1. Field of the Invention
The disclosure generally relates to an apparatus for indicating that a fuse has opened. More particularly, the present disclosure relates to an open fuse block having an indicator, such as a light, to identify when a fuse is blown or missing.
2. Discussion of Related Art
Fuses are employed in a variety of electrical systems on an everyday basis. For example, fuses are part of electrical systems found in automobiles, boats, motorcycles and other vehicles. These fuses function to stop electricity from flowing to particular components of a system by creating an open circuit as a result of an unsafe electrical condition. However, these fuses have definite life spans, and after a period of time they blow, or burn out, leaving an open circuit which interrupts the flow of electricity to an appliance or a component of a system. In order to reinstate the flow of electricity, the blown fuse must be located and replaced with another working fuse.
Often, one or more replaceable fuses are provided in a fuse block. When the fuse burns out, the fuse is removed from the fuse block and another fuse is inserted in its place. Often, a chart, or map, is supplied which lists the electrical components corresponding to the various fuses. Accordingly, to locate a blown fuse, one must search the chart for the component that is not working, and then match the chart to the fuse block containing the blown fuse. Alternatively, a multi-meter may be used to determine which of the fuses in the block has been blown or is otherwise not functioning. Of course, the difficulties inherent in such a system are even more pronounced when one attempts to replace a blown fuse in the dark or without adequate lighting. Accordingly, there is a need for a visual indicator that identifies the location of a blown fuse. Such a visual indicator should be provided on the fuse block so that it is reusable upon replacement of a blown fuse with a replacement fuse.
An open fuse block is disclosed having a visual indicator or light assembly connected in parallel with a replaceable fuse mounted in the fuse block. When the fuse is blown, the corresponding visual indicator is illuminated to identify the blown fuse, thereby facilitating quick and easy replacement. Since the visual indicator is connected in parallel with the fuse element, when the fuse is blown, the fuse results in an open circuit and the flow of electricity is rerouted through the visual indicator. The visual indicator is thereby illuminated and the corresponding blown fuse can be easily identified. The visual indicator or light assembly can include, for example, a neon bulb, light emitting diode, fluorescent bulb, incandescent bulb, or any other visual indicator that emits light.
The fuse block includes a receptacle for retaining a fuse therein, a plurality of clip contacts disposed on an interior of the fuse receptacle to electrically connect to the fuse positioned within the fuse receptacle, and a visual indicator interconnected with one or more of the clip contacts in parallel with the fuse for indicating a blown fuse.
Embodiments are illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which like references indicate similar elements and in which:
Referring to
The receptacle 6 is configured to receive a fuse having first and second terminals disposed at respective ends of a body of the fuse. The block portion 2 includes end portions 2a and 2b and center portion 2c. End portions 2a and 2b each have a pair of raised walls to accommodate the disposition of fuse clip contacts 14 and 16 (described below), respectively. The raised walls are biased inward or toward each other to provide retention forces against respective end caps of the fuse disposed there between. Center portion 2c includes a locking assembly 4 as described in more detail below with reference to
The first and second fuse clip contacts 14 and 16 are attached to the block portion 2 and provide an electrical connection to the terminals of the fuse in the receptacle 6 (described in greater detail below). The fuse clip contacts 14 and 16 include device connection portions 18 and 20 used to couple the fuse to an electrical system to be protected, usually between a source of power and a system component. The device connection portion 18 may comprise a fastener 18a and a conductive plate 18b (shown more clearly in
The fuse clip contacts 14 and 16 are substantially identical and will therefore be described with reference to the fuse clip contact 14 only. It will be understood that such description shall extend to the other fuse clip contact 16 with necessary consideration given to differences in its respective position and orientation.
The center portion 2c of the block portion 2 includes a locking assembly 4 having a locking tab 4a that extends longitudinally along the length of the block 2 to lock the open-face fuse block 1 on a conventional DIN rail. Particularly, referring to the DIN rail mounting feature illustrated in the side view of block portion 2 in
A first end 23 of the wire 22 extends through an aperture in the underside of the fuse block end portion 2a and is connected to the clip contact 14. For example, the first end 23 can be attached to the leg 14a (see
A variety of attachment methods are contemplated for attaching the fuse clip contacts 14 and 16 to a power source and to a component to be protected. For example, a mechanical connection may be provided such that the fuse clip contacts 14 and 16 tighten down onto the wire in a conventional manner. In particular, a fastener such as, for example, screws 18a and 20a may be used to retain the respective ends 23 and 24 of the wire 22 in contact with the terminals of the device connection portions 18 and 20. Alternatively, a mechanical connection may be provided in which the wire 22 is inserted into a push-in style female feature on the clip contacts 14 and 16 in a manner that will be familiar to those of ordinary skill in the art. Alternatively, the wire 22 may be soldered to form the connections.
Many alternative electrical connection methods are contemplated for connecting the wire 22 to the fuse disposed within the receptacle 6. For example, the wire 22 may be attached to a spring mechanism that would contact the ends of the fuse when a fuse is inserted into the fuse clip contacts 14 and 16. This would electrically connect the indicator assembly 8 in parallel to the fuse. In this manner, visual indicator 8 would only receive current when a fuse is installed within the receptacle 6 and is open, and no current would pass through the indicator assembly 8 when a fuse is not installed in the receptacle 6. Thus, an electrical circuit, defined between a fuse's end caps, the clip contacts 14 and 16, and the visual indicator 8, is only formed when a fuse is disposed within the receptacle 6.
In normal operation of an electrical system, current flows from an electrical source, through the fuse block 1, through the fuse element in the receptacle 6, and to an electrical component. If the fuse blows, the flow of electricity is re-routed to flow from the electrical source to the visual indicator of visual indicator assembly 8, and then to a load side, to illuminate an LED, neon bulb, etc., to identify that the fuse has been blown. Upon replacement of the blown fuse with a working fuse, electricity is re-routed back to flow through the fuse, at which time the LED, neon bulb, etc., of visual indicator assembly 8 returns to being dormant.
Thus, identical clip contacts with identically located female features 103 and device connections 18 and 20 can be used for each of the clip contacts 14 and 16 to receive the male blades 101 and 102, thereby reducing the cost of manufacturing clip contacts 14 and 16 relative to manufacturing two different types clip contacts. This necessitates the above-described misaligned or laterally-staggered configuration of the male blades 101 and 102 to facilitate proper alignment and mating engagement with their respective female features 103 and the above-described electrical to allow remote monitoring of the voltage across the clip contacts 14 and 16 of fuse block 1. It will be noted that if the male blade 101 and 102 were not laterally-staggered, and were instead longitudinally aligned with one another, two different clip contacts would have to be manufactured to accommodate the blades 101 and 102, wherein the clip contacts would be mirror images of one another across a vertical plane located intermediate the clip contacts 14 and 16. Although not preferred, it is contemplated that such a configuration can be implemented without departing from the present disclosure.
Of course, it will be appreciated that the above-described circuitry of the stackable block 100 can be integrated directly into the fuse block 1 and that remote communication of the status of a fuse mounted within the fuse block 1 can thereby be effectuated without the addition of the stackable block 100.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Number | Name | Date | Kind |
---|---|---|---|
5002505 | Jones et al. | Mar 1991 | A |
5559662 | Happ et al. | Sep 1996 | A |
6157287 | Douglass et al. | Dec 2000 | A |
7385518 | Torrez et al. | Jun 2008 | B2 |
7772959 | Cheng et al. | Aug 2010 | B2 |
7855630 | Darr | Dec 2010 | B2 |
7892032 | Pizzi | Feb 2011 | B2 |
20020064013 | Milanczak | May 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20120218113 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61447588 | Feb 2011 | US |