Integrated fingerprint and force sensor

Information

  • Patent Grant
  • 11423686
  • Patent Number
    11,423,686
  • Date Filed
    Wednesday, July 25, 2018
    5 years ago
  • Date Issued
    Tuesday, August 23, 2022
    a year ago
Abstract
Described herein is a ruggedized microelectromechanical (“MEMS”) sensor including both fingerprint and force sensing elements and integrated with complementary metal-oxide-semiconductor (“CMOS”) circuitry on the same chip. The sensor employs either piezoresistive or piezoelectric sensing elements for detecting force and also capacitive or ultrasonic sensing elements for detecting fingerprint patterns. Both force and fingerprint sensing elements are electrically connected to integrated circuits on the same chip. The integrated circuits can amplify, digitize, calibrate, store, and/or communicate force values and/or fingerprint patterns through output pads to external circuitry.
Description
FIELD OF TECHNOLOGY

The present disclosure relates to microelectromechanical (“MEMS”) force sensing integrated with fingerprint sensor on the same complementary metal-oxide-semiconductor (“CMOS”) chip.


BACKGROUND

In some mobile electronic devices, the home button is integrated with fingerprint sensor and a mechanical switch for user's convenience to simultaneously authenticate the user and turn on the device. With the increasing demand for a water proof standard for mobile devices, the mechanical button must be removed and replaced with other sensing mechanisms to turn on the device. It is therefore desired to have force integrated into such solution, but this requires extra space and elaborate mechanical design to support an extra sensor using conventional force sensing technology inside the already crowded mobile device chassis.


SUMMARY

The present disclosure pertains to a MEMS sensor including both fingerprint and force sensing on the same chip. The MEMS sensor can also include integrated circuits on the same chip. Such an integrated sensor can be created using complementary metal-oxide-semiconductor (“CMOS”) process, where the force sensing elements can be formed through existing layers from CMOS process such as doped junction or poly-silicon layers. Alternatively or additionally, the force sensing elements can be formed by disposing piezoelectric layers after the CMOS process is completed and forming electrical connections to CMOS layers.


The fingerprint sensing can be implemented through capacitive sensing where the top metal layers can be used for such purpose. Alternatively, the same piezoelectric layer which is used for force sensing can be reconfigured to launch ultrasonic waves for fingerprint sensing purpose. Combinations of the different force and fingerprint sensing integration are contemplated and exemplified but not limited to such embodiments.


An example integrated microelectromechanical (“MEMS”) force sensor is described herein. The integrated MEMS force sensor can include a sensor die, a plurality of fingerprint sensing elements arranged on the sensor die, a force sensing element arranged on the sensor die, and digital circuitry arranged on the sensor die. The fingerprint sensing elements can be configured to sense a fingerprint pattern. The force sensing element can be configured to convert a strain to an analog electrical signal that is proportional to the strain. The digital circuitry can be configured to convert the analog electrical signal to a digital electrical output signal.


Additionally, in some implementations, the force sensing element can be a piezoresistive element. Optionally, the piezoresistive element can be formed by diffusion or implantation. Optionally, the piezoresistive element can be formed by polysilicon processes during an integrated circuit process used to form the digital circuitry.


Alternatively or additionally, in other implementations, the force sensing element can be a piezoelectric element. The sensor die can further include an inter-metal dielectric (IMD) layer, and the piezoelectric element can be arranged on the IMD layer.


Alternatively or additionally, the plurality of fingerprint sensing elements can form a matrix of pixels on a surface of the sensor die.


Alternatively or additionally, the digital circuitry can be further configured to reconstruct the fingerprint pattern. For example, the fingerprint sensing elements can be operably coupled to the digital circuitry such that a signal (e.g., capacitance, ultrasonic wave, etc.) sensed by the fingerprint sensing element can be transferred to the digital circuitry for further processing.


Alternatively or additionally, in some implementations, the fingerprint sensing elements can form a matrix of conductive plates. For example, the sensor die can further include an inter-metal dielectric (IMD) layer, and the matrix of conductive plates can be arranged on the IMD layer. The fingerprint sensing elements can be operably coupled to the digital circuitry. Additionally, the digital circuitry can be further configured to measure capacitance at each of the fingerprint sensing elements, and reconstruct the fingerprint pattern using the capacitance measured at each of the fingerprint sensing elements.


Alternatively or additionally, in other implementations, the fingerprint sensing elements can form a matrix of ultrasonic transducer pixels. For example, the sensor die can further include an inter-metal dielectric (IMD) layer, and the matrix of ultrasonic transducer pixels can be arranged on the IMD layer. Each of the ultrasonic transducer pixels can include a piezoelectric element such that the ultrasonic transducer pixels can be configured to emit and sense ultrasonic waves. The fingerprint sensing elements can be operably coupled to the digital circuitry. Additionally, the digital circuitry can be further configured to reconstruct the fingerprint pattern using the ultrasonic waves.


Alternatively or additionally, the digital circuitry can be formed by complementary metal-oxide-semiconductor (“CMOS”) process.


Other systems, methods, features and/or advantages will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be protected by the accompanying claims.





BRIEF DESCRIPTION OF THE FIGURES

The components in the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding parts throughout the several views. These and other features of will become more apparent in the detailed description in which reference is made to the appended drawings wherein:



FIG. 1 is a cross-sectional view of an example integrated MEMS sensor attached to the sensing plate with CMOS side facing down.



FIG. 2 is a cross-sectional view of another example integrated MEMS sensor attached to the sensing plate with CMOS side facing up.



FIG. 3 is a cross-sectional view of an example capacitive fingerprint and piezoresistive force sensing integration according to one implementation described herein.



FIG. 4 is a cross-sectional view of an example capacitive fingerprint and piezoelectric force sensing integration according to one implementation described herein.



FIG. 5 is a cross-sectional view of an example ultrasonic fingerprint and piezoresistive force sensing integration according to one implementation described herein.



FIG. 6 is a cross-sectional view of an example ultrasonic fingerprint and piezoelectric force sensing integration according to one implementation described herein.





DETAILED DESCRIPTION

The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and their previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.


The following description is provided as an enabling teaching. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made, while still obtaining beneficial results. It will also be apparent that some of the desired benefits can be obtained by selecting some of the features without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations may be possible and can even be desirable in certain circumstances, and are contemplated by this disclosure. Thus, the following description is provided as illustrative of the principles and not in limitation thereof.


As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a sensing element” can include two or more such sensing elements unless the context indicates otherwise.


The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms.


Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.


Described herein are integrated fingerprint and force sensors in a single chip. This disclosure contemplates that the assembly of such solution can be represented in the face-down or face-up configuration as depicted in FIG. 1 and FIG. 2, respectively. In FIGS. 1 and 2, a chip 105 (i.e., a sensor die) that includes both fingerprint sensing elements and force sensing elements is shown. Integration of both fingerprint and force sensing elements is described below with regard to FIGS. 3-6. As shown in FIGS. 1 and 2, the chip 105 is placed in contact with a sensing surface 104. This disclosure contemplates that the sensing surface 104 can be the part of a force-sensitive device (such as a mobile device) to which a force “F” is applied. The sensing surface 104 has opposing surfaces (e.g., top and bottom sides). The chip 105 is attached to the bottom side 103 of the sensing surface 104 in FIGS. 1 and 2. In FIG. 1, the chip 105 is attached to a flexible circuit board 101 through a solder joint 102. The solder joint 102 can serve as both electrical and mechanical connections. It should be understood that the number of solder joints 102 (i.e., two) shown in FIG. 1 is only provided as an example. This disclosure contemplates using more or less than two solder joints to attach the chip 105 to the flexible circuit board 101. Additionally, the CMOS circuitry side 106 of the chip 105 is facing away from (or down relative to) the sensing surface 104 with the chip 105 attached to the bottom side 103 of the sensing surface 104.


In FIG. 2, the chip is mechanically mounted to the flexible circuit board 101 with an electrical connection using a wire bond 207. It should be understood that the number of wire bonds (i.e., one) shown in FIG. 2 is only provided as an example. This disclosure contemplates using more or less than one wire bond to electrically couple the chip 105 to the flexible circuit board 101. Additionally, the CMOS circuitry side 106 of the chip 105 is facing toward (or up relative to) the sensing surface 104 with the CMOS circuitry side 106 of the chip 105 attached to the bottom surface 103 of the sensing plate 104. In order to provide space for the wire bond 207, a recess 208 can be provided on the chip 105. This disclosure contemplates that the flexible circuit board 101 can also be mechanically supported, i.e., the disclosure is not intended to be limited to the floating configuration shown in FIGS. 1 and 2.


Referring now to FIG. 3, a MEMS force sensor including an integrated sensor die with a combination of capacitive fingerprint sensing elements, piezoresistive sensing elements, and digital circuitry (e.g., CMOS circuitry) is shown. As depicted in FIG. 3, a cross-section of the MEMS force sensor using an integrated p-type MEMS-CMOS force sensor with a piezoresistive sensing element is shown. The chip (i.e., sensor die) includes a p-type silicon substrate 301 and an inter-metal dielectric (IMD) layer 350. Both an n-type metal-oxide-semiconductor (nMOS) transistor 310 and a p-type metal-oxide-semiconductor (pMOS) transistor 311 are fabricated on p-type silicon substrate 301. The p-type silicon substrate 301 can be a single continuous piece of material, i.e., the substrate can be monolithic. The nMOS source/drain 305 and pMOS source/drain 307 are formed through diffusion or implantation. As shown in FIG. 3, the pMOS source/drain 307 are heavily-doped p-type regions residing in a lightly-doped n-well region 306, which receives a voltage bias through a heavily-doped n-type implant 315. The nMOS source/drain 305 are heavily-doped n-type regions formed directly on the p-type silicon substrate 301. Further, a gate contact 308 (e.g., poly silicon gate) forms the channel required for each of the nMOS transistor 310 and pMOS transistor 311. The gate 308 can be formed with poly silicon with a thin oxide layer above the channel between each of the transistors. Although a p-type MEMS-CMOS force sensor is shown in FIG. 3, it should be understood that similar CMOS processes can be adapted to other starting materials, such as an n-type silicon substrate. Additionally, although a silicon substrate is provided as an example, this disclosure contemplates that the substrate can be made from a material other than silicon. Additionally, this disclosure contemplates that the MEMS force sensor can include a plurality of nMOS and pMOS devices. The nMOS and pMOS devices can form various components of the digital circuitry (e.g., CMOS circuitry). The digital circuitry can optionally include other components, which are not depicted in FIG. 3, including, but not limited to, bipolar transistors; metal-insulator-metal (“MIM”) and metal-oxide-semiconductor (“MOS”) capacitors; diffused, implanted, and polysilicon resistors; and/or diodes. The digital circuitry can include, but is not limited to, one or more of a differential amplifier or buffer, an analog-to-digital converter, a clock generator, non-volatile memory, and a communication bus. For example, the digital circuitry can include an on-chip buffer for storing the respective digital electrical output signals.


In addition to the nMOS and pMOS transistors 310 and 311 shown in FIG. 3, a lightly doped n-type piezoresistive sensing element 303 (sometimes referred to herein as a “force sensing element”) and a heavily doped n-type contact region 304 are formed on the same p-type silicon substrate 301. In other words, the piezoresistive sensing element and digital circuitry can be disposed on the same monolithic substrate. Accordingly, the process used to form the piezoresistive sensing element can be compatible with the process used to form the digital circuitry (e.g., the CMOS process). The lightly doped n-type piezoresistive sensing element 303 and heavily doped n-type contact region 304 can be formed by way of either diffusion, deposition, or implant patterned with a lithographic exposure process. This disclosure contemplates that the MEMS force sensor can include a plurality of piezoresistive sensing elements. Additionally, metal layers 312 and contact layers 313 can be provided to create electrical connections between the nMOS and pMOS transistors 310 and 311 and the piezoresistive sensing element 303.


The piezoresistive sensing elements 303 can change resistance in response to deflection of a portion of the sensor die. For example, as strain is induced in the sensor die proportional to the force applied to the MEMS force sensor, a localized strain is produced on a piezoresistive sensing element such that the piezoresistive sensing element experiences compression or tension, depending on its specific orientation. As the piezoresistive sensing element compresses and tenses, its resistivity changes in opposite fashion. Accordingly, a Wheatstone bridge circuit including a plurality (e.g., four) piezoresistive sensing elements (e.g., two of each orientation relative to strain) becomes unbalanced and produces a differential voltage. This differential voltage is directly proportional to the force applied to the MEMS force sensor. This disclosure contemplates that this differential voltage can be received at and processed by the digital circuitry. For example, the digital circuitry can be configured to, among other functions, convert an analog electrical signal to a digital electrical output signal. Example MEMS force sensors using piezoresistive sensing elements are described in U.S. Pat. No. 9,487,388, issued Nov. 8, 2016 and entitled “Ruggedized MEMS Force Die;” U.S. Pat. No. 9,493,342, issued Nov. 15, 2016 and entitled “Wafer Level MEMS Force Dies;” U.S. Pat. No. 9,902,611, issued Feb. 27, 2018 and entitled “Miniaturized and ruggedized wafer level mems force sensors;” and U.S. Patent Application Publication No. 2016/0363490 to Campbell et al., filed Jun. 10, 2016 and entitled “Ruggedized wafer level mems force sensor with a tolerance trench,” the disclosures of which are incorporated by reference in their entireties.


The MEMS force sensor shown in FIG. 3 can include a capacitive fingerprint sensor. For example, the MEMS force sensor can include a plurality of fingerprint sensing elements 302 (e.g., conductive plates) arranged at a surface of the IMD layer 350. The fingerprint sensing elements 302 can form a matrix of conductive plates. The conductive plates can optionally be made of copper or an aluminum-silicon-copper (Al—Si—Cu) alloy, which are conductive materials used in conventional CMOS processes. Each of the fingerprint sensing elements 302 is a pixel in the matrix. This disclosure contemplates that the matrix can be an n×m matrix of conductive plates, where n and m are integers. In some implementations, n can equal m. In other implementations, n does not equal m. It should be understood that the number of conductive plates in the matrix effects the resolution of the fingerprint sensor. Using more conductive plates increases the resolution of the fingerprint sensor, while using less conductive plates decreases the resolution of the fingerprint sensor. Additionally, each of the fingerprint sensing elements 302 can be connected to a respective capacitor circuit (not shown), which stores an electrical charge. A fingerprint is a pattern of ridges and valleys in the skin at the surface of finger. The distance from the ridge/valley to fingerprint sensing element 302 modulates the capacitance or charges stored in the capacitor circuit thus making it possible to process and re-construct the fingerprint pattern with the digital circuitry. This disclosure contemplates that the fingerprint sensor (e.g., the fingerprint sensing elements 302 and respective capacitors) can be operably coupled to the digital circuitry (e.g., the CMOS circuitry described above) such that the fingerprint pattern can be digitally reconstructed by the digital circuitry. Accordingly, the MEMS force sensor shown in FIG. 3 includes a piezoresistive sensing element 303, fingerprint sensing elements 302, and digital circuitry (e.g., nMOS and pMOS devices) all on the same chip.


Referring now to FIG. 4, another example MEMS force sensor including an integrated sensor die with a combination of capacitive fingerprint sensing elements, piezoelectric sensing elements, and digital circuitry (e.g., CMOS circuitry) is shown. As depicted in FIG. 4, a cross-section of the MEMS force sensor using an integrated p-type MEMS-CMOS force sensor with a piezoelectric sensing element is shown. The chip (i.e., sensor die) includes a p-type silicon substrate 301 and an inter-metal dielectric (IMD) layer 350. Both an n-type metal-oxide-semiconductor (nMOS) transistor 310 and a p-type metal-oxide-semiconductor (pMOS) transistor 311 are fabricated on p-type silicon substrate 301. The p-type silicon substrate 301 can be a single continuous piece of material, i.e., the substrate can be monolithic. The nMOS source/drain 305 and pMOS source/drain 307 are formed through diffusion or implantation. As shown in FIG. 4, the pMOS source/drain 307 are heavily-doped p-type regions residing in a lightly-doped n-well region 306, which receives a voltage bias through a heavily-doped n-type implant 315. The nMOS source/drain 305 are heavily-doped n-type regions formed directly on the p-type silicon substrate 301. Further, a gate contact 308 (e.g., poly silicon gate) forms the channel required for each of the nMOS transistor 310 and pMOS transistor 311. The gate 308 can be formed with poly silicon with a thin oxide layer above the channel between each of the transistors. Although a p-type MEMS-CMOS force sensor is shown in FIG. 4, it should be understood that similar CMOS processes can be adapted to other starting materials, such as an n-type silicon substrate. Additionally, although a silicon substrate is provided as an example, this disclosure contemplates that the substrate can be made from a material other than silicon. As described above, this disclosure contemplates that the MEMS force sensor can include a plurality of nMOS and pMOS devices, and the nMOS and pMOS devices can form various components of the digital circuitry (e.g., CMOS circuitry). The digital circuitry can optionally include other components, which are not depicted in FIG. 4, including, but not limited to, bipolar transistors; metal-insulator-metal (“MIM”) and metal-oxide-semiconductor (“MOS”) capacitors; diffused, implanted, and polysilicon resistors; and/or diodes. The digital circuitry can include, but is not limited to, one or more of a differential amplifier or buffer, an analog-to-digital converter, a clock generator, non-volatile memory, and a communication bus. For example, the digital circuitry can include an on-chip buffer for storing the respective digital electrical output signals.


The MEMS force sensor shown in FIG. 4 can also include a piezoelectric element 409 (sometimes referred to herein as a “force sensing element”), which is arranged between opposing electrodes 410, 411. As shown in FIG. 4, the piezoelectric element 409 and opposing electrodes 410, 411 are arranged on the IMD layer 350. The piezoelectric element 409 can be formed after completion of the integrated circuit process used to form the digital circuitry (e.g., the CMOS process). It should be understood that a single piezoelectric element is shown in FIG. 4 only as an example. This disclosure contemplates that the MEMS force sensor can include a plurality of piezoelectric elements. When a force is applied to the MEMS force sensor, the strain is transferred to piezoelectric element 409, which converts the strain into charge. In other words, the piezoelectric element 409 can change an electrical characteristic (i.e., charge) in response to deflection of a portion of the MEMS force sensor. Thus, the change in electrical characteristic can be detected as an analog electrical signal (e.g., change in voltage) at the opposing electrodes 410, 411. The analog electrical signal can be transferred to the digital circuitry (e.g., the CMOS circuitry described above) for further processing. This disclosure contemplates that the change in voltage can be correlated with the amount of “F” applied to the MEMS force sensor. Additionally, metal layers and contact layers 313 can be provided to create electrical connections between the nMOS and pMOS transistors 310 and 311 and the piezoelectric element 409.


The MEMS force sensor shown in FIG. 4 can also include a capacitive fingerprint sensor. For example, the MEMS force sensor can include a plurality of fingerprint sensing elements 302 (e.g., conductive plates) arranged on the IMD layer 350. The capacitive fingerprint sensor is described above with regard to FIG. 3 and is therefore not described in further detail below. Accordingly, the MEMS force sensor shown in FIG. 4 includes a piezoelectric element 409, fingerprint sensing elements 302, and digital circuitry (e.g., nMOS and pMOS devices) all on the same chip.


Referring now to FIG. 5, another example MEMS force sensor including an integrated sensor die with a combination of ultrasonic fingerprint sensing elements, piezoresistive sensing elements, and digital circuitry (e.g., CMOS circuitry) is shown. As depicted in FIG. 5, a cross-section of the MEMS force sensor using an integrated p-type MEMS-CMOS force sensor with a piezoresistive sensing element is shown. The chip (i.e., sensor die) includes a p-type silicon substrate 301 and an inter-metal dielectric (IMD) layer 350. Both an n-type metal-oxide-semiconductor (nMOS) transistor 310 and a p-type metal-oxide-semiconductor (pMOS) transistor 311 are fabricated on p-type silicon substrate 301. The nMOS source/drain 305 and pMOS source/drain 307 are formed through diffusion or implantation. As shown in FIG. 5, the pMOS source/drain 307 are heavily-doped p-type regions residing in a lightly-doped n-well region 306, which receives a voltage bias through a heavily-doped n-type implant 315. The nMOS source/drain 305 are heavily-doped n-type regions formed directly on the p-type silicon substrate 301. Further, a gate contact 308 (e.g., poly silicon gate) forms the channel required for each of the nMOS transistor 310 and pMOS transistor 311. In addition to the nMOS and pMOS transistors 310 and 311 shown in FIG. 5, a lightly doped n-type piezoresistive sensing element 303 and a heavily doped n-type contact region 304 are formed on the same p-type silicon substrate 301. In other words, the piezoresistive sensing element and digital circuitry can be disposed on the same monolithic substrate. Accordingly, the process used to form the piezoresistive sensing element can be compatible with the process used to form the digital circuitry (e.g., the CMOS process). Additionally, metal layers 312 and contact layers 313 can be provided to create electrical connections between the nMOS and pMOS transistors 310 and 311 and the piezoresistive sensing element 303. It should be understood that the piezoresistive sensing elements and digital circuitry (e.g., CMOS circuitry) is the same as described above with regard to FIG. 3 and is therefore not described in further detail below.


The MEMS force sensor shown in FIG. 5 can include an ultrasonic fingerprint sensor. For example, as depicted in FIG. 5, the MEMS force sensor can include a plurality of ultrasonic transducer pixels 512 arranged on the IMD layer 350. Each ultrasonic transducer pixel 512 can include a piezoelectric element 409, which is arranged between opposing electrodes 410, 411. The ultrasonic transducer pixels 512 can be formed after completion of the integrated circuit process used to form the digital circuitry (e.g., the CMOS process). The ultrasonic transducer pixels 512 can form a matrix. This disclosure contemplates that the matrix can be an n×m matrix of pixels, where n and m are integers. In some implementations, n can equal m. In other implementations, n does not equal m.


Each ultrasonic transducer pixel 512 can emit ultrasonic waves and can also sense the reflected signal in a scan pattern. In other words, each ultrasonic transducer pixel 512 can act as a transmitter and a receiver. As described above, a fingerprint is a pattern of ridges and valleys in the skin at the surface of finger. When an ultrasonic wave is transmitted against the finger, portions of the wave are absorbed by the finger and portions of the wave are reflected back towards the fingerprint sensor. This depends on the pattern of ridges and valleys. This disclosure contemplates that the fingerprint sensor (e.g., the ultrasonic transducer pixels 512) can be operably coupled to the digital circuitry (e.g., the CMOS circuitry described above) such that the fingerprint pattern can be digitally reconstructed by the digital circuitry. For example, the ultrasonic waves sensed at the ultrasonic transducer pixels 512 can be transferred to the digital circuitry for processing, and the digital circuitry can be configured to reconstruct the fingerprint pattern from such data. Accordingly, the MEMS force sensor shown in FIG. 5 includes a piezoresistive sensing element 303, ultrasonic transducer pixels 512, and digital circuitry (e.g., nMOS and pMOS devices) all on the same chip.


Referring now to FIG. 6, another example MEMS force sensor including an integrated sensor die with a combination of ultrasonic fingerprint sensing elements, piezoelectric sensing elements, and digital circuitry (e.g., CMOS circuitry) is shown. As depicted in FIG. 6, a cross-section of the MEMS force sensor using an integrated p-type MEMS-CMOS force sensor with a piezoresistive sensing element is shown. The chip (i.e., sensor die) includes a p-type silicon substrate 301 and an inter-metal dielectric (IMD) layer 350. Both an n-type metal-oxide-semiconductor (nMOS) transistor 310 and a p-type metal-oxide-semiconductor (pMOS) transistor 311 are fabricated on p-type silicon substrate 301. The nMOS source/drain 305 and pMOS source/drain 307 are formed through diffusion or implantation. As shown in FIG. 6, the pMOS source/drain 307 are heavily-doped p-type regions residing in a lightly-doped n-well region 306, which receives a voltage bias through a heavily-doped n-type implant 315. The nMOS source/drain 305 are heavily-doped n-type regions formed directly on the p-type silicon substrate 301. Further, a gate contact 308 (e.g., poly silicon gate) forms the channel required for each of the nMOS transistor 310 and pMOS transistor 311. It should be understood that the digital circuitry (e.g., CMOS circuitry) is the same as described above with regard to FIG. 4 and is therefore not described in further detail below.


The MEMS force sensor shown in FIG. 6 can also include a force sensing element 613 and an ultrasonic fingerprint sensor. As depicted in FIG. 6, the MEMS force sensor can include a piezoelectric force sensing element 613 and a plurality of ultrasonic transducer pixels 512 arranged on the IMD layer 350. It should be understood that a single piezoelectric force sensing element 613 is shown in FIG. 6 only as an example. This disclosure contemplates that the MEMS force sensor can include a plurality of piezoelectric force sensing elements. Each piezoelectric force sensing element 613 and each ultrasonic transducer pixel 512 can include a piezoelectric element 409, which is arranged between opposing electrodes 410, 411. The piezoelectric force sensing element 613 and the ultrasonic transducer pixels 512 can be formed after completion of the integrated circuit process used to form the digital circuitry (e.g., the CMOS process). Additionally, metal layers and contact layers 313 can be provided to create electrical connections between the nMOS and pMOS transistors 310 and 311 and the piezoelectric force sensing element 613. Piezoelectric force sensing elements are described above with regard to FIG. 4 and ultrasonic transducer pixels are described above with regard to FIG. 6 and therefore these elements are not described in further detail below. Accordingly, the MEMS force sensor shown in FIG. 6 includes a piezoelectric force sensing element 613, ultrasonic transducer pixels 512, and digital circuitry (e.g., nMOS and pMOS devices) all on the same chip.


Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims
  • 1. An integrated microelectromechanical (“MEMS”) force sensor, comprising: a sensor die comprising an inter-metal dielectric (IMD) layer arranged over a substrate,a plurality of fingerprint sensing elements arranged on the sensor die, wherein: the fingerprint sensing elements comprise conductive plates arranged on the IMD layer, andthe plurality of fingerprint sensing elements is configured to sense a fingerprint pattern,a force sensing element arranged on the sensor die, wherein the force sensing element is configured to convert a strain to an analog electrical signal that is proportional to the strain, anddigital circuitry arranged on the sensor die, wherein the digital circuitry is configured to convert the analog electrical signal to a digital electrical output signal.
  • 2. The integrated MEMS force sensor of claim 1, wherein the force sensing element is a piezoresistive element.
  • 3. The integrated MEMS force sensor of claim 2, wherein the piezoresistive element is formed by diffusion or implantation.
  • 4. The integrated MEMS force sensor of claim 2, wherein the piezoresistive element is formed by polysilicon processes during an integrated circuit process used to form the digital circuitry.
  • 5. The integrated MEMS force sensor of claim 1, wherein the force sensing element is a piezoelectric element.
  • 6. The integrated MEMS force sensor of claim 5, wherein the piezoelectric element is arranged on the IMD layer.
  • 7. The integrated MEMS force sensor of claim 1, wherein the plurality of fingerprint sensing elements form a matrix of pixels on a surface of the sensor die.
  • 8. The integrated MEMS force sensor of claim 1, wherein the digital circuitry is further configured to reconstruct the fingerprint pattern.
  • 9. The integrated MEMS force sensor of claim 8, wherein the fingerprint sensing elements are operably coupled to the digital circuitry.
  • 10. The integrated MEMS force sensor of claim 1, wherein the fingerprint sensing elements are operably coupled to the digital circuitry.
  • 11. The integrated MEMS force sensor of claim 1, wherein the digital circuitry is further configured to measure capacitance at each of the fingerprint sensing elements.
  • 12. The integrated MEMS force sensor of claim 11, wherein the digital circuitry is configured to reconstruct the fingerprint pattern using the capacitance measured at each of the fingerprint sensing elements.
  • 13. The integrated MEMS force sensor of claim 1, wherein the digital circuitry is formed by complementary metal-oxide-semiconductor (“CMOS”) process.
  • 14. An integrated microelectromechanical (“MEMS”) sensor, comprising: a sensing plate; anda sensor die attached to a bottom surface of the sensing plate, the sensor die comprising: an inter-metal dielectric (IMD) layer arranged over a substrate,a plurality of conductive plates arranged on the IMD layer, the plurality of conductive plates configured to sense a fingerprint pattern, anda force sensing element configured to convert a strain to an analog electrical signal that is proportional to the strain.
  • 15. The integrated MEMS sensor of claim 14, wherein the sensor die further comprises digital circuitry operably coupled to the force sensing element, the digital circuitry configured to convert the analog electrical signal to a digital electrical output signal.
  • 16. The integrated MEMS sensor of claim 14, further comprising a flexible circuit board operably coupled to the sensor die.
  • 17. The integrated MEMS sensor of claim 14, wherein the sensor die further comprises digital circuitry operably coupled to the plurality of conductive plates, the digital circuitry configured to measure capacitance at each conductive plate in the plurality of conductive plates.
  • 18. The integrated MEMS sensor of claim 17, wherein the digital circuitry is configured to reconstruct the fingerprint pattern using the capacitance measured at each conductive plate in the plurality of conductive plates.
  • 19. The integrated MEMS sensor of claim 14, wherein the force sensing element is one of a piezoresistive element or a piezoelectric element arranged between opposing electrodes.
  • 20. The integrated MEMS sensor of claim 19, wherein the piezoresistive element or the piezoelectric element is arranged on the IMD layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage application filed under 35 U.S.C. § 371 of PCT/US2018/043616 filed Jul. 25, 2018, which claims the benefit of U.S. provisional patent application No. 62/536,645, filed on Jul. 25, 2017, and entitled “INTEGRATED FINGERPRINT AND FORCE SENSOR,” the disclosures of which is expressly incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/043616 7/25/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/023309 1/31/2019 WO A
US Referenced Citations (382)
Number Name Date Kind
4594639 Kuisma Jun 1986 A
4658651 Le Apr 1987 A
4814856 Kurtz et al. Mar 1989 A
4849730 Izumi et al. Jul 1989 A
4914624 Dunthorn Apr 1990 A
4918262 Flowers et al. Apr 1990 A
4933660 Wynne Jun 1990 A
4983786 Stevens Jan 1991 A
5095401 Zavracky et al. Mar 1992 A
5159159 Asher Oct 1992 A
5166612 Murdock Nov 1992 A
5237879 Speeter Aug 1993 A
5320705 Fujii et al. Jun 1994 A
5333505 Takahashi et al. Aug 1994 A
5343220 Veasy et al. Aug 1994 A
5349746 Gruenwald et al. Sep 1994 A
5351550 Maurer Oct 1994 A
5483994 Maurer Jan 1996 A
5510812 O'Mara et al. Apr 1996 A
5541372 Baller et al. Jul 1996 A
5543591 Gillespie et al. Aug 1996 A
5565657 Merz Oct 1996 A
5600074 Marek et al. Feb 1997 A
5673066 Toda et al. Sep 1997 A
5773728 Tsukada et al. Jun 1998 A
5889236 Gillespie et al. Mar 1999 A
5921896 Boland Jul 1999 A
5969591 Fung Oct 1999 A
6012336 Eaton et al. Jan 2000 A
6028271 Gillespie et al. Feb 2000 A
6159166 Chesney et al. Dec 2000 A
6243075 Fishkin et al. Jun 2001 B1
6348663 Schoos et al. Feb 2002 B1
6351205 Armstrong Feb 2002 B1
6360598 Calame et al. Mar 2002 B1
6437682 Vance Aug 2002 B1
6555235 Aufderheide et al. Apr 2003 B1
6556189 Takahata et al. Apr 2003 B1
6569108 Sarvazyan et al. May 2003 B2
6610936 Gillespie et al. Aug 2003 B2
6620115 Sarvazyan et al. Sep 2003 B2
6629343 Chesney et al. Oct 2003 B1
6668230 Mansky et al. Dec 2003 B2
6720712 Scott et al. Apr 2004 B2
6788297 Itoh et al. Sep 2004 B2
6801191 Mukai et al. Oct 2004 B2
6809280 Divigalpitiya et al. Oct 2004 B2
6812621 Scott Nov 2004 B2
6822640 Derocher Nov 2004 B2
6868731 Gatesman Mar 2005 B1
6879318 Chan et al. Apr 2005 B1
6888537 Benson et al. May 2005 B2
6915702 Omura et al. Jul 2005 B2
6931938 Knirck et al. Aug 2005 B2
6995752 Lu Feb 2006 B2
7138984 Miles Nov 2006 B1
7173607 Matsumoto et al. Feb 2007 B2
7190350 Roberts Mar 2007 B2
7215329 Yoshikawa et al. May 2007 B2
7218313 Marcus et al. May 2007 B2
7224257 Morikawa May 2007 B2
7245293 Hoshino et al. Jul 2007 B2
7273979 Christensen Sep 2007 B2
7280097 Chen et al. Oct 2007 B2
7318349 Vaganov et al. Jan 2008 B2
7324094 Moilanen et al. Jan 2008 B2
7324095 Sharma Jan 2008 B2
7336260 Martin et al. Feb 2008 B2
7337085 Soss Feb 2008 B2
7345680 David Mar 2008 B2
7367232 Vaganov May 2008 B2
7406661 Väänänen et al. Jul 2008 B2
7425749 Hartzell et al. Sep 2008 B2
7426873 Kholwadwala et al. Sep 2008 B1
7449758 Axelrod et al. Nov 2008 B2
7460109 Satai et al. Dec 2008 B2
7476952 Vaganov et al. Jan 2009 B2
7508040 Nikkei et al. Mar 2009 B2
7554167 Vaganov Jun 2009 B2
7607111 Vaananen et al. Oct 2009 B2
7620521 Breed et al. Nov 2009 B2
7629969 Kent Dec 2009 B2
7649522 Chen et al. Jan 2010 B2
7663612 Bladt Feb 2010 B2
7685538 Fleck et al. Mar 2010 B2
7698084 Soss Apr 2010 B2
7701445 Inokawa et al. Apr 2010 B2
7746327 Miyakoshi Jun 2010 B2
7791151 Vaganov et al. Sep 2010 B2
7819998 David Oct 2010 B2
7825911 Sano et al. Nov 2010 B2
7829960 Takizawa Nov 2010 B2
7903090 Soss et al. Mar 2011 B2
7921725 Silverbrook et al. Apr 2011 B2
7952566 Poupyrev et al. May 2011 B2
7973772 Gettemy et al. Jul 2011 B2
7973778 Chen Jul 2011 B2
8004052 Vaganov Aug 2011 B2
8004501 Harrison Aug 2011 B2
8013843 Pryor Sep 2011 B2
8026906 Mölne et al. Sep 2011 B2
8044929 Baldo et al. Oct 2011 B2
8068100 Pryor Nov 2011 B2
8072437 Miller et al. Dec 2011 B2
8072440 Pryor Dec 2011 B2
8096188 Wilner Jan 2012 B2
8113065 Ohsato et al. Feb 2012 B2
8120586 Hsu et al. Feb 2012 B2
8120588 Klinghult Feb 2012 B2
8130207 Nurmi et al. Mar 2012 B2
8134535 Choi et al. Mar 2012 B2
8139038 Chueh et al. Mar 2012 B2
8144133 Wang et al. Mar 2012 B2
8149211 Hayakawa et al. Apr 2012 B2
8154528 Chen et al. Apr 2012 B2
8159473 Cheng et al. Apr 2012 B2
8164573 DaCosta et al. Apr 2012 B2
8183077 Vaganov et al. May 2012 B2
8184093 Tsuiki May 2012 B2
8188985 Hillis et al. May 2012 B2
8199116 Jeon et al. Jun 2012 B2
8212790 Rimas-Ribikauskas et al. Jul 2012 B2
8237537 Kurtz et al. Aug 2012 B2
8243035 Abe et al. Aug 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8253699 Son Aug 2012 B2
8260337 Periyalwar et al. Sep 2012 B2
8269731 Mölne Sep 2012 B2
8289288 Whytock et al. Oct 2012 B2
8289290 Klinghult Oct 2012 B2
8297127 Wade et al. Oct 2012 B2
8319739 Chu et al. Nov 2012 B2
8325143 Destura et al. Dec 2012 B2
8350345 Vaganov Jan 2013 B2
8363020 Li et al. Jan 2013 B2
8363022 Tho et al. Jan 2013 B2
8378798 Bells et al. Feb 2013 B2
8378991 Jeon et al. Feb 2013 B2
8384677 Mak-Fan et al. Feb 2013 B2
8387464 McNeil et al. Mar 2013 B2
8405631 Chu et al. Mar 2013 B2
8405632 Chu et al. Mar 2013 B2
8421609 Kim et al. Apr 2013 B2
8427441 Paleczny et al. Apr 2013 B2
8436806 Almalki et al. May 2013 B2
8436827 Zhai et al. May 2013 B1
8451245 Heubel et al. May 2013 B2
8456440 Abe et al. Jun 2013 B2
8466889 Tong et al. Jun 2013 B2
8477115 Rekimoto Jul 2013 B2
8482372 Kurtz et al. Jul 2013 B2
8493189 Suzuki Jul 2013 B2
8497757 Kurtz et al. Jul 2013 B2
8516906 Umetsu et al. Aug 2013 B2
8931347 Donzier et al. Jan 2015 B2
8973446 Fukuzawa et al. Mar 2015 B2
8984951 Landmann et al. Mar 2015 B2
9032818 Campbell et al. May 2015 B2
9097600 Khandani Aug 2015 B2
9487388 Brosch Nov 2016 B2
9493342 Brosch Nov 2016 B2
9709509 Yang et al. Jul 2017 B1
9772245 Besling et al. Sep 2017 B2
10962427 Youssefi et al. Mar 2021 B2
20010009112 Delaye Jul 2001 A1
20030067448 Park Apr 2003 A1
20030128181 Poole Jul 2003 A1
20030189552 Chuang et al. Oct 2003 A1
20040012572 Sowden et al. Jan 2004 A1
20040140966 Marggraff et al. Jul 2004 A1
20050083310 Safai et al. Apr 2005 A1
20050190152 Vaganov Sep 2005 A1
20060028441 Armstrong Feb 2006 A1
20060244733 Geaghan Nov 2006 A1
20060272413 Vaganov et al. Dec 2006 A1
20060284856 Soss Dec 2006 A1
20070035525 Yeh et al. Feb 2007 A1
20070046649 Reiner Mar 2007 A1
20070070046 Sheynblat et al. Mar 2007 A1
20070070053 Lapstun et al. Mar 2007 A1
20070097095 Kim et al. May 2007 A1
20070103449 Laitinen et al. May 2007 A1
20070103452 Wakai et al. May 2007 A1
20070115265 Rainisto May 2007 A1
20070132717 Wang et al. Jun 2007 A1
20070137901 Chen Jun 2007 A1
20070139391 Bischoff Jun 2007 A1
20070152959 Peters Jul 2007 A1
20070156723 Vaananen Jul 2007 A1
20070182864 Stoneham et al. Aug 2007 A1
20070229478 Rosenberg et al. Oct 2007 A1
20070235231 Loomis et al. Oct 2007 A1
20070245836 Vaganov Oct 2007 A1
20070262965 Hirai et al. Nov 2007 A1
20070277616 Nikkel et al. Dec 2007 A1
20070298883 Feldman et al. Dec 2007 A1
20080001923 Hall et al. Jan 2008 A1
20080007532 Chen Jan 2008 A1
20080010616 Algreatly Jan 2008 A1
20080024454 Everest Jan 2008 A1
20080030482 Elwell et al. Feb 2008 A1
20080036743 Westerman et al. Feb 2008 A1
20080083962 Vaganov Apr 2008 A1
20080088600 Prest et al. Apr 2008 A1
20080088602 Hotelling Apr 2008 A1
20080094367 Van De Ven et al. Apr 2008 A1
20080105057 Wade May 2008 A1
20080105470 Van De Ven et al. May 2008 A1
20080106523 Conrad May 2008 A1
20080174852 Hirai et al. Jul 2008 A1
20080180402 Yoo et al. Jul 2008 A1
20080180405 Han et al. Jul 2008 A1
20080180406 Han et al. Jul 2008 A1
20080202249 Yokura et al. Aug 2008 A1
20080204427 Heesemans et al. Aug 2008 A1
20080211766 Westerman et al. Sep 2008 A1
20080238446 DeNatale et al. Oct 2008 A1
20080238884 Harish Oct 2008 A1
20080259046 Carsanaro Oct 2008 A1
20080284742 Prest et al. Nov 2008 A1
20080303799 Schwesig et al. Dec 2008 A1
20090027352 Abele Jan 2009 A1
20090027353 Im et al. Jan 2009 A1
20090046110 Sadler et al. Feb 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090140985 Liu Jun 2009 A1
20090184921 Scott et al. Jul 2009 A1
20090184936 Algreatly Jul 2009 A1
20090213066 Hardacker et al. Aug 2009 A1
20090237275 Vaganov Sep 2009 A1
20090237374 Li et al. Sep 2009 A1
20090242282 Kim et al. Oct 2009 A1
20090243817 Son Oct 2009 A1
20090243998 Wang Oct 2009 A1
20090256807 Nurmi Oct 2009 A1
20090256817 Perlin et al. Oct 2009 A1
20090282930 Cheng et al. Nov 2009 A1
20090303400 Hou et al. Dec 2009 A1
20090309852 Lin et al. Dec 2009 A1
20090314551 Nakajima Dec 2009 A1
20100013785 Murai et al. Jan 2010 A1
20100020030 Kim et al. Jan 2010 A1
20100020039 Ricks et al. Jan 2010 A1
20100039396 Ho et al. Feb 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100053116 Daverman et al. Mar 2010 A1
20100066686 Joguet et al. Mar 2010 A1
20100066697 Jacomet et al. Mar 2010 A1
20100079391 Joung Apr 2010 A1
20100079395 Kim et al. Apr 2010 A1
20100079398 Shen et al. Apr 2010 A1
20100097347 Lin Apr 2010 A1
20100102403 Celik-Butler Apr 2010 A1
20100117978 Shirado May 2010 A1
20100123671 Lee May 2010 A1
20100123686 Klinghult et al. May 2010 A1
20100127140 Smith May 2010 A1
20100128002 Stacy et al. May 2010 A1
20100153891 Vaananen et al. Jun 2010 A1
20100164959 Brown et al. Jul 2010 A1
20100220065 Ma Sep 2010 A1
20100271325 Conte et al. Oct 2010 A1
20100289807 Yu et al. Nov 2010 A1
20100295807 Xie et al. Nov 2010 A1
20100308844 Day et al. Dec 2010 A1
20100309714 Meade Dec 2010 A1
20100315373 Steinhauser et al. Dec 2010 A1
20100321310 Kim et al. Dec 2010 A1
20100321319 Hefti et al. Dec 2010 A1
20100323467 Vaganov et al. Dec 2010 A1
20100328229 Weber et al. Dec 2010 A1
20100328230 Faubert et al. Dec 2010 A1
20110001723 Fan Jan 2011 A1
20110006980 Taniguchi et al. Jan 2011 A1
20110007008 Algreatly Jan 2011 A1
20110012848 Li et al. Jan 2011 A1
20110018820 Huitema et al. Jan 2011 A1
20110032211 Christoffersen Feb 2011 A1
20110039602 McNamara et al. Feb 2011 A1
20110050628 Homma et al. Mar 2011 A1
20110050630 Ikeda Mar 2011 A1
20110057899 Sleeman et al. Mar 2011 A1
20110063248 Yoon Mar 2011 A1
20110113881 Suzuki May 2011 A1
20110128250 Murphy et al. Jun 2011 A1
20110141052 Bernstein et al. Jun 2011 A1
20110141053 Bulea et al. Jun 2011 A1
20110187674 Baker et al. Aug 2011 A1
20110209555 Ahles et al. Sep 2011 A1
20110227836 Li et al. Sep 2011 A1
20110242014 Tsai et al. Oct 2011 A1
20110267181 Kildal Nov 2011 A1
20110267294 Kildal Nov 2011 A1
20110273396 Chung Nov 2011 A1
20110291951 Tong Dec 2011 A1
20110298705 Vaganov Dec 2011 A1
20110308324 Gamage et al. Dec 2011 A1
20120032907 Koizumi et al. Feb 2012 A1
20120032915 Wittorf Feb 2012 A1
20120038579 Sasaki Feb 2012 A1
20120044169 Enami Feb 2012 A1
20120044172 Ohki et al. Feb 2012 A1
20120050159 Yu et al. Mar 2012 A1
20120050208 Dietz Mar 2012 A1
20120056837 Park et al. Mar 2012 A1
20120060605 Wu et al. Mar 2012 A1
20120061823 Wu et al. Mar 2012 A1
20120062603 Mizunuma et al. Mar 2012 A1
20120068946 Tang et al. Mar 2012 A1
20120068969 Bogana et al. Mar 2012 A1
20120081327 Heubel et al. Apr 2012 A1
20120086659 Perlin et al. Apr 2012 A1
20120092250 Hadas et al. Apr 2012 A1
20120092279 Martin Apr 2012 A1
20120092294 Ganapathi et al. Apr 2012 A1
20120092299 Harada et al. Apr 2012 A1
20120092324 Buchan et al. Apr 2012 A1
20120105358 Momeyer et al. May 2012 A1
20120105367 Son et al. May 2012 A1
20120113061 Ikeda May 2012 A1
20120127088 Pance et al. May 2012 A1
20120127107 Miyashita et al. May 2012 A1
20120139864 Sleeman et al. Jun 2012 A1
20120144921 Bradley et al. Jun 2012 A1
20120146945 Miyazawa et al. Jun 2012 A1
20120146946 Wang et al. Jun 2012 A1
20120147052 Homma et al. Jun 2012 A1
20120154315 Aono Jun 2012 A1
20120154316 Kono Jun 2012 A1
20120154317 Aono Jun 2012 A1
20120154318 Aono Jun 2012 A1
20120154328 Kono Jun 2012 A1
20120154329 Shinozaki Jun 2012 A1
20120154330 Shimizu Jun 2012 A1
20120162122 Geaghan Jun 2012 A1
20120169609 Britton Jul 2012 A1
20120169617 Mäenpää Jul 2012 A1
20120169635 Liu Jul 2012 A1
20120169636 Liu Jul 2012 A1
20120188181 Ha et al. Jul 2012 A1
20120194460 Kuwabara et al. Aug 2012 A1
20120194466 Posamentier Aug 2012 A1
20120200526 Lackey Aug 2012 A1
20120204653 August et al. Aug 2012 A1
20120205165 Strittmatter et al. Aug 2012 A1
20120218212 Yu et al. Aug 2012 A1
20120234112 Umetsu et al. Sep 2012 A1
20120356237 Lakamraju et al. Oct 2012
20120286379 Inoue Nov 2012 A1
20120319987 Woo Dec 2012 A1
20120327025 Huska et al. Dec 2012 A1
20130008263 Kabasawa et al. Jan 2013 A1
20130038541 Bakker Feb 2013 A1
20130093685 Kalu et al. Apr 2013 A1
20130096849 Campbell et al. Apr 2013 A1
20130140944 Chen et al. Jun 2013 A1
20130187201 Elian Jul 2013 A1
20130239700 Benfield et al. Sep 2013 A1
20130255393 Fukuzawa et al. Oct 2013 A1
20130341741 Brosh Dec 2013 A1
20130341742 Brosh Dec 2013 A1
20140007705 Campbell et al. Jan 2014 A1
20140028575 Parivar et al. Jan 2014 A1
20140055407 Lee et al. Feb 2014 A1
20140090488 Taylor et al. Apr 2014 A1
20140283604 Najafi et al. Sep 2014 A1
20140367811 Nakagawa et al. Dec 2014 A1
20150110295 Jenkner et al. Apr 2015 A1
20150241465 Konishi Aug 2015 A1
20160069927 Hamamura Mar 2016 A1
20160245667 Najafi et al. Aug 2016 A1
20160258825 Gurin Sep 2016 A1
20160320426 Boysel Nov 2016 A1
20160332866 Brosh et al. Nov 2016 A1
20160363490 Campbell et al. Dec 2016 A1
20170066014 Kidwell, Jr. Mar 2017 A1
20170103246 Pi Apr 2017 A1
20170234744 Tung et al. Aug 2017 A1
20180238753 Abbasi Gavarti Aug 2018 A1
20190383675 Tsai et al. Dec 2019 A1
20190383676 Foughi et al. Dec 2019 A1
20200149983 Tsai et al. May 2020 A1
Foreign Referenced Citations (23)
Number Date Country
101341459 Jan 2009 CN
101458134 Jun 2009 CN
101801837 Aug 2010 CN
201653605 Nov 2010 CN
101929898 Dec 2010 CN
102062662 May 2011 CN
102998037 Mar 2013 CN
103308239 Sep 2013 CN
102853950 Mar 2015 CN
104535229 Apr 2015 CN
104581605 Apr 2015 CN
104919293 Sep 2015 CN
105934661 Sep 2016 CN
102010012441 Sep 2011 DE
2004-156937 Jun 2004 JP
2010147268 Jul 2010 JP
9310430 May 1993 WO
2004113859 Dec 2004 WO
2007139695 Dec 2007 WO
2011065250 Jun 2011 WO
2013067548 May 2013 WO
2015106246 Jul 2015 WO
2019023552 Jan 2019 WO
Non-Patent Literature Citations (3)
Entry
Mei, T., et al., “Design and Fabrication of an Integrated Three-Dimensional Tactile Sensor for Space Robotic Applications,” Micro Electro Mechanical Systems, MEMS '99, Twelfth IEEE International Conference, Orlando Florida, Jan. 21, 1999, pp. 112-117.
Nesterov, V., et al., “Modelling and investigation of the silicon twin design 3D micro probe,” Journal of Micromechanics and Microengineering, vol. 15, 2005, pp. 514-520.
International Search Report and Written Opinion issued in PCT/US2018/043616, dated Oct. 15, 2018.
Related Publications (1)
Number Date Country
20200234023 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62536645 Jul 2017 US