These and other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Hereinafter, various embodiments of the present invention will be described with reference to accompanying drawings, wherein like numerals refer to like elements throughout.
The base member is made of metal having corrosion resistance to fuel such as methanol, ethanol, liquefied hydrogen, naphtha, liquefied petroleum gas, etc. or a thermoplastic resin such as polycarbonate, Peek, etc. In the discussed or other embodiments, the base member has a shape to be fitted to an installation region, i.e., a dead volume of the application. In this embodiment, the base member has a height of about 6.5 cm, a width of about 4.5 cm and a thickness of about 0.8 cm to achieve the compactness and the light weight thereof. Further, the base member is formed with a hole, i.e., an opening 107 to discharge undesired gas, e.g., carbon dioxide among fluids introduced into the chamber 101.
The chamber 101 occupies an inner whole region of the base member except the connecting portions 102, 103, 104, 105a and 105b and a fastening hole 109 for settling the base member. For example, the camber 101 has a curved-shape. The shape of the chamber 101 is formed by bending the chamber 101 at a predetermined angle (e.g., a right angle) in consideration of positions of the connecting portions 102, 103, 104, 105a and 105b such that the chamber 101 fully occupies the inside of the base member. Alternatively, the chamber 101 may be bent once or many times. Further, the shape of the chamber 101 may be varied in correspondence to shapes of the dead volume.
Further, the chamber 101 includes the first connecting portion 102 into which unreacted fuel is introduced from the fuel cell; the second connecting portions 105a and 103 to circulate the stored fuel toward the fuel cell; and the third connecting portions 104 and 105b to receive hydrogen-containing fuel from the fuel cartridge. Here, the hydrogen-containing fuel includes methanol, ethanol, liquefied hydrogen, naphtha, desulfurized gasoline, liquefied petroleum gas, etc.
The gas-liquid separator 108 serves to discharge the undesired gas such as carbon dioxide except the unreacted fuel or water introduced into the chamber 101. The gas-liquid separator 108 has an opening corresponding to the first connecting portion 102 to do not obstruct the first connecting portion 102, and installed in an inner wall of the chamber 101. Meanwhile, the gas-liquid separator 108 is made of a porous material absorbing the liquid fuel to smoothly circulate the unreacted fuel even though the fuel feeder housing 100 leans in any direction. Particularly, the gas-liquid separator 108 is made of a hydrophobic porous material that can be loaded with the fuel but not physically or chemically reacted with the fuel. For example, the gas-liquid separator 108 is made of a porous material coated with a hydrophobic material and having a pore size of about 10 μm. Alternatively, the gas-liquid separator 108 may be provided on the whole inner wall of the chamber 101.
The first connecting portion 102 serves as a passage to introduce the unreacted fuel and water from the fuel cell into the chamber 101, and is connected to an anode outlet of the fuel cell via the minimum pipe arrangement. The second connecting portions 105a and 103 serve as passages to supply the unreacted fuel stored in the chamber 101 to the fuel cell. Between the second connecting portions 105a and 103 are formed two connecting holes 106a and 106b to be connected to a first pump (hereinafter, referred to as an “introducing pump”). The third connecting portions 104 and 105b serve as passages to supply the fuel stored in the fuel cartridge to the fuel cell. Between the third connecting portions 104 and 105b are formed two connecting holes 106c and 106d to be connected to a second pump (hereinafter, referred to as a “fuel pump”). In other words, the connecting portions are isolated in the middle thereof and separated into two connecting portions, respectively. Also, two connecting portions are formed with connecting holes in positions thereof facing each other, respectively. Each connecting hole penetrates the base member and communicates with the outside. Two connecting holes provided in each of the second and third connecting portions allow an inlet and an outlet of the pump to be inserted therein without additional pipes. Meanwhile, the second connecting portion and the third connecting portion are placed in a bent region, i.e., an interior angle region of the chamber 101 having the curved-shape, thereby consulting the compactness of the housing.
According to the illustrated embodiment, the second and third connecting portions are connected to the chamber 101 as being combined as a single channel. In this case, the fuel supplied from the fuel cartridge is mixed with the unreacted fuel not in the chamber 101 but while passing through the second connecting portions 105a and 103, and then supplied to the fuel cell. Through the fastening hole 109, a holding unit such as a screw or the like passes so that the fuel feeder housing 100 is fastened to the application such as a portable electronic apparatus. Alternatively, the fastening hole 109 may be replaced by a proper means as long as it can fasten the fuel feeder housing 100 to the application.
In
The holding unit 116 is used in closely attaching the introducing pump 114 and the fuel pump 115 to the base member. The holding unit 116 is attached to the base member by a screw or the like. The holding unit 116 can be achieved by a heat sink that is made of metal having high heat conductivity and formed with a plurality of holes through which heat generated from the introducing pump 114 and the fuel pump 115 is radiated.
According to the illustrated and other embodiments of the present invention, the peripheral module 120 is achieved by modularizing all peripheral units except the fuel cartridge, which support the operation of the fuel cell 140, in order to consult the compactness and the light weight of a small fuel cell system mounted to the portable electronic apparatus. For example, the existing mixing tank, the carbon dioxide remover and the connecting pipes are modularized in the housing, and the inlet and the outlet of the pump are inserted through the connecting holes formed in the connecting portions of the housing without additional pipes.
Below, operations of the fuel cell system using the peripheral module according to the illustrated embodiment of the present invention will be schematically described. First, when the peripheral module 120 connected to the fuel cartridge 130 and the fuel cell 140 starts operating, the unreacted fuel stored in the chamber 101 is supplied by the introducing pump 114 to the fuel cell 140 through second connecting portions 105 and 103. At this time, the high concentration fuel stored in the fuel cartridge 130 is supplied by the fuel pump 115 and the introducing pump 114 to the fuel cell 140 through the third connecting portion s 104 and 105 and the second connecting portions 105 and 103.
The fuel supplied from the chamber 101 and the fuel supplied from the fuel cartridge 130 are mixed to have proper concentration while passing through the second connecting portion 103. Further, the unreacted fuel, water, carbon dioxide, etc. among the fluids discharged from the fuel cell 140 are introduced into the chamber 101 through the first connecting portion 102. On the other hand, gas such as carbon dioxide or the like among the introduced fluids, which is unnecessary for fuel recycle, is discharged to the outside through the gas-liquid separator 108.
As described above, the peripheral module 120 according to the illustrated embodiment of the present invention is mounted to the dead volume of the application, thereby contributing the compactness and the light weight of the application, circulating and recycling the unreacted fuel discharged from the anode electrode of the fuel cell 140, supplying the fuel from the fuel cartridge 130 to the fuel cell 140, and enhancing the efficiency of the fuel cell system.
As compared with the fuel feeder housing 100 according to the first embodiment, in the fuel feeder housing 100a according to the illustrated embodiment, the second connecting portions and the third connecting portions placed in a bent region, i.e., an interior angle region of the chamber 101a having a curved-shape are independently connected to the chamber 101a without being combined as a single channel. Thus, the fuel feeder housing 100a of the illustrated embodiment is different from that of the first embodiment in structure that the fuel is introduced from the fuel cartridge to the chamber 101a and the first connecting portions 102a and 102b are connected to anode and cathode outlets of the fuel cell, respectively.
With this configuration, the fuel supplied from the fuel cartridge to the chamber 101a of the fuel feeder housing 101a through the third connecting portions 104 and 105b is mixed with the unreacted fuel and water discharged from the fuel cell within the chamber 101a, and then the mixed fuel is supplied to the fuel cell through the second connecting portions 105a and 103.
According to the illustrated embodiment of the present invention, the peripheral module 120a is achieved by modularizing all peripheral units except the fuel cartridge, which support the operation of the fuel cell 140, in order to consult the compactness and the light weight of a small fuel cell system mounted to the portable electronic apparatus. Meanwhile, the peripheral module 120a according to the illustrated embodiment is different from that of the first embodiment in that the fuel stored in the fuel cartridge 130 is introduced into the chamber 101a and then supplied to the fuel cell 140.
Below, operations of the fuel cell system using the peripheral module according to the illustrated embodiment of the present invention will be schematically described. First, the fuel stored in the fuel cartridge 130 is supplied to the chamber 101a of the fuel feeder housing 100a via the third connecting portions 104 and 105b by the fuel pump 1115. The supplied fuel has concentration higher than that of the unreacted fuel stored in the chamber 101a. Further, the fluids such as the unreacted fuel, water, etc. discharged from the anode and cathode electrodes of the fuel cell 140 are introduced into the chamber 101a through two first connecting portions 102a and 102b. On the other hand, unnecessary gas such as carbon dioxide among the introduced fluids is filtered through the gas-liquid separator 108a provided in an inner wall of the chamber 101a, and then discharged to the outside through a discharging hole of the base member. Then, the fuel stored in the chamber 101a, i.e., the mixed fuel of the unreacted fuel and water introduced from the fuel cell 140 and the high concentration fuel introduced from the fuel cartridge 130 is supplied to the anode electrode of the fuel cell 140 via the second connecting portions 105a and 103 by the introducing pump 114. With these processes, the fuel cell 140 electrochemically oxidizes hydrogen contained in the fuel, thereby generating electricity.
In the foregoing fuel feeder housing and the peripheral module using the same, the structure of introducing water discharged from the cathode electrode of the fuel cell into the chamber may be varied according to the amount of unreacted fuel stored in the chamber and the concentration of the fuel supplied from the fuel cartridge. In other words, recycling water discharged from the cathode electrode of the fuel cell can be optionally selected in consideration of the efficiency of driving the system.
Embodiments of the present invention provide the compact and lightweight fuel feeder housing and the peripheral module using the same, which can be used in the fuel feeders for the PMP, a personal digital assistant (PDA), a cellular phone, etc. As described above, the fuel feeder housing and the peripheral module using the same have not only a structure for efficiently driving the fuel cell, in which the peripheral units, e.g., the mixing tank and the carbon dioxide remover are formed as single body, but also a structure for being easily coupled to the fuel cell or the fuel cartridge. Therefore, the fuel feeder housing and the peripheral module using the same can be readily mounted to the dead volume of the portable electronic apparatus, and contribute the compactness and the light weight of the fuel cell system and the portable electronic apparatus to be mounted with the fuel cell system. Further, the fuel feeder housing according to embodiments of the present invention and the peripheral module using the same can support the stable operation of the fuel cell system regardless of the movement and the directionality of the portable electronic apparatus, thereby enhancing the reliability of the fuel cell system and the portable electronic apparatus.
Although various embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes might be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0044994 | May 2006 | KR | national |