become clear to a person skilled in the art after reading the following detailed description and in consideration of the drawings.
Like reference numerals in the drawings indicate like components, parts, or operations.
The following describes one or more example embodiments of the disclosed support arrangements for an agricultural vehicle, as shown in the accompanying figures of the drawings described briefly above. Various modifications to the example embodiments may be contemplated by one of skill in the art.
“Forward,” and “rearward” references (and, generally, references to the “longitudinal” direction) are used herein as a matter of convenience and are generally determined based upon the normal direction of travel for a relevant vehicle. Similarly, references to the “lateral” direction generally refer to directions transverse to the longitudinal direction, with the “left” and “right” directions being determined based from a perspective facing the forward direction for a vehicle. “Upward” and “downward.” or “vertical” directions are relative to the ground.
As noted above, it may be useful to arrange internal components and devices of a vehicle (e.g., an agricultural combine) such that available space is efficiently utilized. In certain embodiments, a useful support arrangement for a vehicle may include an axle assembly with an integrated transmission. In certain embodiments, such an integrated axle and transmission arrangement may allow the transmission to be disposed in relatively close proximity to the axle assembly without excessive use of space. This may, for example, allow relatively efficient and direct routing of power from the transmission to the relevant wheels (e.g., via one or more drive shafts extending from the transmission toward the wheels).
An axle assembly for an integrated axle and transmission arrangement may include an axle support structure configured as an arrangement of support plates within the body of the vehicle. The various support plates may be welded together, or otherwise attached, such that the plates define (at least in part) an internal volume. Stub shafts (e.g., weldments of various plates) may be attached at either lateral side of the support structure, and wheels (or tracks, and so on) of the vehicle may be attached to the stub shafts. Both of the stub shafts and at least part of the internal volume defined by the axle support structure may be generally oriented along a common axis of rotation of the wheels (i.e., along the axle axis).
In order to controllably drive the wheels mounted to the stub shafts, a transmission assembly may be mounted within the mounting volume. For example, a transmission assembly including a multi-stage (or other) transmission may be mounted to a front plate of the axle support structure, such that the multi-stage (or other) transmission extends rearward into the internal volume of the axle support structure. In such a configuration, an output shaft may extend from either lateral side of the transmission assembly in order to provide rotational power to the wheels.
In certain embodiments, the wheels may be attached to the stub axles via a wheel plate, which may extend from the axle axis to below side plates of the axle support structure. A tension rod (or other tie member) may be attached to the two side plates, and extend between the two side plates, such that the tension rod (or other tie member) may provide structural support to the axle assembly as the wheels support the weight of the vehicle.
In certain embodiments, an additional (or alternative) useful support arrangement for a vehicle (e.g., an agricultural combine) may include an integrated fan and axle arrangement. For example, a cleaning shoe (or other cleaning device) of a vehicle may be configured to separate various portions of crop material using (at least in part) an air flow generated by a fan. The fan may include an impeller and a scroll for generating the air flow for the cleaning shoe (or other device). A front axle assembly of a combine (or other vehicle) may include various support plates (or other members) that are welded (or otherwise attached) into a suitable support structure for the axle (e.g., a central axle support structure and laterally extending stub axles). In order to increase the available space for the cleaning shoe (or other device), a portion of the scroll of the fan may be configured as a portion of the axle assembly (or, conversely, a portion of the axle assembly may be configured as a portion of the scroll). In this way, the scroll may serve its function with regard to the air flow from the fan, while also providing structural rigidity to the axle assembly (or, conversely, a support plate of the axle assembly may provide structural rigidity to the axle assembly while also forming a portion of the fan scroll).
Referring now to
The vehicle 10 may include front and rear ground-engaging elements for supporting the vehicle 10 with respect to the ground. As depicted in
A header 18 may gather crop material from a field, while a feederhouse 20 to which the header 18 is attached may direct the gathered crop towards a crop processing unit 22 within the vehicle 10. The crop processing unit 22 may include, for example, a separator 24, a cleaning device configured as a cleaning shoe 26, a cleaning fan 28, and various other devices, for separating grain (or other saleable or useful products) from chaff and other trash. It will be understood that other embodiments of the vehicle 10 may include cleaning devices configured differently from a cleaning shoe.
Referring also to
As depicted, the axle assembly 16a includes a centrally disposed axle support structure 40, and a pair of stub axles 32 and 34 for mounting the front wheels 12 to the agricultural vehicle 10. The stub axles 32 and 34, in combination with the axle support structure 40 may be configured to provide a suitably rigid structure for support of the weight of the vehicle 10 at the wheels 12. As depicted, the axle support structure 40 is centrally disposed, and relatively symmetric with regard to a centerline of the vehicle 10. In other embodiments, a similar support structure (not shown) may be offset from the centerline of the vehicle 10, may be non-symmetrical in various ways, or may otherwise differ from the depicted axle support structure 40.
In certain embodiments, as also discussed in greater detail below, the axle support structure 40 may provide a mounting frame for attachment of a transmission assembly 30, which may be utilized to drive the wheels 12. A transmission assembly for the vehicle 10 may be configured in a variety of ways. The transmission assembly 30, for example, may include a motor (e.g., a hydraulic motor) powered by the engine 36 and a gear box (e.g., a differential gear box or multi-stage transmission) configured to transmit power received at a transmission input to the wheels 12. The motor may accordingly, for example, provide power to drive the wheels 12 via the transmission gear box. In other configurations, the transmission assembly 30 may be configured in various different ways, and may, for example, include various other devices, such as other motors, other gear boxes, various clutch devices, and so on.
The axle support structure 40 may be formed from a number of longitudinally extending side members, which may be connected to each other by a number of laterally extending cross members. As depicted, for example, the axle support structure 40 includes side plates 42 and 44, which are laterally spaced from one another so as to partly define a partially enclosed internal volume 46. In certain embodiments, the side plates 42 and 44 also define (or are disposed at) the lateral sides of the body of the vehicle 10. In such embodiments, the stub axles 32 and 34, which are attached to the side plates 42 and 44, may accordingly extend outside of the body of the vehicle 10.
To provide appropriate structural strength to the axle support structure 40, a laterally extending upper support structure 48 may be welded (or otherwise attached) to each of the side plates 42 and 44. Accordingly, the support structure 48 may be viewed as further defining the internal volume 46. As depicted, the support structure 48 is formed as a weldment of various plates (including angled upper plate 48a), which is attached to the side plates 42 and 44 near the upper edges of the side plates 42 and 44. It will be understood, however, that other configurations are possible. For example, an alternative (or additional) support structure to connect the side plates 42 and 44 may be formed as a hollow tube, box, or other weldment, each configured to provide appropriate structural rigidity and strength to the axle support structure 40.
The axle support structure 40 may further include front and rear members (or other support members or structures). For example, in the embodiment depicted, a front plate 50 may be welded (or otherwise attached) to each of the side plates 42 and 44 near the front of the axle support structure 40. In certain embodiments, as discussed in greater detail below, the front plate 50 (or another plate) may be configured as a mounting plate for the transmission assembly 30, as well as a structural member of the axle support structure 40. In such embodiments, the front plate 50 (or another plate) may also be viewed as a “transmission mounting plate.” It will be understood, however, that other configurations are possible. For example, an alternative (or additional) member or support structure for connecting the front portions of the side plates 42 and 44 may be formed as a hollow tube, box, or other weldment. Likewise, a member or structure other than the plate 50 may alternatively (or additionally) be utilized as a transmission mounting plate.
The various support members and structures of the axle support structure 40 may generally form a partial shell or shield around the internal volume 46. Such a shell may for example, include front, top and rear walls (e.g., as formed by the front plate 50, upper support structure 48, and so on), with a generally open bottom. In this way, for example, even if the axle support structure 40 is formed as a weldment, it may be relatively straightforward to access the internal volume 46 from the bottom of the axle support structure 40. This may result, for example, in more streamlined maintenance of various components of the vehicle 10, including the transmission assembly 30 when the transmission assembly 30 is mounted within the internal volume 46.
The stub axles 32 and 34 may also be configured in various ways. Referring in particular to
In the embodiment depicted, the stub axles 32 and 34 are disposed generally along a drive axis 12a (i.e., axis of rotation) of the wheels 12 (see, e.g.,
Each of the stub axles 32 and 34 includes a drive plate for attaching the relevant wheel 12 (directly or indirectly) to the stub axles 32 and 34. As shown in
A structural tie member (e.g., a tension rod 38) may attach to, and extend between, each of the drive plates 52 in order to provide further structural rigidity to the axle assembly 16a. In the embodiment depicted, for example, the drive plates 52 are configured to extend downward from the stub axles 32 and 34, such that the lower ends 52a of the drive plates 52 are generally below the lower edges of the side plates 42 and 44 of the axle support structure 40. The tension rod 38 is attached (e.g., secured by threaded connections 38a) at a location near the lower ends of the drive plates 52, such that the tension rod 38 is disposed generally below the axle support structure 40. It will be understood, however, that other configurations are possible. For example, the tension rod 38 (or another tie member) may be configured to extend through the side plates 42 and 44, or other members of the axle assembly 16a.
As noted above, the transmission assembly 30 for the front wheels 12 may be mounted such that the transmission assembly 30 is disposed (at least in part) within internal volume 46 of the axle support structure 40. In this way, the axle support structure 40 may both support the transmission assembly 30 with respect to the agricultural vehicle 10, and at least partially enclose the transmission assembly 30. This may serve to protect the transmission assembly 30 (at least in part) from impacts or other adverse events, while also efficiently utilizing the limited internal space of the vehicle 10.
In the embodiment depicted, the transmission assembly 30 is configured to attach to the front plate 50 of the axle support structure 40 (i.e., such that the front plate 50 may be viewed as a mounting plate for the transmission assembly 30). Accordingly, the front plate 50 is configured to support the transmission assembly 30, and the internal volume 46 is configured to receive the transmission assembly 30, such that the transmission assembly 30 is disposed (at least in part) within the internal volume 46. In this regard, the internal volume 46 may be viewed as a “mounting volume” of the axle support structure 40 (and of the axle assembly 16, generally). Various attachment devices or arrangements may be utilized to attach the transmission assembly 30 to the front plate 50, including various bolts, brackets, hooks, pins, and so on. Where bolts or other removable attachment devices are utilized, the transmission assembly 30 may be relatively easily removed from the axle support structure 40 for maintenance.
As depicted, the front plate 50 and the internal volume 46 are configured such that the entire transmission assembly 30 is disposed within the volume 46 when the transmission assembly 30 is attached to the front plate 50 for operation. In other embodiments, a relevant mounting plate and mounting volume may be otherwise configured, such that only a portion of the transmission assembly 30 is disposed within the mounting volume. In certain embodiments, the transmission assembly 30 may be configured to attach to various plates (or other members) of the axle assembly 16a as an alternative to (or in addition to) the front plate 50.
In certain embodiments, additional components or devices may also be included (at least in part) within the relevant mounting volume for the vehicle transmission (e.g., within the internal volume 46 of the axle support structure 40). As depicted, for example, a hydraulic (or other) motor 56 for providing rotational power to the transmission assembly 30 is also disposed within the internal volume 46. The motor 56 may be supported with respect to the vehicle 10 by the front plate 50 (e.g., via attachment of the motor 56 to the transmission assembly 30) or by other features of the axle assembly 16a.
In order to convey rotational power from the transmission assembly 30 to the wheels 12, drive shafts may be configured to extend laterally from the transmission assembly 30 to the final drives 54. As depicted, for example, a shaft opening 76 is provided in each of the side plates 42 and 44. A drive shaft 58 may extend through each opening 76, respectively, such that rotational power may be transmitted from the transmission assembly 30, via the final drives 54, to the wheels 12.
In certain embodiments of the vehicle 10, a transmission for the front wheels 14 may not be disposed within the axle assembly 16a. For example, in certain embodiments, a transmission (e.g., a transmission configured similarly to the transmission 30) may be disposed forward of the axle assembly 16a rather than within the axle assembly 16a. Accordingly, although such a transmission (not shown) may be supported by a front portion of the axle assembly 16a, the transmission may not be enclosed by the axle assembly 16a. It will be understood, in this light, that certain discussion below relating to the configuration of the axle support structure 40 (or portions thereof) may apply generally to axle assemblies (e.g., the axle assembly 16), regardless of the actual location or configuration of the transmission assembly 30.
As also noted above, it may be useful to configure a fan of a cleaning shoe (or similar other fan) to share at least one structural member with an axle assembly. Referring also to
To protect the impeller 74 and other components, and to appropriately route air flow, the fan 28a includes a fan housing 78. As depicted, the fan housing 78 is formed in part by the side sheets 70 and 72 of the cleaning shoe 26a. It will be understood however, that other configurations are possible.
As depicted, the fan housing 78 also includes a scroll 80 to route air from the impeller 74 of the fan to the rearward portion of the cleaning shoe 26a. Generally, the scroll 80 may be formed in a logarithmic or other spiral, although other configurations are also possible. For convenience of reference herein, the scroll 80 (and the impeller 74) may be divided into four quadrants, an upper rearward quadrant 100, an upper forward quadrant 102, a lower forward quadrant 104, and a lower rearward quadrant 106. As depicted, the scroll 80 generally begins in the upper rearward quadrant 100, then traces a profile that extends radially outward and clockwise (e.g., from the perspective of
As depicted, the scroll 80 is formed of a plurality of scroll plates 82, which may extend laterally between the side sheets 70 and 72 and may attach to the side sheets 70 and 72 with a plurality of brackets 84 and fasteners 86. The various scroll plates 82 may also attach to one another in various ways, in order to provide a continuous (or nearly continuous) shell around an impeller 74 of the fan 28a. In this way, the scroll 80 (by way of the scroll plates 82) may generally define an air-flow gap 88 (see, e.g.,
As shown in particular in
In this light, as the impeller 74 rotates, air from the impeller 74 may be routed from the fan 28a, along a counter-clockwise path (from the perspective of
The width of the air-flow gap 88 in a radial direction, with a radial center coaxial with the cleaning fan 28a, may vary along the scroll 80. As depicted, for example, the gap 88 is smallest at the start of the scroll 80 (i.e., in the upper rearward quadrant 100) and widens relatively continuously to its widest point at the end of the scroll 80 (i.e., in the lower rearward quadrant 106). It will be understood, however, that other configurations may be possible.
In the embodiment depicted, each scroll plate 82 defines a generally flat contour (or series of flat contours) along the scroll 80, with the scroll plates 82 thereby collectively approximating a curved, spiral shape even though no individual scroll plate 82 may actually be curved. It will be understood, however, that other embodiments of the fan 28a and the fan housing 78 may alternatively (or additionally) include various curved plates to define the scroll 80. Likewise, the scroll 80 may be formed from a single sheet or plate, rather than the multiple scroll plates 82, whether the scroll 80 is curved, angled to approximate a curve, or otherwise contoured.
In order to utilize internal space of the vehicle 10 in an efficient manner, the cleaning shoe 26a and the front axle assembly 16a may share, and may connect to each other through, one or more shared structural members (or other support structures). In certain embodiments, the scroll of the fan 28a for the cleaning shoe 26a may share one or more structural members with the axle assembly 16a. In the embodiment depicted in the various figures, for example, one of the scroll plates 82 of the fan scroll 80 is also configured as a rearward support plate 110 for the support structure 40 of the axle assembly 16a. In this way, the plate 110 may provide structural support to the support structure 40 of the front axle assembly 16a, as well as to the fan housing 78, while simultaneously serving, at least in part, to define the contour of the scroll 80.
The shared members or structures of the scroll 80 and axle assembly 16a may be configured in a variety of ways. In certain embodiments, the shared support member may be include one or more portions that do not serve to define the contours of the scroll 80. As depicted, for example, the support plate 110 includes a scroll section 112, which may serve to define a portion of the scroll 80 (and, thereby, the air-flow gap 88). Also as depicted, the support plate 110 further includes a support section 114, which extends generally downward from the scroll section 112 (and away from the air-flow gap 88) to provide additional structural support to the axle assembly 16a.
As depicted, the scroll section 112 of the support plate 110 includes two flat portions connected at an angle, in order to approximate the desired curve of the scroll 80. In other embodiments, the scroll section 112 may instead be curved, or otherwise contoured. Similarly, the scroll section 112 and the support section 114 of the plate 110 are depicted as formed from a single metal sheet. It will be understood, however, that other configurations are possible. For example, the structure provided by plate 110 may, in certain embodiments, be instead provided by two or more separate plates (or other members). Such separate plates may be fastened together (e.g., by welding or bolts) for attachment to the axle assembly 16a and fan 28a, or may be attached to the axle assembly 16a and fan 28a separately.
In certain embodiments, the various members of the axle support structure 40 may define one or more passages from the exterior of the axle support structure 40 (and the axle assembly 16a, generally) into the internal volume 46. In the embodiment depicted, for example, a passage 116 is defined by the upper support structure 48 and the scroll 80 (including the support plate 110). As can be seen in particular in
In certain embodiments, various spatial relationships between components of the fan 28a and the axle assembly 16a may be implemented. Still referring in particular to
Other configurations may also be possible. In certain embodiments, for example, the impeller 74 may be physically between the side plates 42 and 44 (i.e., such a portion of the impeller 74 longitudinally overlaps with the side plates 42 and 44). Similarly, the shared support plate 110 may be configured without the support section 114 (e.g., configured to include only the scroll portion 90) or may include a different support section (e.g., a support section extending forward towards the transmission assembly 30 or rearward toward the cleaning shoe 26a.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, components, operations, or arrangements, but do not preclude the presence or addition of one or more other features, components, operations or arrangements.
The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. Explicitly referenced embodiments herein were chosen and described in order to best explain the principles of the disclosure and their practical application, and to enable others of ordinary skill in the art to understand the disclosure and recognize many alternatives, modifications, and variations on the described example(s). Accordingly, various implementations other than those explicitly described are within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1831216 | Wickersham | Nov 1931 | A |
3023901 | Bulin | Mar 1962 | A |
3469773 | Pool et al. | Sep 1969 | A |
4265077 | Peters | May 1981 | A |
5464372 | Lauer | Nov 1995 | A |
6921330 | Grywacheski | Jul 2005 | B2 |
7670219 | Matousek | Mar 2010 | B2 |
20040023704 | Grywacheski et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
1932421 | Jun 2008 | EP |
Entry |
---|
European Patent Office, Extended European Search Report for Application No. 15178260.4, dated Feb. 9, 2016. |
Number | Date | Country | |
---|---|---|---|
20160057928 A1 | Mar 2016 | US |