The present invention is directed generally to an antenna for transmitting and receiving electromagnetic signals, and more specifically to an antenna integrated with certain components for receiving and transmitting the electromagnetic signals via the antenna.
It is known that antenna performance is dependent on the size, shape, and material composition of constituent antenna elements, as well as the relationship between the wavelength of the received/transmitted signal and certain antenna physical parameters (that is, length for a linear antenna and diameter for a loop antenna). These relationships and physical parameters determine several antenna performance characteristics, including: input impedance, gain, directivity, signal polarization, radiation resistance and radiation pattern.
Generally, an operable antenna should have a minimum physical antenna dimension on the order of a half wavelength (or a quarter wavelength above a ground plane) (or a multiple thereof) of the operating frequency to limit energy dissipated in resistive losses and maximize transmitted energy. A quarter wavelength antenna (or multiple thereof) operative above a ground plane, exhibit properties similar to a half wavelength antenna. Generally, communications product designers prefer an efficient antenna that is capable of wide bandwidth and/or multiple frequency band operation, electrically matched to the transmitting and receiving components of the communications system, and operable in multiple modes (e.g., selectable signal polarizations and selectable radiation patterns).
Certain antennas, such as a meanderline antenna described below, present an electrical dimension that is not equivalent to a physical dimension of the antenna. Thus, such antennas should exhibit an electrical dimension that is a half wavelength (or a quarter wavelength above a ground plane) or a multiple thereof.
Quarter wavelength antennas operable in conjunction with a ground plane are commonly used as they present smaller physical dimensions than a half wavelength antenna at the antenna resonant frequency. But, as the resonant frequency of the signal to be received or transmitted decreases, the antenna dimensions proportionally increase. The resulting larger antenna, even at a quarter wavelength, may not be suitable for use with certain communications devices, especially portable and personal communications devices intended to be carried by a user.
A meanderline-loaded antenna (MLA) represents a slow wave antenna structure where the physical dimensions are not equal to the effective electrical dimensions. Such an antenna de-couples the conventional relationship between the antenna physical length and resonant frequency, permitting use of such antennas in applications where space for a conventional antenna is not available. Generally, a slow-wave structure is defined as one in which the phase velocity of the traveling wave is less than the free space velocity of light. The wave velocity is the product of the wavelength and the frequency and takes into account the material permittivity and permeability, i.e., c/((sqrt(εc)sqrt(μc))=λf. Since the frequency remains unchanged during propagation through a slow wave structure, if the wave travels slower than the speed of light (i.e., the phase velocity is lower), the wavelength within the structure is lower than the free space wavelength. Thus, for example, a half wavelength slow wave structure is shorter than a half wavelength structure where the wave propagates at the speed of light (c). Slow wave structures can be used as antenna elements (i.e., feeds) or as antenna radiating structures.
Since the phase velocity of a wave propagating in a slow-wave structure is less than the free space velocity of light, the effective electrical length of these structures is greater than the effective electrical length of a structure propagating a wave at the speed of light. The resulting resonant frequency for the slow-wave structure is correspondingly increased. Thus if two structures are to operate at the same resonant frequency, as a half-wave dipole for instance, the structure propagating the slow wave is physically smaller than the structure propagating the wave at the speed of light.
Slow wave structures are discussed by A. F. Harvey in his paper entitled Periodic and Guiding Structures at Microwave Frequencies, in the IRE Transactions on Microwave Theory and Techniques, January 1960, pp. 30-61 and in the book entitled Electromagnetic Slow Wave Systems by R. M. Bevensee published by John Wiley and Sons, copyright 1964. Both of these references are incorporated by reference herein.
A typical meanderline-loaded antenna (also known as a variable impedance transmission line (VITL) antenna) is disclosed in U.S. Pat. No. 5,790,080. The antenna comprises two vertical conductors and a horizontal conductor, with a gap separating each vertical conductor from the horizontal conductor.
The antenna further comprises one or more meanderline variable impedance transmission lines electrically bridging the gap between the horizontal conductor and each vertical conductor. Each meanderline coupler is a slow wave transmission line structure carrying a traveling wave at a velocity less than the free space velocity. Thus the effective electrical length of the slow wave structure is considerably greater than it's actual physical length. The relationship between the physical length and the electrical length is given by
le=εeff×lp
where le is the effective electrical length, lp is the actual physical length, and εeff is the dielectric constant (εc) of the dielectric material containing the transmission line. By using meanderline structures, smaller antenna elements can be employed to form an antenna having, for example, quarter-wavelength properties.
A schematic representation of a prior art meanderline-loaded antenna 10, is shown in a perspective view in
The meanderline couplers (also referred to as slow wave structures) electrically bridge the gaps 18 and, in one embodiment, have controllably adjustable lengths for changing the performance characteristics of the meanderline-loaded antenna 10. In one embodiment of a meanderline coupler, segments of the meanderline transmission line can be switched in or out of the circuit with negligible loss, to change the effective electrical length of the meanderline coupler, thereby changing the effective antenna length and thus the antenna performance characteristics. The switching devices can be located in high impedance sections of the meanderline transmission line, to minimize current through the switching devices, limiting dissipation losses and maintaining the antenna efficiency.
Like all antennas, the operational parameters of the meanderline-loaded antenna 10 are affected by the wavelength of the input signal (i.e., the signal to be transmitted by the antenna) relative to the antenna effective electrical length (i.e., the sum of the meanderline coupler lengths plus the antenna element lengths). According to the antenna reciprocity theorem, the antenna operational parameters are also equally affected by the received signal frequency. Two of the various modes in which the antenna can operate are discussed below.
The meanderline coupler 20 of
As shown in
The sections 26 are relatively close to the substrate 24 (and thus the plate 25) to create a lower characteristic impedance. The sections 27 are a controlled distance from the substrate 24, wherein the distance determines the characteristic impedance and frequency characteristics of the section 27 in conjunction with the other physical characteristics of the folded transmission line 22.
The meanderline coupler 20 includes terminals 40 and 42 for connection to the elements of the meanderline-loaded antenna 10. Specifically,
The operating mode of the meanderline-loaded antenna 50 (see
A second exemplary operational mode for the meanderline-loaded antenna 50 is illustrated in
Generally, the meanderline loaded antenna exhibits monopole-like characteristics at a first frequency and loop-like characteristics at a second frequency where there is a loose relationship between the two frequencies, however, the relationship is not necessarily a harmonic relationship. A meanderline-loaded antenna constructed according to
One important antenna operational parameter is the antenna input impedance, comprising resistive and reactive components that are presented at the antenna input terminals. The resistive component results from antenna radiation and ohmic losses. The reactive component stores energy within the antenna. It is desirable for the resistive component to be constant at the antenna resonant frequency and to have a moderate value, e.g., 50 ohms, at this frequency. The magnitude of the reactive component should be small, ideally zero, to limit the energy stored in the antenna. For an antenna operative over a band of frequencies or at several disparate frequencies, it is desired that the input impedance be about 50 ohms over the frequency range of interest and for the reactive component to be minimal over this same range. The 50 ohm value is conventional in the art, as explained below.
Connecting an antenna to other communications components presents several physical and electrical interface challenges, whether the antenna is operative with spatially proximate communications components such as in a portable communications device, or physically distant from these components such as when mounted on an antenna mast above the earth's surface. For effective operation of the antenna and the communications device, these challenges must be resolved.
In any antenna installation, when operating in a receiving mode, an antenna 70 is typically connected to a filter 72 by a transmission line 73. See
In the transmitting mode, the antenna 70 is connected to a power amplifier 78 (via a transmission line 79) for boosting the signal strength prior to radiation from the antenna 70. See
As mentioned above, to minimize electrical losses, it is known to match an output impedance of the filter 72 to an input impedance of a the transmission line 73 (typically 50 ohms), and to match an output impedance of the transmission line 73 (again 50 ohms) to an antenna input impedance. The matching is accomplished by one or both of a matching network 80 associated with the filter 72 and a matching network 82 associated with the antenna 70. Although exact impedance matching of such components is academically desired, pragmatically it is known that two components can be considered to be matched if the impedance values are within a range of about 25% to 50% of either impedance value.
A filter, such as the filter 72, often possesses a negative or capacitive reactance at its output terminals, whereas an antenna (for instance, a loop antenna) may present an inductive or positive reactance at its input terminals. When the filter 72 and the antenna 70 are physically separated and connected with the transmission line 73, as in
Likewise, the filter 72 requires the matching components 80 to present a conjugate match to to the transmission line 73, while transforming the real part of the impedance to 50 ohms to match the transmission line impedance. Effecting these two impedance matching requirements permits maximally efficient operation of the filter 72 and antenna 70 with the intervening transmission line 73. The matching components 80 and 82 can be connected at any point or break in the transmission line 73. Unfortunately, the added matching components add cost and additional power loss, resulting in unrecoverable signal losses to heat in the matching components.
Similarly, a power amplifier output impedance is matched to the antenna input impedance through a matching network 84 or the matching network 82. Certain power amplifiers (also referred to as RF (radio frequency) amplifiers since they operate on RF signals) are comprised of a differential output transistor pair. Thus the output signal from these amplifiers must be converted to a single ended drive to interface with the 50-ohm transmission line 79, which in turn connects to the antenna 70. A balun is a device that can be used to convert from a differential output to a single-ended output.
In the industry there is an historical reliance on a 50-ohm impedance match between the antenna and other front end components (e.g., filter, amplifier). The historical importance of the 50-ohm impedance match is predicted on the impedance characteristics of certain transmission lines comprising dielectric materials and two electrical conductors arranged in coaxial geometry. The transmission lines are designed to minimize losses over long distances. For this geometry, the optimal transmission line impedance is calculated to be in the range of 50 to 75 ohms. Thus this value has defined the 50 ohm impedance matching between the antenna and other font end components when connected by a transmission line.
Since small portable devices rely on very short transmission lines due to the proximity of the antenna and the front end components, there is no need to require the standard impedance of 50 ohms between these elements. There are also advantages to be gained, i.e., minimizing losses, by avoiding the impedance transformation from the amplifier output stage to 50 ohms and then reconversion from 50 ohms to the antenna impedance at resonance, which is often less than 50 ohms. It is therefore advisable to connect the antenna to the amplifier or the filter through an impedance matching element of other than 50 ohms.
In addition to the electrical impedance matching, physical interface issues are important whenever an antenna is installed proximate other components of the communications device. It is necessary to properly interface the device elements to limit deleterious component interactions. The transmission line connecting the components must be properly routed, and there are also component shielding issues to consider. These design concerns add cost and complexity to the design process, and also to the cost of debugging the device to resolve problems caused by unexpected component interactions.
The same issues of physical and electrical interfacing are present in radio frequency transmitting and receiving installations utilizing a mast-based antenna connected via a transmission line to ground-based receiving and transmitting components typically housed in a shelter, enclosure or cabinet at the base of the antenna mast or tower. Such installations are used for long distance communications. Antennas for several different wireless services or antennas operating at different frequencies for the same wireless service, frequently share the antenna mast. With the proliferation of wireless devices and the base station antennas to service them, and the attendant crowding of the RF spectrum, co-interference caused by spatially close wireless service antennas operating at adjacent or nearby spectral frequencies is an increasingly serious problem.
At mast sites, or any site where radio services are co-located, the conventional technique for reducing interference is through the use of in-line filters providing any of the known filter functions, such as low pass, high pass, bandpass, band reject, notch, diplex or duplex. These filters are generally purchased from suppliers other than the antenna supplier and thus must be mechanically fitted to and electrically matched (i.e., impedance matched) to the transmission line characteristics and to the antenna. The filters are typically co-located with the receiver/transmitter equipment or disposed in-line, that is, within the transmission line. The filter can be tunable under control of the receiver/transmitter such that as the receiver or transmitter is tuned, the appropriate frequency components are passed or blocked by the filter. Whether located in-line or with the receiver/transmitter, additional space is required to accommodate the filters. In the latter situation, space must be made available at the base of the tower, where it is at a premium. In-line filters require special cables and connectors to connect the filter into the transmission line. These connectors can become a source of interfering radiation for other nearby transmitting and receiving devices. Signal leakage is especially prevalent at the cable connectors and increases as the cable deteriorates due to water intrusion and other weathering effects.
To further reduce interference, high isolation transmission lines are employed between the antenna at the top of the mast and the receiving/transmitting equipment at ground level. The transmission lines, which are by necessity expensive and bulky to achieve the required high-isolation properties, are designed to prevent the unintended reception of interfering signals from nearby transmitting antennas and nearby leaking transmission lines. The high-isolation lines are also designed to limit the outgoing RF leakage that may cause problem for adjacent transmission lines and receiving/transmitting equipment.
The transmission lines themselves are also problematic as water leakage, physical damage (e.g. gouging or denting of the cable) or loose connectors between line segments can change the transmission line impedance and thereby affect the line's performance. At an exemplary antenna tower, it is determined that the transmission line between the tower and the receiver/transmitter is particularly susceptible to interference from another antenna mounted on the tower and operating at a frequency f. To remedy this situation, a notch filter is installed in the transmission line. The installation requires opening the high-isolation transmission line and installing the notch filter to attenuate the troublesome signal. High isolation connectors are required for this installation, and upon completion, the system performance must be tested, as it is known that the installation of filters may disrupt and modify the transmission line characteristics and thus the performance of the entire system.
Antennas employed in these wireless applications as mounted on towers and masts include any of the well known antenna types: half-wave dipoles, loops, horns, patches, parabolic dishes, etc. The antenna selected for any given application is dependent of the requirements of the system, as each antenna offers different operational characteristics, including: radiation pattern, efficiency, polarization, input impedance, radiation resistance, gain, directivity, etc. A meanderline-loaded antenna can also be used in these installations.
The present invention comprises an apparatus for receiving radio frequency signals, comprising an antenna having an input reactance and a filter having an output reactance. The input reactance and the output reactance are opposite in sign and substantially equal in magnitude.
The features of the antenna constructed according to the teachings of the present invention will be apparent from the following more particular description of the invention, as illustrated in the accompanying drawings, in which like reference characters refer to the same parts throughout the different figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
Before describing in detail the particular antenna and associated communications components in accordance with the present invention, it should be observed that the present invention resides primarily in a novel and non-obvious combination of elements. So as not to obscure the disclosure with details that will be readily apparent to those skilled in the art, certain conventional elements and steps have been described and illustrated with lesser detail, while other elements and steps pertinent to understanding the invention have been described and illustrated in greater detail.
Integration of the antenna with certain front-end components as taught by the present invention can provide advantages in both amplifier power efficiency and antenna performance. Integration can also provide a cost advantage during product design and test due to elimination of certain component placement and interaction issues. The integration can include the antenna and the filter (in the receiving mode) and/or the antenna and the power amplifier (in the transmitting mode). It is suspected that integration has heretofore not been undertaken due to the historical reliance on the 50 ohm impedance match described above.
According to one embodiment of the present invention, the antenna 70 is driven differentially from the power amplifier 78 over a differential conductor pair 86 of
As depicted in
The meanderline antenna 50 described above is one antenna structure that can be beneficially differentially fed according to the teachings of the present invention. Additionally, loop antennas and balanced dipole antennas can benefit from a balanced feed configuration and thus are suited to the approach of the present invention. In an embodiment where one or more of the antenna, filter, power amplifier and matching components are located in close proximity, it may not be necessary to utilize a differentially-fed transmission line, requiring conversion to 50 ohms at both terminal ends of the transmission line. Instead, the components can be differentially connected directly if in close enough proximity, i.e., a feed line is not required. This suggests that in one embodiment, the amplifier, filter, power amplifier and antenna can comprise a module. The module approach provides cost and size advantages over the prior art approach of incorporating individual components into the communications device. In particular, a module consumes less space than individual elements. Also, it is unnecessary for the device designer to layout a transmission line on a printed circuit board to interconnect the elements. Further, with the module, approach, the concerns over shielding, impedance matching and other physical and electrical interface issues are avoided during device design, as they are addressed and resolved in the design and construction of the module.
Connecting pins 114 extending from the electronics module 106 through the substrate 105 carry input and output signals between the electronics module 106 and a printed circuit board on which the substrate 105 is mounted in connection with operation in a communications device. In another embodiment, the
If the antenna 104 is fed in the monopole mode, as described above, an omnidirectional radiation pattern is produced, with minimal radiation emitted in the vertical direction perpendicular to the top plate 14. The antenna 104 is operative with or without a ground plane. In the latter embodiment, a ground plane (not shown) is disposed on the substrate 105.
It is known that meanderline antennas, including the meanderline antenna 104 as illustrated in
In one embodiment, the electronics module 106 provides transmitting and receiving capability for a Bluetooth wireless link. It can be appreciated by those skilled in the art that an electronics module can be constructed to operate at any desired frequency and with any desired wireless communications protocol. For example, at an operating frequency of 2450 MHz, the distance between the substrate 105 and the top plate 14 is about 5 mm (assuming a dielectric constant for the substrate material of about 6-8. This distance provides sufficient space for an electronics module carrying the various components as described. At about 1900 MHZ, the distance increases to about 6.2 mm. Those skilled in the art recognize that selection of a substrate material with a higher dielectric constant results in a smaller distance between the top plate 14 and the substrate 105.
In yet another embodiment illustrated in
Use of the switch 121 can be avoided, as illustrated in
In another embodiment of the present invention, the prior art matching components 80 and 82 of
The integrated assembly 136 is tunable by a control signal on a control line 139 provided by the receiving components 124 (or by transmitting components in the transmitting mode) for adjusting the filter characteristics, including center frequency, bandwidth and the filter skirt roll-off (i.e., the slope of the lines defining the edges of the filter's pass band or reject band). The integrated assembly 136 can be manufactured and sold as a standard product, requiring only an impedance match to the transmission line 138. Additional filter design flexibility is provided by avoiding the requirement of matching the filter output impedance to the antenna input impedance as that impedance match is made when the integrated assembly is designed and fabricated. Also, concurrent design of the antenna and the filter as an integrated assembly allows the design of both to be optimized.
It is known that the propagation environment between the transmitter and the array of filters/antennas 136A-136C may cause scattering and mixing of the transmitted signal. Thus the phase and amplitude of the signal received at each of the array antenna elements will vary due to coherent cancellation along the propagation path. To enhance received signal detection, it may therefore be advisable to apply unique phase and/or amplitude weights to each received signal before combining. The weights are determined and applied by the signal processors 146A-146C. This technique provides dynamic frequency agility for the antenna by permitting the signal received at each filter/antenna 136A-136C to be processed separately for phase and amplitude combining and selecting. Such is the case with multiple input/multiple output (MIMO) antenna arrays that are commonly used for wireless networks having a relatively small coverage zone surrounding a base station. Such piconets are especially common in urban environments where multiple piconets are constructed to provide coverage in the high scattering environment.
This technique also allows one array to provide shared services operating in different frequency bands. For example, one region of the array can operate at a first frequency and a second region of the array can operate at a second frequency. Integration of the filter and the antenna, as in the integrated assemblies 136A-136C, avoids the conventional interconnecting coaxial cable between these elements, allowing the antenna array to be implemented with appropriate spacing between antenna elements. Appropriate element spacing cannot be practically achieved when bulky transmission line cables must be accommodated between antenna elements. In a piconet installation (also known as a picocell when referring to a cellular telephone service), multiple integrated filters/antennas are mounted on an antenna sleeve 148 of
With the integrated approach of the present invention, the filter and the element can be conveniently installed in the interior of the sleeve, without the use of interconnecting transmission lines and the problems attendant thereto. The output signal from the integrated assembly comprises a base band signal that is processed by components that are outside the antenna sleeve. Processing at the radio frequency of the received signal can be accomplished by adding signal processing components to the integrated filter antenna element assembly. To permit transmitting through the filter/element assembly, it may be necessary to dynamically control the pass band of the filter such that the transmitted signal frequency and signal bandwidth is within that pass band. Alternatively, a separate transmit antenna element can be used.
Further, in connection with the unique processing for each received signal, it may also be preferable to adjust the spectral filtering provided by the filters/antennas 136A-136C using a control signal provided to the filters/antennas 136A-136C via conductors 147A-147C. Since the function of the signal processors 146A-146C may be filtering at base band or at the carrier frequency, down conversion, decoding, etc., it is preferable for the filter function to be integral to the antenna and processor. The filtering process can be carried out in the analog or digital domain.
In addition to the described signal processing aspects, the use of an adaptable integrated filter/antenna permits certain elements in array, e.g. elements that are receiving a weak signal, to be reused by shifting their operation to a different frequency. The integrated filter/antenna can be adaptively tuned in real-time to meet the demands of multiple communications systems operating concurrently from the same antenna array. For example the teachings of the invention could be used to allow a base station antenna array to be frequency adaptive for a multiple communications systems using the same array.
Although illustrated for use with an antenna array in
In one embodiment of the present invention, applicable to both the single antenna and antenna array embodiments, the integrated assembly 136A and 136B are located at the top of a mast or tower 160 and the receiving components 124 are located in an enclosure or shelter at the base of the tower or mast 160. See
In another embodiment, placement of the power amplifier 78 (or a plurality of such power amplifiers in an antenna array embodiment) at the top of the mast 160 proximate the integrated assembly 136, reduces signal power losses that according to the prior art are experienced along the prior art coaxial cables extending between transmitting components 170 and the integrated assembly 136. See
According to the prior art, high-power transmitting antennas use a feed line to connect the mast-based antenna to the ground-based power amplifier. The feed line exhibits a characteristic impedance that is selected to minimize loss for transmission over relatively large distances. According to the present invention, the power 78 amplifier and the integrated assembly 136 are collocated at the top of the mast 170. Instead of providing high power transmission signals to the power amplifier 78, exciter or excitation signals are supplied from the ground. The excitation signals have a lower power level than the transmission signals and can therefore be transmitted by optical means, such as via fiber optic cable or optical waveguide. Thus losses in the prior art copper transmission line are avoided, and less input power is required due to reduced power losses in the optically-based feed line.
When used in an array embodiment, the technique is also advantageous since each antenna array element can be driven by a dedicated power amplifier having a lower output power rating than the power amplifiers used in the prior art to drive all elements of the array. As is known in the art, a lower rated power amplifier is generally more efficient and available at a lower cost than a high-power rated version. The power rating of each amplifier, Pi, can be reduced by the number of elements in the array N to Pi=P/N, where P is the total array power. Several system level advantages are obtained by using individual power amplifiers. The array is less susceptible to a complete outage, and thus a shutdown of the communications system operative with the array, due to a main power amplifier failure. Array reliability is improved and operational redundancy is provided. Inoperative array elements (i.e., integrated filters/antennas) are removed from service with only marginal impact to array operation. The system power efficiency is improved due to inherent efficiency advantages of several smaller power amplifier over a single large amplifier. Relatively low power amplifiers have a lower cost than high power units.
With the power amplifier integrated with the antenna, a transmission line capable of providing a high power signal output from the power amplifier to the antenna is not required. Instead, a fiber optic cable can be used to supply the excitation signal to the power amplifier. There are additional advantages to be gained from the use of a fiber optic cable, applicable to both the single antenna and the antenna array embodiment of the present invention. A fiber optic cable provides immunity to radio frequency interference from nearby radiators, both intentional and unintentional radiators. When operative in the receiving mode, even when high isolation transmission lines are used according to the prior art, interference can be induced into the high isolation line (for example, at the point where connectors attach in-line filters to the transmission line) and then presented to the receiver input stage. The use of a fiber optic transmission line eliminates this interference. Losses in the fiber optic cable are also lower than losses experienced in coaxial cable. Therefore the output power of the transmitter can be reduced in the transmitting mode and the signal power presented to the receiver is increased in the receiving mode. Further, the fiber optic cable does not leak radio frequency energy that can cause interference problems at nearby transmitting and receiving equipment. The RF electrical isolation afforded by the fiber optic cable also inherently provides the additional advantage of reducing disruptions caused by lightning strikes at the tower or mast, especially if the communications system is battery-powered.
For those installations using a fiber optic cable and requiring the provision of electrical power from the base of the mast 160 to the power amplifier 78 (or the other elements of the integrated assembly 136), the can be provided as DC or AC power over a separate power cable from the base of the tower or mast 160.
As applied to the antenna array embodiment discussed above, a separate fiber optic cable can service each integrated assembly 136 of the array and thereby provide signals of different amplitude and phase to each element to effect beam steering. Alternatively, signal multiplexing (for example, wavelength division multiplexing) can be used to drive each integrated assembly 136 from a single fiber optic cable.
In another embodiment where the transmission line 138 is not a fiber optic cable, the filter within the integrated assembly 136 attenuates out-of-band frequency components that may be induced in the transmission line 138, preventing transmission of such components by the antenna of the integrated assembly 136. Such interfering signals can be induced in the transmission line 138 at connector joints, for example. It is known that even such out-of-band frequency components in the transmitted signal can degrade performance at the received in-band frequencies, due to the effect of these out-of-band signals on receiver sensitivity. To filter the out-of-band components, the filter comprises a band pass filter with the pass band defined by the transmitted signal spectrum such that the out-of-band components are attenuated. In another example, the filter comprises the same band pass filter with the addition of a notch at the frequency of a nearby emitter, or at the frequency of an intermodulation product formed in the transmission line 138.
With the filter integrated with the antenna, a high isolation transmission line is not required since the filter attenuates the out of band signals. Thus a less expensive transmission line can be used in lieu of the prior art high isolation lines.
Two additional embodiments of the present invention are illustrated in
The
It is known that an antenna inherently provides a filtering function due to its limited performance bandwidth. Thus in the embodiments described above, analysis of the filtering capabilities of the integrated assembly can include the filtering function as determined by the antenna, plus the additional filtering provided by the filter. Certain antennas are dynamically tunable, such as a hula hoop antenna. The capacitance between the two terminals of the hula hoop is controllable by placing a variable capacitor across the terminals. Thus the antenna is tunable and thereby provides a tunable filtering function. Further, frequency selective antennas can by dynamically tuned to enhance the selectivity of the antenna against nearby in-band interfering signals. Likewise, the filter associated with the antenna element, as taught by the present invention, comprises a tunable filter by the inclusion of tunable components that change the resonant frequency and/or the bandwidth of the filter.
The dimensions and shapes of the various antenna elements and their respective features as described herein can be modified to permit operation in other frequency bands with other operational characteristics, including bandwidth, radiation resistance, input impedance, etc. Generally, changing the size of the various features changes only the antenna resonant frequency. The antenna can therefore be scaled to another resonant frequency by dimensional variation. For example, increasing the antenna volume, e.g., increasing the distance between the top plate 12 and the ground plane 16 tends to decrease the resonant frequency. Also, when the height is increased, the size of the top plate 12 should also be increased to provide the appropriate capacitive loading at the new resonant frequency.
While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalent elements may be substituted for elements thereof without departing from the scope of the present invention. The scope of the present invention further includes any combination of the elements from the various embodiments set forth herein. In addition, modifications may be made to adapt a particular situation to the teachings of the present invention without departing from its essential scope thereof. For example, different sized and shaped elements can be employed to form an antenna according to the teachings of the present invention. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This is a divisional application of Ser. No. 10/787,549, filed on Feb. 26, 2004, which claims the benefit of the provisional application filed on Feb. 26, 2003, and assigned application No. 60/450,191. This application further claims the benefit of the non-provisional patent application filed on Feb. 4, 2002, and assigned application Ser. No. 10/066,937, which claims the benefit of the provisional application filed on Feb. 2, 2001 and assigned application No. 60/266,245.
Number | Date | Country | |
---|---|---|---|
60450191 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10787549 | Feb 2004 | US |
Child | 11456546 | Jul 2006 | US |