Integrated fingerprint sensor and display

Information

  • Patent Grant
  • 9336428
  • Patent Number
    9,336,428
  • Date Filed
    Thursday, October 28, 2010
    14 years ago
  • Date Issued
    Tuesday, May 10, 2016
    8 years ago
Abstract
A fingerprint swipe sensor includes fingerprint sensor lines disposed on a surface of an LCD protective glass covered on an opposite surface with motion sensing lines. The fingerprint swipe sensor also includes a controller coupled to the fingerprint sensor lines to capture a fingerprint image when a user's finger is swiped about the fingerprint sensor lines.
Description
BACKGROUND

Since its inception, fingerprint sensing technology has revolutionized identification and authentication processes. In most cases, a single fingerprint can be used to uniquely identify an individual in a manner that cannot be easily replicated or imitated. The ability to capture and store fingerprint image data in a digital file of minimal size has yielded immense benefits in fields such as law enforcement, forensics, and information security.


However, the widespread adoption of fingerprint sensing technology in a broad range of applications has faced a number of obstacles. Among these obstacles is the need for a separate and distinct apparatus for capturing a fingerprint image, which most consumer-grade computer systems do not contain. Incorporating a distinct component whose only function is to capture fingerprint image data into an otherwise multi-functional computer system is often not economical for consumers or computer manufacturers. Although low-cost fingerprint sensing devices do exist, consumers are often reluctant to purchase a separate accessory with such a limited application. Consequently, computer manufacturers typically do not incorporate such accessories as built-in components.


Additionally, such components are often impractical for use in systems that are designed to be of minimal size or weight. As handheld devices begin to take on a greater range of functionality and more widespread use, engineers and designers of such devices are constantly seeking ways to maximize sophistication and ease of use while minimizing size and cost. Typically, such devices only incorporate input/output components that are deemed to be essential to core functionality, e.g., a screen, a keyboard, and a limited set of buttons.


For these reasons, fingerprint-based authentication techniques have not replaced username and password authentication in the most common information security applications such as email, online banking, and social networking. Paradoxically, the growing amount of sensitive information Internet users are entrusting to remote computer systems has intensified the need for authentication procedures more reliable than password-based techniques.


The advent and widespread adoption of LCD (Liquid Crystal Display) technology provides an opportunity to address this need. LCD technology provides a low-cost and versatile means of incorporating both input and output functionality into a single discrete component. Touch-screen technology, which typically comprises a special layer within the LCD panel apparatus, enables system output to be displayed and user input to be taken on the same surface. LCD technology has replaced cathode ray tube (CRT) displays in virtually all computer systems due to its lower power consumption and physical space requirements. Additionally, the declining cost and increasing sophistication of LCD touch-screen displays have contributed to the growing popularity of handheld computing devices incorporating such displays.


An LCD display with built-in fingerprint sensing capability would thus lead to more widespread adoption of fingerprint-based authentication. However, one problem with simply integrating existing fingerprint sensing technology into LCD touch screens is hardware incompatibility. Most fingerprint sensors require a silicon circuit on which to mount the fingerprint sensing components, whether they are resistive, capacitive, thermal, or optical. Incorporating such a circuit into an LCD display would require significant and costly modifications to the design and production processes of such displays. However, a fingerprint sensing system comprising a mechanism and components that can easily be incorporated into existing LCD displays addresses this problem.


As will be seen, the present invention provides such a system in an elegant manner.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an example LCD display device having touch screen circuitry and a fingerprint sensor.



FIG. 2 illustrates an example portion of an LCD display device having touch screen circuitry and a fingerprint sensor.



FIG. 3 illustrates an exploded view of an example LCD display device.



FIG. 4 illustrates an example method of assembling an LCD display device.



FIGS. 5-8 illustrate additional example methods of assembling an LCD display device.



FIG. 9 illustrates an example sensing device configured for use with the fingerprint sensing circuits discussed herein.



FIG. 10 is a flow diagram illustrating an embodiment of a procedure for assembling an LCD display device.



FIG. 11 is a flow diagram illustrating another embodiment of a procedure for assembling an LCD display device.





Throughout the description, similar reference numbers may be used to identify similar elements.


DETAILED DESCRIPTION

The present invention is directed to a novel fingerprint sensor that can be integrated into the touch-screen layer of an LCD display, or onto the LCD glass itself. In addition, the sensing elements could be used to replace the touch-screen controller chip and provide a single chip solution that provides both touch-screen functions and fingerprint sensor functions.


In particular, the invention is directed to a device, system and method for integrating a fingerprint sensor with a display screen, such as an LCD screen. The figures illustrate diagrammatic views of various examples of components configured according to the invention. These components, which include fingerprint sensor components and various subcomponents and structures for integration into an LCD screen or the like, are intended for incorporation into devices or systems. The invention would benefit these devices or systems by enabling them to provide fingerprint sensing capability.


Reference will be made herein to a fingerprint sensor and related circuitry that may be implemented on Kapton® tape, a well known substrate for placing or printing electrical components thereon. Reference is made here of U.S. Pat. No. 7,460,697 B2 issued Dec. 2, 2008, entitled “Electronic Fingerprint Sensor with Differential Noise Cancellation,” and U.S. Pat. No. 7,099,496 B2 issued Aug. 29, 2006, entitled “Swiped Aperture Capacitive Fingerprint Sensing Systems and Methods.” This application also incorporates the following by reference: U.S. Pat. No. 7,146,024 B2 issued Dec. 5, 2006, entitled “Swiped Aperture Capacitive Fingerprint Sensing Systems and Methods,” and U.S. Pat. No. 7,463,756 B2 issued Dec. 9, 2008, entitled “Fingerprint Position Sensing Methods and Apparatus.” This application also incorporates the following by reference: U.S. Pat. No. 6,400,836 B2 issued Jun. 4, 2002, entitled “Combined Fingerprint Acquisition and Control Device”, and U.S. Pat. No. 6,941,00 B1 issued Sep. 6, 2005, entitled “Combined Fingerprint Acquisition and Control Device.” These references are commonly assigned with this application, where such a sensor configuration and design are detailed. All details of these applications and issued patents are herein incorporated by reference.


The embodiments discussed herein generally relate to an apparatus, system and methods for configuring fingerprint sensors and, in particular, for integrating fingerprint sensors into LCD circuits and displays. Referring to the figures, exemplary embodiments will be described. The exemplary embodiments of the invention are provided to illustrate the embodiments and should not be construed as limiting the scope of the embodiments.


In the following disclosure, numerous specific details are set forth to provide a thorough understanding of the invention. However, those skilled in the art will appreciate that the invention may be practiced without such specific details. In other instances, well-known elements have been illustrated in schematic or block diagram form in order not to obscure the invention in unnecessary detail. Additionally, for the most part, details concerning network communications, data structures, and the like have been omitted inasmuch as such details are not considered necessary to obtain a complete understanding of the invention, and are considered to be within the understanding of persons of ordinary skill in the relevant art.


It is further noted that all functions described herein may be performed in either hardware or software, or a combination thereof, unless indicated otherwise. Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, components may be referred to by different names. This document does not intend to distinguish between components that differ in name, but not function. In the following discussion and in the claims, the terms “including”, “comprising”, and “incorporating” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ”. Also, the term “couple” or “couples” is intended to mean either an indirect or direct electrical or communicative connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices and connections.


While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments. The various appearances of “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments. If the specification states a component, feature, structure, or characteristic “may”, “might”, or “could” be included, that particular component, feature, structure, or characteristic is not required to be included. If the specification or claim refers to “a” or “an” element, that does not mean there is only one of the element. If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.


The apparatus and method include a method and apparatus for enabling the invention. Although this embodiment is described and illustrated in the context of devices, systems and related methods of capturing fingerprints, the scope of the invention extends to other applications where such functions are useful. Furthermore, while the foregoing description has been with reference to particular embodiments of the invention, it will be appreciated that these are only illustrative of the invention and that changes may be made to those embodiments without departing from the principles, the spirit and scope of the invention, the scope of which is defined by the appended claims, their equivalents, and also later submitted claims and their equivalents.


As described in the background, the integration of most fingerprint sensor designs into an LCD screen is problematic due to the difficulty of incorporating a silicon-based sensor into an LCD display. According to the invention, this problem is obviated with a novel design that requires only conductive metal lines to form the fingerprint sensor. This mechanism may also be used to replace the touch-screen function. The invention works with current touch-screen and LCD manufacturing techniques, where fingerprint sensor conductive components may be sandwiched between layers of the LCD components and functionally integrated or included on the same metal layers as the current touch-screen (which typically consist of indium tin oxide (ITO)). This provides an LCD panel with the added functionality of a fingerprint sensor without disrupting the operation of the visual display components. In addition, current LCD manufacturing techniques can easily be adapted to produce an LCD panel designed and configured according to the invention.


Consistent with the foregoing, disclosed herein is a fingerprint swipe sensor, comprising a substrate having fingerprint sensor lines on one surface and configured to be integrated with an LCD screen, and a controller communicating with the fingerprint sensor lines to capture a fingerprint image when a user's finger is swiped about the fingerprint sensor lines. In one embodiment, the substrate may be a protective coating configured to hold touch screen circuitry together with the fingerprint sensor lines, such that the protective coating can be mounted on an LCD screen together with the touch screen circuitry and the fingerprint sensor lines. In another embodiment, the substrate may be configured to be mounted on a protective coating holding touch screen circuitry, such that the protective coating can be mounted on an LCD screen together with the touch screen circuitry and the substrate.


Also disclosed is an LCD screen having an integrated fingerprint swipe sensor, comprising an LCD surface configured to produce a visible display, a substrate having fingerprint sensor lines on one surface and configured to be integrated with the LCD screen to allow the integrated fingerprint sensor lines to capture a fingerprint image without interfering with the visibility of the visible display, and a controller communicating with the fingerprint sensor lines to capture a fingerprint image when a user's fingerprint is swiped about the fingerprint sensor lines. In one embodiment, the controller may be further configured to control the visible display. In another embodiment, the LCD screen may further comprise an additional controller configured to control the visible display. In yet another embodiment, the LCD screen may further comprise touch screen circuitry integrated with the fingerprint sensor lines.


As will be seen, the invention provides a minimally invasive mechanism to integrate the fingerprint sensor in an LCD among the layers of components that are conventionally used in assembling touch-screen layers on LCD displays, or directly onto the LCD display itself. This can be done under a protective covering that is placed over an LCD screen, and may or may not include touch sensitive circuitry in the sandwiched layers, depending on the application. The examples and embodiments described herein include illustrations and references to touch sensitive circuitry, both capacitive and resistive, and also refer to fingerprint sensor circuitry that may also be capacitive or resistive, but the invention is not limited to any particular configuration or underlying technology in these areas. The invention is only limited by the appended claims, claims presented in the future, and any equivalents.


In current touch screen designs, there typically exists an LCD printed circuit board (PCB) on which the touch screen circuitry is mounted, and a protective shield or coating is applied on top of the touch screen circuitry. The touch screen circuitry is connected with the LCD display on the LCD PCB (Printed Circuit Board) by one of two methods. In one method, the touch screen circuitry is first mounted on the LCD PCB, then the protective shield or coating is applied on top of the touch screen circuitry. In another method, the touch screen circuitry is applied onto the protective coating or shield, and then the resulting structure is mounted on the LCD PCB, with the touch screen circuitry mounted between the protective coating or shield and the LCD PCB. According to the invention, the substrate of the fingerprint sensor can be integrated with either of these methods.


In the following figures, several examples of devices or systems configured according to the invention are illustrated.


Referring to FIG. 1, a diagrammatic view of an LCD panel 100 having a printed circuit board (PCB) 102 for holding LCD components to provide a display. LCD panel 100 also includes optional touch screen circuitry 104 and an integrated fingerprint sensor 106 with a swiping area 108 for capturing a fingerprint from a user. Such a device can be manufactured in a number of ways and, given this disclosure, one skilled in the art will find it feasible to design and produce such a device without undue experimentation. LCD panel 100 may be utilized in a variety of devices, such as a computing device, cellular phone, portable entertainment device, tablet device, and so forth. The disclosed fingerprint sensors 106, 206, 304, 410, 506, 606, 706 and 804 as shown in FIGS. 1, 2, 3, 4, 5, 6, 7 and 8 may include a fingerprint image sensor, which may include an array of capacitive sensors for capacitive sensing of ridge peaks and ridge valleys of a fingerprint on a swiped finger. The fingerprint image sensors 106, 206, 304, 410, 506, 606, 706 and 804 may include a linear array of capacitive sensors for capacitive sensing of ridge peaks and ridge valleys of a fingerprint. The image sensors may also include at least one image pickup trace and at least one image drive trace in spaced relation to the at least one image pickup trace to each define respectively one of a plurality of sensor gaps/image pixel locations, between a respective image drive plate and a respective image pickup plate. The ridge peaks and ridge valleys of the fingerprint over the sensor gaps/image pixel locations can produce a change in capacitance between the respective image drive trace and the respective image pickup trace. The conductive elements/traces may thus create a capacitive sensing array for detecting topographic variations in an object, such as a finger. The array may include multiple drive traces which can be sequentially excited with short duration electronic waveform bursts. A pickup plate connected to a sensing circuit can sequentially detect/receive the intensity of the electric field created by a respective drive trace. With each complete scan of the pixel locations formed by the drive/pickup trace gaps a two-dimensional image based on variation of capacitance across the respective gaps can be generated, including a resemblance of features of the physical surface of the object. In some embodiments, the sensor drive traces can comprise parallel traces/conductors disposed perpendicular to a single image pickup trace and spaced from the image pickup trace by respective sensor gaps. In some embodiments, two or more image pickup traces can be utilized. The image pickup trace(s) and the image drive trace(s) may be substantially coplanar in the fingerprint sensors 106, 206, 304, 410, 506, 606, 706 and 804. Features of the finger passing above the sensor gaps so created in the sensor array 106, 206, 304, 410, 506, 606, 706 and 804 can produce changes in capacitance between each respective image drive trace(s) and a respective image pickup trace(s). The image sensing apparatus, e.g., a controller IC (950 as shown in FIG. 9 may further comprise an excitation circuit for sequentially energizing the respective image drive trace(s) with image drive signals and a detection circuit for detecting the drive signals capacitively coupled, i.e., received from the respective image drive trace(s) by the respective image pickup trace(s), across the respective gap, to provide image signals. Therefore the fingerprint images sensors 106, 206, 304, 410, 506, 606, 706 and 804 can form capacitive gap sensor arrays for detecting topographic variations of an object over the array. The sensor arrays having the described sensor gaps, i.e., sensor apertures can sense topographic variations in the object, e.g., over or passing over the respective sensor gap/aperture, e.g. in the sensing area 108, because the capacitance of the capacitive gap/aperture changes and can be measured to reconstruct an image of the biometric being sensed, e.g., a fingerprint.


Referring to FIG. 2, a side diagrammatic view of a device 200 is illustrated with a top coating or layer 202 having touch sensor circuitry 204 located on an inside portion of top coating/layer 202. A fingerprint sensor 206, made up of a thin circuitry layer described in further detail below, is shown with a layer peeled back to illustrate the fingerprint sensor integrated between top layer 202 and the LCD's PCB 208.



FIG. 3 illustrates an exploded view of an assembly 300, including an LCD PCB 302 and a fingerprint sensor 304. In this example, fingerprint sensor 304 is positioned between a protective layer or coating 306 having a top layer 308 that may be exposed to a user in a touch pad enabled device and LCD PCB 302. Touch sensitive circuitry 310 is located on a bottom layer of protective coating 306 to be assembled over fingerprint sensor 304 and LCD PCB 302. In conventional assemblies, touch sensitive circuitry 310 may be adhered to or otherwise placed on the bottom side of layer or coating 308 prior to assembly, and then placed or otherwise mounted on top of LCD PCB 302 during final assembly. In other assembly methods, touch sensitive circuitry 310 may be assembled directly onto LCD PCB 302 first, then the next layer placed on top of the LCD PCB having the touch sensitive circuitry already mounted thereon. Fingerprint sensor 304 may be either on the same layer as touch sensitive circuitry 310, or on a layer above it, closer to the finger. In an alternate embodiment, fingerprint sensor 304 is patterned as an ITO layer on the top surface of the LCD display, and then coated with a protective coating.


Referring to FIG. 4, one method of assembly 400 is illustrated. In the example of FIG. 4, a protective layer 404 has touch sensitive circuitry 408 mounted thereon, followed by a fingerprint sensor 410. Protective layer 404 (including touch sensitive circuitry 408 and fingerprint sensor 410) are then mounted on a LCD PCB 402. After assembly, touch sensitive circuitry 408 and fingerprint sensor 410 are positioned between protective layer 404 and LCD PCB 402.


Referring to FIG. 5, an expanded diagrammatic view of another example of an assembly configuration 500 is illustrated. Assembly 500 may be assembled in at least two ways as shown. In one process, a LCD PCB 502 first receives touch sensitive circuitry 504, then receives a fingerprint sensor 506, then a protective cover 508. Alternatively, fingerprint sensor 506 may first be placed or mounted on protective cover 508. The touch sensitive circuitry 504 may then be placed or mounted on protective cover 508, and the assembly can then be placed together with or mounted on LCD PCB 502.


Referring to FIG. 6, an embodiment is illustrated showing fingerprint sensing circuitry 606 having I/O circuitry 608 first mounted on a surface 612 of a covering 610. Next, touch sensitive circuitry 604 is mounted on covering 610 over fingerprint sensing circuitry 606, and the assembly is then mounted on or otherwise assembled with a LCD PCB 602.


Referring to FIG. 7, yet another alternative configuration 700 is illustrated where the circuit assembly is more integrated. A circuit assembly 702 includes touch sensitive circuitry 704 together with fingerprint sensing circuitry 706 having associated I/O circuitry 708. Touch sensitive circuitry 704 also has associated I/O circuitry 710 for connecting with a processor, controller, or other device. The assembly can be mounted on either the protective covering first or a LCD PCB 712, or may be mounted simultaneously. This configuration allows for a simple integration and possibly beneficial unitary design. These layers may be configured in a variety of different orders of assembly, the foregoing and following are intended to illustrate examples of different assemblies. The integrated layer is one example and will also lend itself to an embodiment that includes a single IC (Integrated Circuit) that drives I/O circuitry 708 associated with fingerprint sensing circuitry 706 as well as I/O circuitry 710 associated with touch sensitive circuitry 704. In one embodiment, the I/O lines are all routed to a single location for a single IC to drive. The touch-screen in this case may also employ a capacitive fingerprint sensor, an RF (Radio Frequency) transmit/receive system, as well as other systems.


Referring to FIG. 8, yet another alternative configuration is illustrated where a single circuit component 804 performs both fingerprint sensing and touch screen functions. Consequently, I/O of both fingerprint sensing and touch screen functions is driven by I/O circuitry 806. Circuit component 804 and I/O circuitry 806 are both included in a circuit assembly 802, which is mounted to a LCD PCB 808. A device may also be configured as single IC device and single layer of ITO metal that performs both fingerprint sensing and touch-screen sensing using technology for transmitting/receiving in a single co-planar layer.


Referring to FIG. 9, a diagrammatic view of a sensing device 900 configured according to the invention is illustrated. The device includes a linear array 912 such as described in the embodiments above, and also includes a sensor element 902. The device further includes sensor control logic 952 configured to control the basic operations of the sensor element. The exact operations of the sensor element governed by the sensor logic control greatly depends on a particular sensor configuration employed, which may include power control, reset control of the pixels or data contact points, output signal control, cooling control in the case of some optical sensors, and other basic controls of a sensor element. Sensor controls are well known by those skilled in the art, and, again, depend on the particular operation.


Sensing device 900 further includes a readout circuit 954 for reading analog output signals from sensor element 902 when it is subject to a fingerprint juxtaposed on a sensor surface 907. Readout circuit 954 includes an amplifier 956 configured to amplify the analog signal so that it can more accurately be read in subsequent operations. A low pass filter 958 is configured to filter out any noise from the analog signal so that the analog signal can be more efficiently processed. Readout circuit 954 further includes an analog to digital converter 960 that is configured to convert the output signal from sensor element 902 to a digital signal that indicates a series of logic 0's and 1's that define the sensing of the fingerprint features by the pixels or data contact points of sensor surface 907. Such signals may be separately received by the motion sensors and the fingerprint sensing surfaces, and may be read out and processed separately.


Readout circuit 954 may store the output signal in a storage 962, where fingerprint data 964 is stored and preserved, either temporarily until a processor 966 can process the signal, or for later use by the processor. Processor 966 includes an arithmetic unit 968 configured to process algorithms used for navigation of a cursor, and for reconstruction of fingerprints. Processing logic 970 is configured to process information and includes analog to digital converters, amplifiers, signal filters, logic gates (all not shown) and other logic utilized by a processor. A persistent memory 974 is used to store algorithms 976 and software applications 978 that are used by processor 966 for the various functions described above, and in more detail below. A system bus 980 is a data bus configured to enable communication among the various components contained in sensing device 900.


In assembly, there are various ways such a device can be configured. In one embodiment, a fingerprint sensor is provided that includes a flexible substrate having fingerprint sensor lines on one surface and configured to be integrated with an LCD screen. This allows for a device such as a laptop, cellular phone, touch-screen interface, or other personal device to have an integrated fingerprint sensor, saving space and simplifying the integrated design.


In another embodiment, the fingerprint sensor may be mounted on the LCD PCB separate from the touch screen circuitry. The touch screen circuitry may be mounted on the protective shield or coating. The resulting structure can then be mounted on the LCD PCB. This also provides an LCD screen with both touch screen circuitry and fingerprint sensor circuitry integrated therein.


In another embodiment, the fingerprint sensor may be mounted on the protective coating or shield along with the touch screen circuitry. The resulting structure can then be mounted on the LCD PCB. This gives an LCD screen with both touch screen circuitry and fingerprint sensor circuitry integrated therein.


In yet another embodiment, the substrate is obviated by the protective coating. The protective coating is configured to hold touch screen circuitry together with the fingerprint sensor lines mounted on the protective coating or shield. Here, the protective coating can be mounted on an LCD screen together with the touch screen circuitry and the fingerprint sensor lines. In yet another combination, the touch screen circuitry can be mounted directly on the LCD PCB, the fingerprint sensor lines mounted on the protective coating or shield, and the two resulting structures can be mounted together to produce an LCD display having both touch screen and fingerprint sensor functionality.


The resulting system is an LCD screen having an integrated fingerprint swipe sensor and, possibly, a touch screen. The LCD screen may have one or the other or both, depending on the application. The system includes an LCD surface configured to produce a visible display. On top of the LCD surface can be mounted touch screen circuitry that may include fingerprint sensor lines. Alternatively, a separate substrate holding the fingerprint sensor lines may be mounted on or below the touch screen circuitry. In either configuration, the resulting structure may be configured to be integrated with the LCD screen to allow the integrated fingerprint sensor lines to capture a fingerprint image without interfering with the visibility of the display or with the function of the touch screen operation.


The system further includes a controller communicating with the fingerprint sensor lines to capture a fingerprint image when a user's fingerprint is swiped about the fingerprint sensor lines. In one system, there may be separate controllers for both the LCD display and the fingerprint sensor, where the system includes an LCD controller configured to control the visible display separate from the fingerprint sensor operations. Alternatively, the same controller may also control both the visible display and the fingerprint sensor operations. The fingerprint sensor could also be patterned onto the top glass of the LCD display itself, and not onto the touch-screen layer.



FIG. 10 is a flow diagram illustrating an embodiment of a procedure 1000 for assembling an LCD display device. Initially, an LCD controller is mounted on a printed circuit board (block 1002) and a fingerprint sensor controller is mounted on the same printed circuit board (block 1004). An LCD module is mounted above the printed circuit board (block 1006). Motion sensor circuitry is applied on one side of a clear protective layer (block 1008) and fingerprint sensor circuitry is applied to the same side of the clear protective layer (block 1010). The LCD controller is then connected to the motion sensor circuitry (block 1012) and the fingerprint sensor controller is connected to the fingerprint sensor circuitry (block 1014). Finally, a user protective layer is applied above the clear protective layer to protect the assembly (block 1016).



FIG. 11 is a flow diagram illustrating another embodiment of a procedure 1100 for assembling an LCD display device. Initially, an LCD controller is mounted on a printed circuit board (block 1102) and a fingerprint sensor controller is mounted on the same printed circuit board (block 1104). An LCD module is mounted above the printed circuit board (block 1106). Motion sensor circuitry is applied on one side of the LCD module (block 1108) and fingerprint sensor circuitry is applied on one side of a clear protective layer (block 1110). The LCD controller is then connected to the motion sensor circuitry (block 1112) and the fingerprint sensor controller is connected to the fingerprint sensor circuitry (block 1114). Finally, the clear protective layer is mounted to the LCD module to position the fingerprint sensor circuitry between the motion sensor circuitry and the clear protective layer (block 1116).


The present invention may also involve a number of functions to be performed by a computer processor, such as a microprocessor. The microprocessor may be a specialized or dedicated microprocessor that is configured to perform particular tasks according to the invention, by executing machine-readable software code that defines the particular tasks embodied by the invention. The microprocessor may also be configured to operate and communicate with other devices such as direct memory access modules, memory storage devices, Internet related hardware, and other devices that relate to the transmission of data in accordance with the invention. The software code may be configured using software formats such as Java, C++, XML (Extensible Mark-up Language) and other languages that may be used to define functions that relate to operations of devices required to carry out the functional operations related to the invention. The code may be written in different forms and styles, many of which are known to those skilled in the art. Different code formats, code configurations, styles and forms of software programs and other means of configuring code to define the operations of a microprocessor in accordance with the invention will not depart from the spirit and scope of the invention.


Within the different types of devices, such as laptop or desktop computers, hand held devices with processors or processing logic, and also possibly computer servers or other devices that utilize the invention, there exist different types of memory devices for storing and retrieving information while performing functions according to the invention. Cache memory devices are often included in such computers for use by the central processing unit as a convenient storage location for information that is frequently stored and retrieved. Similarly, a persistent memory is also frequently used with such computers for maintaining information that is frequently retrieved by the central processing unit, but that is not often altered within the persistent memory, unlike the cache memory. Main memory is also usually included for storing and retrieving larger amounts of information such as data and software applications configured to perform functions according to the invention when executed by the central processing unit. These memory devices may be configured as random access memory (RAM), static random access memory (SRAM), dynamic random access memory (DRAM), flash memory, and other memory storage devices that may be accessed by a central processing unit to store and retrieve information. During data storage and retrieval operations, these memory devices are transformed to have different states, such as different electrical charges, different magnetic polarity, and the like. Thus, systems and methods configured according to the invention as described herein enable the physical transformation of these memory devices. Accordingly, the invention as described herein is directed to novel and useful systems and methods that, in one or more embodiments, are able to transform the memory device into a different state. The invention is not limited to any particular type of memory device, or any commonly used protocol for storing and retrieving information to and from these memory devices, respectively.


The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the invention. The machine-readable medium includes any mechanism that provides (i.e., stores and/or transmits) information in a form readable by a machine (e.g., a computer, PDA, cellular telephone, etc.). For example, a machine-readable medium includes memory (such as described above); magnetic disk storage media; optical storage media; flash memory devices; biological electrical, mechanical systems; electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). The device or machine-readable medium may include a micro-electromechanical system (MEMS), nanotechnology devices, organic, holographic, solid-state memory device and/or a rotating magnetic or optical disk. The device or machine-readable medium may be distributed when partitions of instructions have been separated into different machines, such as across an interconnection of computers or as different virtual machines.


Embodiments of the systems and methods described herein facilitate integrated fingerprint sensing and display of information. Some embodiments are used in conjunction with one or more conventional fingerprint sensing systems and methods. For example, one embodiment is used as an improvement of existing fingerprint detection and/or sensing systems. Other embodiments are used in conjunction with one or more conventional display systems and methods. For example, one embodiment is used as an improvement of existing display devices.


Although the components and modules illustrated herein are shown and described in a particular arrangement, the arrangement of components and modules may be altered to sense fingerprint information or to display information in a different manner. In other embodiments, one or more additional components or modules may be added to the described systems, and one or more components or modules may be removed from the described systems. Alternate embodiments may combine two or more of the described components or modules into a single component or module.


Although specific embodiments of the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated. The scope of the invention is to be defined by the claims appended hereto and their equivalents.

Claims
  • 1. A touch screen display device having integrated touch sensing and biometric image capture capabilities, comprising: a top layer, comprising a display protective glass layer;a lower layer;touch sensitive circuitry disposed intermediate the top layer and the lower layer, the touch sensitive circuitry being configured to detect touch input; anda biometric object image sensor disposed intermediate the top layer and the lower layer, the biometric object image sensor comprising electrode traces forming an array of capacitive gap sensing elements, wherein the array includes at least one image pixel location defined by a capacitive coupling gap between a respective signal drive trace and a respective signal pickup trace to capture a biometric object image when a biometric object of a user is above the biometric object image sensor and the display protective glass layer.
  • 2. The touch screen display device according to claim 1, wherein the capacitive gap sensing elements are made of a substantially transparent conductive material.
  • 3. The touch screen display device according to claim 1, wherein the capacitive gap sensing elements are made of indium tin oxide.
  • 4. A Liquid Crystal Display (LCD) screen having integrated touch sensing and biometric object image capture capabilities, the LCD screen comprising: an LCD module configured to produce a visible display;a protective layer located above the LCD module;touch sensitive circuitry located intermediate the LCD module and the protective layer, the touch sensitive circuitry being configured to detect touch input; anda biometric object image sensor disposed intermediate the LCD module and the protective layer, the biometric object image sensor comprising electrode traces forming an array of capacitive gap sensing elements, wherein the array includes at least one image pixel location defined by a capacitive coupling gap between a respective signal drive trace and a respective signal pickup trace to capture a biometric object image when a biometric object of a user is above the biometric object image sensor.
  • 5. The LCD screen according to claim 4, further comprising an LCD controller coupled to the LCD module and configured to control the visible display of the LCD module.
  • 6. The LCD screen according to claim 5, wherein the LCD controller is further coupled to the biometric object image sensor and further configured to control the biometric object image sensor.
  • 7. The LCD screen according to claim 4, wherein the touch sensitive circuitry is integrated with the biometric object image sensor.
  • 8. The LCD screen according to claim 4, wherein the capacitive gap sensing elements are made of a substantially transparent conductive material.
  • 9. The LCD screen according to claim 4, wherein the capacitive gap sensing elements are made of indium tin oxide.
  • 10. A method of assembling a Liquid Crystal Display (LCD) display device having touch sensitive circuitry and a biometric object image sensor, the method comprising: providing a printed circuit board;mounting an LCD module above the printed circuit board;mounting an LCD controller on one of the LCD module and the printed circuit board;covering the LCD module with a protective layer;placing the touch sensitive circuitry intermediate the protective layer and the LCD module; andplacing the biometric object image sensor intermediate the protective layer and the LCD module, the biometric object image sensor comprising electrode traces forming an array of capacitive gap sensing elements, wherein the array includes at least one image pixel location defined by a capacitive coupling gap between a respective signal drive trace and a respective signal pickup trace.
  • 11. The method according to claim 10, further comprising coating the protective layer with a user protective coating.
  • 12. The method according to claim 10, wherein the LCD controller is configured to control the touch sensitive circuitry and the biometric object image sensor.
  • 13. The method according to claim 12, further comprising connecting the LCD controller to the touch sensitive circuitry and the biometric object image sensor.
  • 14. The method according to claim 10, further comprising mounting a biometric object image sensor controller on the printed circuit board.
  • 15. The method according to claim 14, further comprising connecting the LCD controller to the touch sensitive circuitry and connecting the biometric object image sensor controller to the biometric object image sensor.
  • 16. The method according to claim 10, wherein the capacitive gap sensing elements are made of a substantially transparent conductive material.
  • 17. A method of assembling a Liquid Crystal Display (LCD) display device having touch sensitive circuitry and a biometric object image sensor, the method comprising: providing a printed circuit board;mounting an LCD module above the printed circuit board;mounting an LCD controller on one of the LCD module and the printed circuit board;placing the touch sensitive circuitry intermediate the printed circuit board and the LCD module;mounting a protective layer to the LCD module; andplacing the biometric object image sensor on an outer surface of the protective layer such that the protective layer is located between the touch sensitive circuitry and the biometric object image sensor, the biometric object image sensor comprising electrode traces forming an array of capacitive gap sensing elements, wherein the array includes at least one image pixel location defined by a capacitive coupling gap between a respective signal drive trace and a respective signal pickup trace.
  • 18. The method according to claim 17, wherein the LCD controller is configured to control the touch sensitive circuitry and the biometric object image sensor.
  • 19. The method according to claim 17, further comprising mounting a biometric object image sensor controller on the printed circuit board.
  • 20. The method according to claim 19, further comprising connecting the LCD controller to the touch sensitive circuitry and connecting the biometric object image sensor controller to the biometric object image sensor.
  • 21. The method according to claim 17, wherein the capacitive gap sensing elements are made of a substantially transparent conductive material.
  • 22. The touch screen display device of claim 1, wherein the biometric object image sensor comprises a fingerprint image sensor.
  • 23. The LCD screen of claim 4, wherein the biometric object image sensor comprises a fingerprint image sensor.
  • 24. The method of claim 10, wherein the biometric object image sensor comprises a fingerprint image sensor.
  • 25. The method of claim 17, wherein the biometric object image sensor comprises a fingerprint image sensor.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/256,908, filed Oct. 30, 2009, the disclosure of which is incorporated by reference herein.

US Referenced Citations (451)
Number Name Date Kind
4151512 Rigannati et al. Apr 1979 A
4225850 Chang et al. Sep 1980 A
4310827 Asai Jan 1982 A
4353056 Tsikos Oct 1982 A
4405829 Rivest et al. Sep 1983 A
4525859 Bowles et al. Jun 1985 A
4550221 Mabusth Oct 1985 A
4580790 Doose Apr 1986 A
4582985 Lofberg Apr 1986 A
4675544 Schrenk Jun 1987 A
4758622 Gosselin Jul 1988 A
4817183 Sparrow Mar 1989 A
5076566 Kriegel Dec 1991 A
5109427 Yang Apr 1992 A
5140642 Hau et al. Aug 1992 A
5305017 Gerpheide Apr 1994 A
5319323 Fong Jun 1994 A
5325442 Knapp Jun 1994 A
5359243 Norman Oct 1994 A
5420936 Fitzpatrick et al. May 1995 A
5422807 Mitra et al. Jun 1995 A
5429006 Tamori Jul 1995 A
5456256 Schneider et al. Oct 1995 A
5543591 Gillespie et al. Aug 1996 A
5569901 Bridgelall et al. Oct 1996 A
5623552 Lane Apr 1997 A
5627316 De Winter et al. May 1997 A
5650842 Maase et al. Jul 1997 A
5717777 Wong et al. Feb 1998 A
5781651 Hsiao et al. Jul 1998 A
5801681 Sayag Sep 1998 A
5818956 Tuli Oct 1998 A
5838306 O'Connor Nov 1998 A
5848176 Harra et al. Dec 1998 A
5850450 Schweitzer et al. Dec 1998 A
5852670 Setlak et al. Dec 1998 A
5864296 Upton Jan 1999 A
5887343 Salatino et al. Mar 1999 A
5892824 Beatson et al. Apr 1999 A
5903225 Schmitt et al. May 1999 A
5915757 Tsuyama et al. Jun 1999 A
5920384 Borza Jul 1999 A
5920640 Salatino et al. Jul 1999 A
5940526 Setlak et al. Aug 1999 A
5956415 McCalley et al. Sep 1999 A
5963679 Setlak Oct 1999 A
5995630 Borza Nov 1999 A
5999637 Toyoda et al. Dec 1999 A
6002815 Immega et al. Dec 1999 A
6011859 Kalnitsky et al. Jan 2000 A
6016355 Dickinson et al. Jan 2000 A
6052475 Upton Apr 2000 A
6067368 Setlak et al. May 2000 A
6073343 Petrick et al. Jun 2000 A
6076566 Lowe Jun 2000 A
6088585 Schmitt et al. Jul 2000 A
6098175 Lee Aug 2000 A
6118318 Fifield et al. Sep 2000 A
6134340 Hsu et al. Oct 2000 A
6157722 Lerner et al. Dec 2000 A
6161213 Lofstrom Dec 2000 A
6175407 Santor Jan 2001 B1
6182076 Yu et al. Jan 2001 B1
6182892 Angelo et al. Feb 2001 B1
6185318 Jain et al. Feb 2001 B1
6234031 Suga May 2001 B1
6241288 Bergenek et al. Jun 2001 B1
6259108 Antonelli et al. Jul 2001 B1
6289114 Mainguet Sep 2001 B1
6292272 Okauchi et al. Sep 2001 B1
6307258 Crane, Jr. et al. Oct 2001 B1
6317508 Kramer et al. Nov 2001 B1
6320394 Tartagni Nov 2001 B1
6325285 Baratelli Dec 2001 B1
6327376 Harkin Dec 2001 B1
6332193 Glass et al. Dec 2001 B1
6333989 Borza Dec 2001 B1
6337919 Duton Jan 2002 B1
6343162 Saito et al. Jan 2002 B1
6346739 Lepert et al. Feb 2002 B1
6347040 Fries et al. Feb 2002 B1
6357663 Takahashi et al. Mar 2002 B1
6360004 Akizuki Mar 2002 B1
6362633 Tartagni Mar 2002 B1
6392636 Ferrari et al. May 2002 B1
6399994 Shobu Jun 2002 B2
6400836 Senior Jun 2002 B2
6401551 Seiko Jun 2002 B1
6408087 Kramer Jun 2002 B1
6473072 Comiskey et al. Oct 2002 B1
6509501 Eicken et al. Jan 2003 B2
6512381 Kramer Jan 2003 B2
6525547 Hayes Feb 2003 B2
6525932 Ohnishi et al. Feb 2003 B1
6539101 Black Mar 2003 B1
6580816 Kramer et al. Jun 2003 B2
6597289 Sabatini Jul 2003 B2
6628812 Setlak et al. Sep 2003 B1
6631201 Dickinson et al. Oct 2003 B1
6643389 Raynal et al. Nov 2003 B1
6672174 Deconde et al. Jan 2004 B2
6710416 Chou et al. Mar 2004 B1
6738050 Comiskey et al. May 2004 B2
6741729 Bjorn et al. May 2004 B2
6757002 Oross et al. Jun 2004 B1
6766040 Catalano et al. Jul 2004 B1
6785407 Tschudi et al. Aug 2004 B1
6799275 Bjorn et al. Sep 2004 B1
6836230 Le Pailleur et al. Dec 2004 B2
6838905 Doyle Jan 2005 B1
6873356 Kanbe et al. Mar 2005 B1
6886104 McClurg et al. Apr 2005 B1
6897002 Teraoka et al. May 2005 B2
6898299 Brooks May 2005 B1
6924496 Manansala Aug 2005 B2
6937748 Schneider et al. Aug 2005 B1
6941001 Bolle Sep 2005 B1
6941810 Okada Sep 2005 B2
6950540 Higuchi Sep 2005 B2
6959874 Bardwell Nov 2005 B2
6963626 Shaeffer et al. Nov 2005 B1
6970584 O'Gorman et al. Nov 2005 B2
6980672 Saito et al. Dec 2005 B2
6983882 Cassone Jan 2006 B2
7013030 Wong et al. Mar 2006 B2
7020591 Wei et al. Mar 2006 B1
7030860 Hsu et al. Apr 2006 B1
7031670 May Apr 2006 B2
7035443 Wong Apr 2006 B2
7042535 Katoh et al. May 2006 B2
7043061 Wong May 2006 B2
7043644 DeBruine May 2006 B2
7046230 Zadesky et al. May 2006 B2
7064743 Nishikawa Jun 2006 B2
7099496 Benkley Aug 2006 B2
7110574 Haruki et al. Sep 2006 B2
7110577 Tschud Sep 2006 B1
7113622 Hamid Sep 2006 B2
7126389 McRae et al. Oct 2006 B1
7129926 Mathiassen et al. Oct 2006 B2
7136514 Wong Nov 2006 B1
7146024 Benkley Dec 2006 B2
7146026 Russon et al. Dec 2006 B2
7146029 Manansala Dec 2006 B2
7184581 Johansen et al. Feb 2007 B2
7190209 Kang et al. Mar 2007 B2
7190816 Mitsuyu et al. Mar 2007 B2
7194392 Tuken et al. Mar 2007 B2
7197168 Russo Mar 2007 B2
7200250 Chou Apr 2007 B2
7251351 Mathiassen et al. Jul 2007 B2
7258279 Schneider et al. Aug 2007 B2
7260246 Fujii Aug 2007 B2
7263212 Kawabe Aug 2007 B2
7263213 Rowe Aug 2007 B2
7289649 Walley et al. Oct 2007 B1
7290323 Deconde et al. Nov 2007 B2
7308121 Mathiassen et al. Dec 2007 B2
7308122 McClurg et al. Dec 2007 B2
7321672 Sasaki et al. Jan 2008 B2
7356169 Hamid Apr 2008 B2
7360688 Harris Apr 2008 B1
7369685 DeLeon May 2008 B2
7379569 Chikazawa et al. May 2008 B2
7408135 Fujeda Aug 2008 B2
7409876 Ganapathi et al. Aug 2008 B2
7412083 Takahashi Aug 2008 B2
7424618 Roy et al. Sep 2008 B2
7447339 Mimura et al. Nov 2008 B2
7447911 Chou et al. Nov 2008 B2
7460697 Erhart Dec 2008 B2
7463756 Benkley Dec 2008 B2
7474772 Russo et al. Jan 2009 B2
7505611 Fyke Mar 2009 B2
7505613 Russo Mar 2009 B2
7565548 Fiske et al. Jul 2009 B2
7574022 Russo Aug 2009 B2
7596832 Hsieh et al. Oct 2009 B2
7643950 Getzin et al. Jan 2010 B1
7646897 Fyke Jan 2010 B2
7681232 Nordentoft et al. Mar 2010 B2
7689013 Shinzaki Mar 2010 B2
7706581 Drews et al. Apr 2010 B2
7733697 Picca et al. Jun 2010 B2
7751601 Benkley Jul 2010 B2
7826645 Cayen Nov 2010 B1
7843438 Onoda Nov 2010 B2
7848798 Martinsen et al. Dec 2010 B2
7899216 Watanabe et al. Mar 2011 B2
7953258 Dean et al. May 2011 B2
8031916 Abiko et al. Oct 2011 B2
8063734 Conforti Nov 2011 B2
8077935 Geoffroy et al. Dec 2011 B2
8107212 Nelson et al. Jan 2012 B2
8116540 Lewis et al. Feb 2012 B2
8131026 Benkley et al. Mar 2012 B2
8165355 Benkley et al. Apr 2012 B2
8175345 Gardner May 2012 B2
8204281 Satya et al. Jun 2012 B2
8224044 Benkley Jul 2012 B2
8229184 Benkley Jul 2012 B2
8276816 Gardner Oct 2012 B2
8278946 Thompson Oct 2012 B2
8290150 Erhart et al. Oct 2012 B2
8315444 Gardner Nov 2012 B2
8331096 Garcia Dec 2012 B2
8335353 Yamamoto et al. Dec 2012 B2
8358815 Benkley et al. Jan 2013 B2
8374407 Benkley et al. Feb 2013 B2
8391568 Satyan Mar 2013 B2
20010026636 Mainget Oct 2001 A1
20010030644 Allport Oct 2001 A1
20010033275 Kent et al. Oct 2001 A1
20010036299 Senior Nov 2001 A1
20010043728 Kramer et al. Nov 2001 A1
20020025062 Black Feb 2002 A1
20020061125 Fujii May 2002 A1
20020064892 Lepert et al. May 2002 A1
20020067845 Griffis Jun 2002 A1
20020073046 David Jun 2002 A1
20020089044 Simmons et al. Jul 2002 A1
20020089410 Janiak et al. Jul 2002 A1
20020096731 Wu et al. Jul 2002 A1
20020122026 Bergstrom Sep 2002 A1
20020126516 Jeon Sep 2002 A1
20020133725 Roy et al. Sep 2002 A1
20020152048 Hayes Oct 2002 A1
20020174348 Ting Nov 2002 A1
20020181749 Matsumoto et al. Dec 2002 A1
20030002717 Hamid Jan 2003 A1
20030002719 Hamid et al. Jan 2003 A1
20030021495 Cheng Jan 2003 A1
20030035570 Benkley Feb 2003 A1
20030063782 Acharya et al. Apr 2003 A1
20030068072 Hamid Apr 2003 A1
20030076301 Tsuk et al. Apr 2003 A1
20030076303 Huppi Apr 2003 A1
20030095096 Robbin et al. May 2003 A1
20030095690 Su et al. May 2003 A1
20030102874 Lane et al. Jun 2003 A1
20030123714 O'Gorman et al. Jul 2003 A1
20030123715 Uchida Jul 2003 A1
20030141959 Keogh et al. Jul 2003 A1
20030147015 Katoh et al. Aug 2003 A1
20030161510 Fujii Aug 2003 A1
20030161512 Mathiassen et al. Aug 2003 A1
20030169228 Mathiassen et al. Sep 2003 A1
20030174256 Kim et al. Sep 2003 A1
20030174871 Yoshioka et al. Sep 2003 A1
20030186157 Teraoka et al. Oct 2003 A1
20030209293 Sako et al. Nov 2003 A1
20030224553 Manansala Dec 2003 A1
20040012773 Puttkammer Jan 2004 A1
20040017934 Kocher et al. Jan 2004 A1
20040022001 Chu et al. Feb 2004 A1
20040042642 Bolle et al. Mar 2004 A1
20040050930 Rowe Mar 2004 A1
20040066613 Leitao Apr 2004 A1
20040076313 Bronstein et al. Apr 2004 A1
20040081339 Benkley Apr 2004 A1
20040096086 Miyasaka May 2004 A1
20040101171 Lane et al. May 2004 A1
20040113956 Bellwood et al. Jun 2004 A1
20040120400 Linzer Jun 2004 A1
20040125993 Zhao et al. Jul 2004 A1
20040129787 Saito Jul 2004 A1
20040136612 Meister et al. Jul 2004 A1
20040155752 Radke Aug 2004 A1
20040172339 Snelgrove et al. Sep 2004 A1
20040179718 Chou Sep 2004 A1
20040184641 Nagasaka et al. Sep 2004 A1
20040188838 Okada et al. Sep 2004 A1
20040190761 Lee Sep 2004 A1
20040208346 Baharav et al. Oct 2004 A1
20040208347 Baharav et al. Oct 2004 A1
20040208348 Baharav et al. Oct 2004 A1
20040213441 Tschudi Oct 2004 A1
20040215689 Dooley et al. Oct 2004 A1
20040228505 Sugimoto Nov 2004 A1
20040228508 Shigeta Nov 2004 A1
20040240712 Rowe et al. Dec 2004 A1
20040252867 Lan et al. Dec 2004 A1
20050030724 Ryhanen et al. Feb 2005 A1
20050031174 Ryhanen et al. Feb 2005 A1
20050036665 Higuchi Feb 2005 A1
20050047485 Khayrallah et al. Mar 2005 A1
20050093834 Abdallah et al. May 2005 A1
20050100196 Scott et al. May 2005 A1
20050100938 Hoffmann et al. May 2005 A1
20050109835 Jacoby et al. May 2005 A1
20050110103 Setlak May 2005 A1
20050111708 Chou May 2005 A1
20050123176 Ishil et al. Jun 2005 A1
20050129291 Boshra Jun 2005 A1
20050136200 Durell et al. Jun 2005 A1
20050139656 Arnouse Jun 2005 A1
20050139685 Kozlay Jun 2005 A1
20050162402 Watanachote Jul 2005 A1
20050169503 Howell et al. Aug 2005 A1
20050174015 Scott et al. Aug 2005 A1
20050210271 Chou et al. Sep 2005 A1
20050219200 Weng Oct 2005 A1
20050220329 Payne et al. Oct 2005 A1
20050231213 Chou et al. Oct 2005 A1
20050238212 Du et al. Oct 2005 A1
20050244038 Benkley Nov 2005 A1
20050244039 Geoffroy et al. Nov 2005 A1
20050247559 Frey et al. Nov 2005 A1
20050249386 Juh Nov 2005 A1
20050258952 Utter et al. Nov 2005 A1
20050269402 Spitzer et al. Dec 2005 A1
20060006224 Modi Jan 2006 A1
20060017862 Song et al. Jan 2006 A1
20060055500 Burke et al. Mar 2006 A1
20060066572 Yumoto et al. Mar 2006 A1
20060078176 Abiko et al. Apr 2006 A1
20060083411 Benkley Apr 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060110537 Huang et al. May 2006 A1
20060140461 Kim et al. Jun 2006 A1
20060144953 Takao Jul 2006 A1
20060170528 Funushige et al. Aug 2006 A1
20060181521 Perrault et al. Aug 2006 A1
20060182319 Setlank et al. Aug 2006 A1
20060187200 Martin Aug 2006 A1
20060210082 Devadas et al. Sep 2006 A1
20060214512 Iwata Sep 2006 A1
20060214767 Carrieri Sep 2006 A1
20060239514 Watanabe et al. Oct 2006 A1
20060249008 Luther Nov 2006 A1
20060259873 Mister Nov 2006 A1
20060261174 Zellner et al. Nov 2006 A1
20060267125 Huang et al. Nov 2006 A1
20060267385 Steenwyk et al. Nov 2006 A1
20060271793 Devadas et al. Nov 2006 A1
20060285728 Leung et al. Dec 2006 A1
20060287963 Steeves et al. Dec 2006 A1
20070031011 Erhart et al. Feb 2007 A1
20070036400 Watanabe et al. Feb 2007 A1
20070038867 Verbauwhede et al. Feb 2007 A1
20070057763 Blattner et al. Mar 2007 A1
20070058843 Theis et al. Mar 2007 A1
20070067828 Bychkov Mar 2007 A1
20070076926 Schneider et al. Apr 2007 A1
20070076951 Tanaka et al. Apr 2007 A1
20070086630 Setlak et al. Apr 2007 A1
20070086634 Setlak et al. Apr 2007 A1
20070090312 Stallinga et al. Apr 2007 A1
20070138299 Mitra Jun 2007 A1
20070154072 Taraba et al. Jul 2007 A1
20070160269 Kuo Jul 2007 A1
20070180261 Akkermans et al. Aug 2007 A1
20070196002 Choi et al. Aug 2007 A1
20070198141 Moore Aug 2007 A1
20070198435 Siegal et al. Aug 2007 A1
20070228154 Tran Oct 2007 A1
20070237366 Maletsky Oct 2007 A1
20070237368 Bjorn et al. Oct 2007 A1
20070248249 Stoianov Oct 2007 A1
20070253607 Higuchi Nov 2007 A1
20070290124 Neil et al. Dec 2007 A1
20080002867 Mathiassen et al. Jan 2008 A1
20080006453 Hotelling Jan 2008 A1
20080013805 Sengupta et al. Jan 2008 A1
20080019578 Saito et al. Jan 2008 A1
20080049987 Champagne et al. Feb 2008 A1
20080049989 Iseri et al. Feb 2008 A1
20080063245 Benkley et al. Mar 2008 A1
20080069412 Champagne et al. Mar 2008 A1
20080126260 Cox et al. May 2008 A1
20080169345 Keane et al. Jul 2008 A1
20080170695 Adler et al. Jul 2008 A1
20080175450 Scott et al. Jul 2008 A1
20080178008 Takahashi et al. Jul 2008 A1
20080179112 Qin et al. Jul 2008 A1
20080185429 Saville Aug 2008 A1
20080201265 Hewton Aug 2008 A1
20080205714 Benkley et al. Aug 2008 A1
20080219521 Benkley et al. Sep 2008 A1
20080222049 Loomis et al. Sep 2008 A1
20080223925 Saito et al. Sep 2008 A1
20080226132 Gardner Sep 2008 A1
20080240523 Benkley et al. Oct 2008 A1
20080240537 Yang et al. Oct 2008 A1
20080244277 Orsini et al. Oct 2008 A1
20080267462 Nelson et al. Oct 2008 A1
20080279373 Erhart et al. Nov 2008 A1
20080317290 Tazoe Dec 2008 A1
20090001999 Douglas Jan 2009 A1
20090083850 Fadell et al. Mar 2009 A1
20090130369 Huang et al. May 2009 A1
20090146970 Lowles et al. Jun 2009 A1
20090153297 Gardner Jun 2009 A1
20090154779 Satyan et al. Jun 2009 A1
20090155456 Benkley et al. Jun 2009 A1
20090169071 Bond et al. Jul 2009 A1
20090174974 Huang et al. Jul 2009 A1
20090212902 Haddock Aug 2009 A1
20090218698 Lam Sep 2009 A1
20090237135 Ramaraju et al. Sep 2009 A1
20090252384 Dean et al. Oct 2009 A1
20090252385 Dean et al. Oct 2009 A1
20090252386 Dean et al. Oct 2009 A1
20090256825 Klinghult et al. Oct 2009 A1
20090279742 Abiko Nov 2009 A1
20090319435 Little et al. Dec 2009 A1
20090324028 Russo Dec 2009 A1
20100026451 Erhart et al. Feb 2010 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100083000 Kesanupalli et al. Apr 2010 A1
20100097080 Kobayashi et al. Apr 2010 A1
20100117794 Adams et al. May 2010 A1
20100119124 Satyan May 2010 A1
20100123675 Ippel May 2010 A1
20100127366 Bond et al. May 2010 A1
20100176823 Thompson et al. Jul 2010 A1
20100176892 Thompson et al. Jul 2010 A1
20100177940 Thompson et al. Jul 2010 A1
20100180136 Thompson et al. Jul 2010 A1
20100189314 Benkley et al. Jul 2010 A1
20100208953 Gardner et al. Aug 2010 A1
20100244166 Shibuta et al. Sep 2010 A1
20100272329 Benkley Oct 2010 A1
20100284565 Benkley et al. Nov 2010 A1
20110002461 Erhart et al. Jan 2011 A1
20110018556 Le et al. Jan 2011 A1
20110083018 Kesanupalli et al. Apr 2011 A1
20110083170 Kesanupalli et al. Apr 2011 A1
20110090047 Patel Apr 2011 A1
20110102567 Erhart May 2011 A1
20110102569 Erhart May 2011 A1
20110165393 Bayne et al. Jul 2011 A1
20110175703 Benkley Jul 2011 A1
20110176307 Benkley Jul 2011 A1
20110182486 Valfridsson et al. Jul 2011 A1
20110214924 Perezselsky et al. Sep 2011 A1
20110267298 Erhart et al. Nov 2011 A1
20110298711 Dean et al. Dec 2011 A1
20110304001 Erhart et al. Dec 2011 A1
20120044639 Garcia Feb 2012 A1
20120189166 Russo Jul 2012 A1
20120189172 Russo Jul 2012 A1
20120206586 Gardner Aug 2012 A1
20120242635 Erhart et al. Sep 2012 A1
20120256280 Erhart Oct 2012 A1
20120257032 Benkley Oct 2012 A1
20120308092 Benkley et al. Dec 2012 A1
20130004695 Kim et al. Jan 2013 A1
20130021044 Thompson et al. Jan 2013 A1
20130108124 Wickboldt et al. May 2013 A1
20130169590 Wickboldt et al. Jul 2013 A1
Foreign Referenced Citations (79)
Number Date Country
2213813 Oct 1973 DE
0929028 Jan 1998 EP
0905646 Mar 1999 EP
0973123 Jan 2000 EP
1018697 Jul 2000 EP
1139301 Oct 2001 EP
1531419 May 2005 EP
1533759 May 2005 EP
1538548 Jun 2005 EP
1624399 Feb 2006 EP
1775674 Apr 2007 EP
1939788 Jul 2008 EP
2331613 May 1999 GB
2480919 Dec 2011 GB
2487661 Aug 2012 GB
2489100 Sep 2012 GB
2490192 Oct 2012 GB
2490593 Nov 2012 GB
2474999 Feb 2013 GB
2496055 May 2013 GB
01094418 Apr 1989 JP
04158434 Jun 1992 JP
2005011002 Jan 2005 JP
2005242856 Sep 2005 JP
2007305097 Nov 2007 JP
2010103240 Jun 2010 JP
200606745 Feb 2006 TW
200606746 Feb 2006 TW
200614092 May 2006 TW
200617798 Jun 2006 TW
200620140 Jun 2006 TW
200629167 Aug 2006 TW
200828131 Jul 2008 TW
200928922 Jul 2009 TW
I315852 Oct 2009 TW
I328776 Aug 2010 TW
WO 9003620 Apr 1990 WO
WO 9858342 Dec 1998 WO
WO 9928701 Jun 1999 WO
WO 9943258 Sep 1999 WO
WO 0122349 Mar 2001 WO
WO 0194902 Dec 2001 WO
WO 0194902 Dec 2001 WO
WO 0195304 Dec 2001 WO
WO 0211066 Feb 2002 WO
WO 0247018 Jun 2002 WO
WO 0247018 Jun 2002 WO
WO 0261668 Aug 2002 WO
WO 02077907 Oct 2002 WO
WO 02093239 Nov 2002 WO
WO 02099520 Dec 2002 WO
WO 03063054 Jul 2003 WO
WO 03075210 Sep 2003 WO
WO 2004066194 Aug 2004 WO
WO 2004066693 Aug 2004 WO
WO 2005104012 Nov 2005 WO
WO 2005106774 Nov 2005 WO
WO 2005106774 Nov 2005 WO
WO 2006040724 Apr 2006 WO
WO 2006041780 Apr 2006 WO
WO 2007011607 Jan 2007 WO
WO 2008033264 Mar 2008 WO
WO 2008033264 Mar 2008 WO
WO 2008033265 Jun 2008 WO
WO 2008033265 Jun 2008 WO
WO 2008137287 Nov 2008 WO
WO 2009002599 Dec 2008 WO
WO 2009002599 Dec 2008 WO
WO 2009029257 Jun 2009 WO
WO 2009079219 Jun 2009 WO
WO 2009079221 Jun 2009 WO
WO 2009079262 Jun 2009 WO
WO 2010034036 Mar 2010 WO
WO 2010036445 Apr 2010 WO
WO 2010143597 Dec 2010 WO
WO 2011088248 Jan 2011 WO
WO2011088252 Jan 2011 WO
WO 2011053797 May 2011 WO
WO 2011126262 Oct 2011 WO
Non-Patent Literature Citations (19)
Entry
Matsumoto et al., Impact of Artificial “Gummy” Fingers on Fingerprint Systems, SPIE 4677 (2002), reprinted from cryptome.org.
Maltoni, “Handbook of Fingerprint Recognition”, XP002355942 Springer, New York, USA, Jun. 2003 pp. 65-69.
Vermasan, et al., “A500 dpi AC Capacitive Hybrid Flip-Chip CMOS ASIC/Sensor Module for Fingerprint, Navigation, and Pointer Detection With On-Chip Data Processing”, IEEE Journal of Solid State Circuits, vol. 38, No. 12, Dec. 2003, pp. 2288-2294.
Ratha, et al. “Adaptive Flow Orientation Based Feature Extraction in Fingerprint Images,” Pattern Recognition, vol. 28 No. 11, 1657-1672, Nov. 1995.
Ratha, et al., “A Real Time Matching System for Large Fingerprint Databases,” IEEE, Aug. 1996.
Suh, et al., “Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random Functions”, Computer Architecture, 2005, ISCA '05, Proceedings, 32nd International Symposium, Jun. 2005 (MIT Technical Report CSAIL CSG-TR-843, 2004.
Rivest, et al., “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems”, Communication of the ACM, vol. 21 (2), pp. 120-126. (1978).
Hiltgen, et al., “Secure Internet Banking Authentication”, IEEE Security and Privacy, IEEE Computer Society, New York, NY, US, Mar. 1, 2006, pp. 24-31, XP007908655, ISSN: 1540-7993.
Hegt, “Analysis of Current and Future Phishing Attacks on Internet Banking Services”, Mater Thesis. Techische Universiteit Eindhoven—Department of Mathematics and Computer Science May 31, 2008, pp. 1-149, XP002630374, Retrieved from the Internet: URL:http://alexandria.tue.nl/extral/afstversl/wsk-i/hgt2008.pdf [retrieved on Mar. 29, 2011] *pp. 127-134, paragraph 6.2*.
Gassend, et al., “Controlled Physical Random Functions”, In Proceedings of the 18th Annual Computer Security Conference, Las Vegas, Nevada, Dec. 12, 2002.
Bellagiodesigns.com (Inernet Archive Wayback Machine, www.bellagiodesigns.com date: Oct. 29, 2005).
Wikipedia (Mar. 2003). “Integrated Circuit,” http://en.wikipedia.org/wiki/integrated—circuit. Revision as of Mar. 23, 2003.
Wikipedia (Dec. 2006). “Integrated circuit” Revision as of Dec. 10, 2006, http://en.widipedia.org/wiki/Integrated—circuit.
Closed Loop Systems, The Free Dictionary, http://www.thefreedictionary.com/closed-loop+system (downloaded Dec. 1, 2011).
Feedback: Electronic Engineering, Wikipedia, p. 5 http://en.wikipedia.org/wiki/Feedback#Electronic—engineering (downloaded Dec. 1, 2011).
Galy et al. (Jul. 2007) “A full fingerprint verification system for a single-line sweep sensor.” IEEE Sensors J., vol. 7 No. 7, pp. 1054-1065.
U.S. Appl. No. 12/916,000, filed Oct. 29, 2010.
U.S. Appl. No. 13/099,983, filed May 3, 2011.
U.S. Appl. No. 13/454,432, filed Apr. 24, 2012.
Related Publications (1)
Number Date Country
20110102567 A1 May 2011 US
Provisional Applications (1)
Number Date Country
61256908 Oct 2009 US