The present disclosure generally involves an integrated fuel connection for supplying fuel to a fuel nozzle assembly of a turbomachine.
Gas turbines generally operate by combusting a fuel and air mixture in one or more combustors to create a high-energy combustion gas that passes through a turbine, thereby causing a turbine rotor shaft to rotate. The rotational energy of the rotor shaft may be converted to electrical energy via a generator coupled to the rotor shaft. Each combustor generally includes fuel nozzles that provide for premixing of the fuel and air upstream of a combustion zone, as a means to keep nitrogen oxide (NOx) emissions low.
Gaseous fuels, such as natural gas, often are employed as a combustible fluid in gas turbine engines used to generate electricity. Typical fuel supply systems for providing gaseous fuels to the fuel nozzles of a combustor include a sealed connection positioned within a head end of the combustor, such that if the seal fails or otherwise permits the fuel to escape from the connection within the head end, flame holding within the head end of the combustor may occur.
Aspects and advantages are set forth below in the following description, or may be obvious from the description, or may be learned through practice.
According to one embodiment, a gas turbine is provided. The gas turbine includes a compressor, a turbine, and a combustor disposed downstream from the compressor and upstream from the turbine. The combustor includes an end cover. The combustor also includes a flange. The flange includes an internal fluid passage defined within the flange and the flange is coupled to an internal face of the end cover. A fuel port is integrally joined with the flange. The fuel port extends through the end cover between the flange and an inlet positioned outside of the end cover. The inlet of the fuel port is in fluid communication with the internal fluid passage of the flange.
According to another embodiment, a combustor for a turbomachine is provided. The combustor includes an end cover. The combustor also includes a flange. The flange includes an internal fluid passage defined within the flange and the flange is coupled to an internal face of the end cover. A fuel port is integrally joined with the flange. The fuel port extends through the end cover between the flange and an inlet positioned outside of the end cover. The inlet of the fuel port is in fluid communication with the internal fluid passage of the flange.
Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
A full and enabling disclosure of various embodiments, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to present embodiments of the disclosure, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the disclosure.
As used herein, the terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows. The term “radially” refers to the relative direction that is substantially perpendicular to an axial centerline of a particular component, the term “axially” refers to the relative direction that is substantially parallel and/or coaxially aligned to an axial centerline of a particular component, and the term “circumferentially” refers to the relative direction that extends around the axial centerline of a particular component.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Each example is provided by way of explanation, not limitation. In fact, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present disclosure covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Although exemplary embodiments of the present disclosure will be described generally in the context of a land based power generating gas turbine combustor for purposes of illustration, one of ordinary skill in the art will readily appreciate that embodiments of the present disclosure may be applied to any style or type of combustor for a turbomachine and are not limited to combustors or combustion systems for land based power generating gas turbines unless specifically recited in the claims.
Referring now to the drawings,
During operation, air 24 flows through the inlet section 12 and into the compressor 14 where the air 24 is progressively compressed, thus providing compressed air 26 to the combustor 16. At least a portion of the compressed air 26 is mixed with a fuel 28 within the combustor 16 and burned to produce combustion gases 30. The combustion gases 30 flow from the combustor 16 into the turbine 18, wherein energy (kinetic and/or thermal) is transferred from the combustion gases 30 to rotor blades (not shown), thus causing shaft 22 to rotate. The mechanical rotational energy may then be used for various purposes such as to power the compressor 14 and/or to generate electricity. The combustion gases 30 exiting the turbine 18 may then be exhausted from the gas turbine 10 via the exhaust section 20.
As shown in
In some embodiments, the head end portion 38 is in fluid communication with the high pressure plenum 34 and/or the compressor 14. One or more liners or ducts 40 may at least partially define a combustion chamber or zone 42 for combusting the fuel-air mixture and/or may at least partially define a hot gas path 44 through the combustor 16, for directing the combustion gases 30 towards an inlet to the turbine 18.
In various embodiments, the combustor 16 includes at least one fuel nozzle assembly 50. As shown in
An example embodiment of a connection for a fluid conduit 52 is illustrated in
As illustrated in
In particular embodiments, the flange 54 may extend between a first side 56 and a second side 58 opposing the first side 56. The first side 56 of the flange 54 may be positioned abutting the internal face 37 of the end cover 36, e.g., when the flange 54 is coupled to the end cover 37. In such embodiments, the abutting surfaces, e.g., the first side 56 of the flange 54 and the internal face 37 of the end cover 36, may create a potential leak path for compressed air 26 to escape from the head end 38 into the ambient environment. In order to prevent or minimize leakage of compressed air 26 from the head end 38, a sealing member (not shown) may be provided within a seal groove 76. As best seen in
Still with reference to
Embodiments of the fuel nozzle connection may be integrated in that the fuel port 60 may be integrally joined with the flange 54 such that the fuel port 60 and the flange 54 form a single unitary piece. For example, as illustrated in
As best seen in
In some embodiments, the fuel port 60 may extend through a bore 39 defined in the end cover 36. In such embodiments, the seal groove 76 may surround the bore 39 of the end cover 36. As noted above, the seal groove 76 is not necessarily formed in the internal face 37 of the end cover 36, the seal groove 76 may be provided, e.g., in the first side 56 of the flange 54. In some embodiments, the fuel port 60 may be offset from the bore 39 of the end cover 36 such that an annular passage 78 is defined between the fuel port 60 and the bore 39 of the end cover 36. For example, an external dimension of the fuel port 60, such as a diameter of the fuel port 60 in embodiments where the fuel port 60 is cylindrical, may be smaller than a corresponding dimension of the bore 39 of the end cover 36.
As shown in
As illustrated in
Still with reference to
Still with reference to
In some example embodiments, the filter 67 may be integrally joined with the orifice fitting 68. For example, the filter 67 and the orifice fitting 68 may be formed as a single piece, e.g., by casting or additive manufacturing as described above with respect to the fuel port 60 and the flange 54.
The filter 67 may include a rim 81 extending around an upstream end of the filter 67. The position of the filter 67 within the fuel port 60 may be limited by an inwardly protruding lip 74 formed within the fuel port 60, where the lip 74 defines an inner diameter less than an outer diameter of the rim 81 of the filter 67. In some embodiments, the filter 67 may be installed in the fuel port 60 by passing the filter 67 through the inlet 62 of the fuel port 60 until the rim 81 of the filter 67 abuts the lip 74 of the fuel port 60. In some embodiments, a retaining ring 72 may be provided to hold the filter 67 in place. For example, the retaining ring 72 may snap fit into a recess 78 in the fuel port 60. Further, in embodiments where the filter 67 is integrally joined with the orifice fitting 68, the filter 67 may be installed by passing the filter 67 and the orifice fitting 68 through the fuel port 60 from the inlet 62 of the fuel port 60 until the orifice fitting 68 engages the inlet 63 of the internal fluid passage 64, e.g., until external threads on the orifice fitting 68 contact internal threads on the inlet 63 of the internal fluid passage, at which point the filter 67 and the orifice fitting 68 (being integrally joined) may be screwed into the inlet 63 of the internal fluid passage 64 and secured in place with retaining ring 72.
This written description uses examples to disclose the technology, including the best mode, and also to enable any person skilled in the art to practice the technology, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the technology is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3316437 | Weins | Apr 1967 | A |
6354085 | Howell | Mar 2002 | B1 |
7703287 | Haggerty et al. | Apr 2010 | B2 |
8393154 | Gandza | Mar 2013 | B2 |
8539774 | Carlisle | Sep 2013 | B2 |
8567646 | Cray | Oct 2013 | B1 |
8662119 | Burris et al. | Mar 2014 | B2 |
8776369 | Michinishi et al. | Jul 2014 | B2 |
8950425 | Jansen | Feb 2015 | B1 |
9133770 | Henkle et al. | Sep 2015 | B2 |
9316397 | Stewart et al. | Apr 2016 | B2 |
9422899 | Kim et al. | Aug 2016 | B2 |
9429326 | Kato et al. | Aug 2016 | B2 |
9441544 | McConnaughhay et al. | Sep 2016 | B2 |
9500370 | Barker | Nov 2016 | B2 |
9650961 | Hirata | May 2017 | B2 |
20100044472 | Smith | Feb 2010 | A1 |
20110203283 | Bottcher | Aug 2011 | A1 |
20110203285 | Böttcher et al. | Aug 2011 | A1 |
20120137691 | Böttcher et al. | Jun 2012 | A1 |
20120180494 | Bailey | Jul 2012 | A1 |
20120291440 | Moehrle | Nov 2012 | A1 |
20130305725 | Berry | Nov 2013 | A1 |
20140123668 | Huntington et al. | May 2014 | A1 |
20140123669 | Huntington et al. | May 2014 | A1 |
20140216038 | Keener et al. | Aug 2014 | A1 |
20140250981 | Overby et al. | Sep 2014 | A1 |
20150000286 | LeBegue | Jan 2015 | A1 |
20150000299 | Zuo et al. | Jan 2015 | A1 |
20150052980 | Sheldon et al. | Feb 2015 | A1 |
20150082770 | Igarashi | Mar 2015 | A1 |
20150096983 | Moy et al. | Apr 2015 | A1 |
20150135720 | Papple et al. | May 2015 | A1 |
20150308349 | Rohrssen et al. | Oct 2015 | A1 |
20160223202 | Borchert et al. | Aug 2016 | A1 |
20160245513 | Buchheim | Aug 2016 | A1 |
20160281989 | Johnson | Sep 2016 | A1 |
20160341626 | Thakkar et al. | Nov 2016 | A1 |
20180142893 | Kumagai | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2362141 | Aug 2011 | EP |
2397684 | Dec 2011 | EP |
614553 | Dec 1948 | GB |
WO9919670 | Apr 1999 | WO |
WO2015012908 | Jan 2015 | WO |
Entry |
---|
European Search Report Corresponding to Application No. 18180413 dated Nov. 30, 2018. |
European Office Action Corresponding to Application No. 18180413 dated Nov. 26, 2020. |
Number | Date | Country | |
---|---|---|---|
20190017444 A1 | Jan 2019 | US |