The present invention relates to fuel cell power systems.
Fuel cell power systems include a number of components, including the fuel cell stack, the fuel supply, a pressure regulator to control the flow of the fuel supply, and various tubes and fittings that serve as manifolds for distribution of fuel through the system. Fuel cells typically use hydrogen gas as a fuel but other fuels such as methyl alcohol (methanol) or reformed hydrocarbons (reformate) may be used.
The present invention is an integrated fuel cell system, comprised of a fuel cell stack or stacks, an integrated, multi-function mounting plate, fuel supply unit(s), a distribution manifold, a gas pressure regulator, and a cover. By integrating components, the present invention helps improve fuel cell operation, and lowers component count and assembly costs.
a is a perspective view of a fuel supply unit with a bayonet mount.
b is a perspective view of another fuel supply unit with a spring-loaded mount.
The present invention is an integrated fuel cell power system 10, comprised of a fuel cell stack 20, an integrated, multi-function mounting plate 30, fuel supply unit(s) 40, 42, a distribution manifold 50, a gas pressure regulator 60, and a cover 70.
As shown in
As shown in
Second, integrated within or attached to the mounting plate is a fuel distribution manifold 50, and a gas pressure regulator 60. The manifold receives fuel from the fuel supply units 40, 42. From the manifold, the fuel passes through the regulator 60 and into the stack 20. The distribution manifold contains valves 52, 54 for receiving fuel from the fuel supply units 40, 42. These valves engage complementary valve 44 attached to the fuel supply unit(s). Both manifold valves 52, 54 and the fuel supply unit valve 44 are self-sealing, so that when the fuel supply units are removed from the manifold the valves close, ensuring that no gas will escape.
The manifold 50 distributes high pressure gas to the pressure regulator 60,
The pressure regulator 60 reduces the pressure of the fuel gas so that it is suitable for use by the fuel cell stack. Regulators of a suitable type can be supplied commercially from different vendors, for example: Air-Logic, 5102 Douglass Avenue, Racine, Wis. The regulated fuel is then conveyed out of the pressure regulator to the fuel cell stack 20 by passing from the pressure regulator through the regulated gas pressure port 64 of the distribution manifold 50 and then through internal passage 57 and into the fuel cell stack by way of the fuel cell inlet port 66. The regulated gas can also be transmitted to the stack 20 from the regulator 60 through external piping hoses or tubes. The output pressure of the regulator is adjusted or set by means of a set screw, knob, dial, or other output control means. The pressure regulator can but need not be integrated with the mounting plate.
The mounting plate can be expanded to accommodate more than one set of manifolds and pressure regulators, so that more than one set of fuel cell stacks can be used with a single plate.
The fuel supply units can take many forms. As shown in
The system of the present invention can be operated continuously, meaning that replacement fuel sources can be removed and reinstalled while the system is operating, resulting in uninterrupted use. In one embodiment of the present invention, both fuel supply units are removable fuel units, and a single spent fuel unit can be removed and replaced while the system operates off the other one. In an alternative embodiment, one fuel supply unit or cartridge is permanent and the other is removable. The system can run off the permanent supply while the removable supply is replaced with a fresh cartridge or other supply unit. The permanent supply can then be refilled from fuel in the removable unit. The permanent supply can take the form of a pressurized gas bottle, a hydride cartridge, bladder, or other suitable container. Even those with little or no technical experience should have little trouble replacing cartridges or other supply units within the present invention.
The fuel supply units are recharged or refilled using standard methods used in the industry. The valve 44 opens automatically when connected to a charging or filling unit and when charged or refilled and removed from the charging or filling unit they then self seal and are ready for immediate use.
As shown in
One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not limitation. Various modifications and changes can be made to the fuel supply units, valves, pressure regulators, mounting plate and the like without departing to the scope of the present invention.
The present application is a continuation of U.S. application Ser. No. 10/126,165, filed on Apr. 18, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 10973044 | Oct 2004 | US |
Child | 11626117 | Jan 2007 | US |
Parent | 10126165 | Apr 2002 | US |
Child | 10973044 | Oct 2004 | US |