Integrated gas sparger for an immersed membrane

Information

  • Patent Grant
  • 9364805
  • Patent Number
    9,364,805
  • Date Filed
    Friday, October 15, 2010
    14 years ago
  • Date Issued
    Tuesday, June 14, 2016
    8 years ago
Abstract
A gas sparger produces an intermittent flow of bubbles even if provided with a continuous gas flow. The sparger has a housing to collect a pocket of gas and a conduit to release some of the gas from the pocket when the pocket reaches a sufficient size. The housing is integrated with the potting head of a module. The conduit passes through the potting head.
Description
FIELD

This specification relates to a gas sparger and to gas scouring to inhibit fouling of a filtering membrane.


BACKGROUND

The following background discussion is not an admission that anything discussed below is citable as prior art or common general knowledge.


International PCT publication WO/2000/021890 describes an aeration system for a submerged membrane module that has a set of aerators connected to an air blower, valves and a controller adapted to alternately provide a higher rate of air flow and a lower rate of air flow in repeated cycles to individual aerators. In an embodiment, the air blower, valves and controller, simultaneously provide alternating air flows to two or more sets of aerators such that while the total system air flow is constant, allowing the blower to be operated at a constant speed, each aerator receives a flow of air that varies over time. In some embodiments, the flow of air to an aerator occurs in repeated cycles of short duration. Transient flow conditions result in the tank water which helps avoid dead spaces and assists in agitating the membranes. WO/2000/021890 is incorporated herein in its entirety by this reference to it.


INTRODUCTION

The following discussion is intended to introduce the reader to the more detailed discussion to follow, and not to limit or define any claim.


The air cycling process described in WO/2000/021890 has proven to be very effective at reducing the amount of air or other gas, and therefore energy, required to operate an immersed membrane system. It was noted in WO/2000/021890 that rapid valve movements result in very large bubbles being created for a brief period of time, and that these very large bubbles might help inhibit membrane fouling. However, it was also noted in WO/2000/021890 that creating these large bubbles required producing undesirable pressure spikes in the aeration system.


A burst of large bubbles can be used to break up a fouling film, gel or cake formed on a membrane, or accumulated around the membrane. Once the fouling structure is ruptured, less intense aeration at the end of a burst, or provided by other aerators between bursts, can continue to remove the foulants. The instantaneous gas flow rate during a burst may be 1.25 to 10 times that of conventional gas sparging. The duration of the burst of gas may be between 1 and 10 seconds. The frequency of the bursts may be from once every 2 seconds to once every 24 hours. Bursts may be created by temporarily increasing the gas pressure or flow of an existing aeration system, by a secondary gas sparging system or, as will be described below, by accumulating gas in a device configured to periodically release the accumulated gas.


A gas sparger, alternately called an aerator, will be described below that produces an intermittent flow of bubbles even when provided with a continuous gas flow. The flow of bubbles can be in the form of short bursts of very large bubbles. One or more gas spargers may be integrated or combined with a membrane module. Bubbles can be released in bursts within or at the sides, or both, of a bundle of hollow fiber membranes.


A potting head, or a permeate collector or gas conduit below a potting head, provides the top of a housing to collect a pocket of gas. A conduit passing through the potting head releases at least some of the gas from the pocket when the pocket reaches a sufficient size. Optionally, a cover or diffuser above the potting head and over an outlet from the conduit may direct the released gas or break up the released gas into smaller (though still large) bubbles or both. Even if fed with a continuous supply of gas, the sparger produces discrete periods of bubble flow, typically in the form of short bursts of large bubbles.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a schematic side view of four spargers immersed in a liquid at various stages in an aeration process.



FIG. 2 shows an isometric view of an alternate conduit as in a sparger of FIG. 1.





DETAILED DESCRIPTION


FIG. 1 shows four spargers 10 integrated with the potting heads 40 of four membrane modules A, B, C and D. A potting head 40 may alternately be called a header. Each potting head 40 is typically a block of a potting material such as a hardened resin. The ends of a plurality of hollow fiber membranes 42 are potted into the potting head. In the case of modules A, B and C, the ends of the membranes 42 are plugged in the potting head 40. A second potting head (not shown) is provided at the other ends of the membranes 42 to withdraw permeate from the lumens of the membranes 42, for example by way of a suction applied to a permeate cavity in communication with the lumens of the membranes 42. In module D, the ends of the membranes 42 are open to a permeate cavity 44 which is in turn connected to a permeate withdrawal pipe 46. The upper ends of the membranes 42 in module D may be individually plugged and loose (not held in a potting head), plugged collectively into one or more upper potting heads, or potted in a second permeating potting head. The bottom of the potting head 40, or a mold for the potting head 40, or the bottom of the permeate cavity 44, or the bottom of a gas distribution conduit (not shown) below the permeate cavity 44, defines the top of a housing 12 below the potting head 40. The housing 12 also has walls extending below the potting head 40 to define an open bottomed plenum below the potting head 40.


A sparger 10 receives a flow of a gas, typically air, from a gas distribution pipe 18. The gas is discharged below or directly into the sparger 10 through one or more gas outlets 20 in communication with the distribution pipe 18. The distribution pipe 18 may be located near the bottom of sparger 10 as shown or at other elevations. For example, an alternative distribution pipe 18′ may be connected to a gas conduit 50′ formed by placing a horizontal wall below and parallel to the bottom of the potting head 40 or the bottom of the permeate cavity 44 as shown for module D. In the case of module D, the gas conduit 50′ and permeate cavity 44 may each be connected to one or more adjacent modules such that the gas pipe 18′ and permeate pipe 46 serve multiple modules without being directly connected to all of them. The gas distribution pipe 18 may also be located above the module, with a gas line dropping down to the sparger 10.


A sparger 10 has a discharge conduit 22 passing through the potting head 40. The discharge conduit has a first outlet 24 in communication with an area inside and near the top of the housing 12, and a second outlet 26 open to the outside of the housing 12 above the potting head 40. At least a portion of the conduit 22 extends downwards between the first opening 24 and the second opening 26. Another portion of conduit 22 extends upwards again before reaching the second opening 26. Gas leaving the housing 12 through the conduit 22 must pass through a low point in the conduit 22 between the first opening 24 and the second opening 26, as in the generally J or U shaped conduits 22 shown. Second opening 26 may have an area of 1 to 10 square cm or 3 to 6 square cm. The cross-sectional area of a pocket of gas in communication with a conduit 22 is preferably larger than the area of the second opening 26 by a factor of 10 or more, for example by a factor in the range of 20 to 35. If the cross-sectional area of a pocket of gas is small relative to the area of the second opening 26, then the low point of the conduit 22 and the walls of the housing 12 may be made lower to increase the volume of air in a pocket of gas in communication with the conduit 22.


A cap 48 or diffuser 52 may optionally be provided over the potting head 40 in communication with the second opening 26. The diffuser 52 may be, for example, a chamber with a plurality of holes 54 to cause a flow of air from the conduit 22 to break up into smaller bubbles. The cap 48 directs the flow of gas from the conduit downwards to the upper face of the potting head 40 or across the potting head 44 and may also cause gas flowing from the conduit 22 to break up into smaller bubbles. A solid cap 48 extending below the second opening 26 as shown may tend to trap a pocket of gas below the cap 48, which may interfere with the re-flooding of the conduit 22. If this occurs, holes may be provided in the cap 48 above the second opening, the lower edge of the cap 48 may be scalloped to provide horizontal openings near or above the height of the second opening 26, or the second opening may be lowered relative to the bottom of the cap 48, or the cap 48 may be raised relative to the second opening 26.


The operation of a sparger 10 immersed in a liquid 34 is illustrated schematically in FIG. 1 in that parts A, B. C and D each show a sparger 10 at four different points in a sequence that occurs in a single sparger 10 as a gas is fed into it. The sequence progresses from the conditions shown for A to B to C to D and then returns to condition A, and repeats for as long as a supply of a gas is provided to a sparger 10. In Part A of FIG.1, a conduit 22 is flooded with liquid 34, although a pocket of gas 36 may be trapped in the housing 12. In Part B, the pocket of gas 36 grows in size as gas from distribution pipe 18 is collected in housing 12 and displaces liquid 34. Liquid 34 leaves the housing 12 through an opening to the bottom of the housing 12 and through conduit 22. In Part C, after the expanding pocket of gas 36 extends below the upper bound of a low point in conduit 12, a path is created for gas to flow from the pocket 36 and through the conduit 22, and gas is discharged outside of the housing 12, for example in bubbles 38. In Part D, gas continues to flow through the conduit 22, liquid 34 re-enters the housing 12 and the pocket 36 becomes smaller. Returning to Part A, the liquid 34 inside of the housing 12 eventually reaches the conduit 22, the conduit 22 floods, and gas flow through the conduit 22 stops. The process then repeats, producing discrete periods of gas discharge even when gas is supplied continuously.


Optionally, the conduit 22 may have a third opening, or an open tube 56 pointing downwards. Such an opening or tube 56 may help the conduit flood between the stages of Parts C and D but is typically not necessary. A third opening may also allow for an air-lift to be created in the part of the conduit from the third opening to the second outlet 26 to create a two phase gas-liquid discharge from the conduit 22. This may be useful if, for example, a module has a problem with liquid circulation near the top of the potting head 40. However, the inventors believe that creating a two phase flow also reduces the cleaning effect of the bubbles and so prefer a discharge that consists essentially of gas and any liquid that must be initially forced out of the conduit 22 to allow the gas to flow through the conduit.


The features of modules A, B, C and D, and the additional optional features described below, may be selected, mixed or combined together into any possible permutation or combination. The potting heads 40 may be round, square or rectangular in plan view for example. A second opening 26 may be located in the center, in plan view, of a round potting head, either as the only second opening 26 or in combination with a ring of additional second openings 26. A large module may have a large potting head that supports multiple spargers 10, for example as if the modules A, B, C and D were merged together to have a common potting head 44 but multiple spargers 10. A large potting head 44 with a plurality of conduits 22 may have the conduits distributed along the length of the potting head 44, across the width of the potting head 44, or both. A single conduit 22 may have two or more second openings 26, for example an opening on each side of a module or an opening in the middle and at each side of a module. FIG. 2 shows a further alternate conduit 22 having multiple second openings 26.

Claims
  • 1. An apparatus for providing gas bubbles in a liquid comprising, a) a housing defining a chamber and having an opening below the chamber allowing communication between the inside of the chamber and the outside of the chamber; and,b) a conduit, the conduit having a first opening inside of the chamber and a second opening in communication with the outside of the chamber, and defining a closed portion of the conduit that extends downwards to a low point of the conduit in a direction from the first opening to the second opening,wherein,c) the chamber is adapted to hold a pocket of the gas above an interface between the gas pocket and the liquid, the interface having a variable elevation ranging from at least a lower boundary of the first opening in the conduit to an upper boundary of the low point of the conduit;d) the housing is integrated with a potting head of a membrane module;e) the closed portion of the conduit extends upwards from the low point of the conduit and passes through the potting head;f) the closed portion of the conduit extends continuously from the first opening to the second opening; and,wherein the potting head is a block of hardened resin into which membranes of the membrane module are potted.
  • 2. The apparatus of claim 1 wherein the second opening of the conduit is above the first opening.
  • 3. The apparatus of claim 1 further comprising a gas supply conduit integrated with the potting head of the membrane module and having an outlet to discharge gas into the chamber wherein the closed portion of the conduit extends through the gas supply conduit.
  • 4. An apparatus for providing gas bubbles in a liquid comprising, a) a housing defining a chamber and having an opening below the chamber allowing communication between the inside of the chamber and the outside of the chamber; and,b) a conduit, the conduit having a first opening inside of the chamber and a second opening in communication with the outside of the chamber, and defining a closed portion of the conduit that extends downwards to a low point of the conduit in a direction from the first opening to the second opening,wherein,c) the chamber is adapted to hold a pocket of the gas above an interface between the gas pocket and the liquid, the interface having a variable elevation ranging from at least a lower boundary of the first opening in the conduit to an upper boundary of the low point of the conduit;d) the housing is integrated with a potting head of a membrane module; and,e) the closed portion of the conduit extends upwards from the low point of the conduit and passes through the potting head,further comprising a cap or diffuser above the potting head and over the second opening of the conduit,wherein the potting head is a block of hardened resin into which membranes of the membrane module are potted.
  • 5. The apparatus of claim 1 wherein the second opening has an area of 1-10 square cm.
  • 6. The apparatus of claim 1 wherein the cross-sectional area of the second opening of the conduit is less than the horizontal cross-sectional area of the associated chamber by a factor of at least 10.
  • 7. The apparatus of claim 1 wherein the membrane module further comprises a permeate cavity below the potting head and the closed portion of the conduit extends through the permeate cavity.
US Referenced Citations (43)
Number Name Date Kind
1574783 Beth Jun 1925 A
3068655 Murray et al. Dec 1962 A
3246761 Bryan et al. Apr 1966 A
3592450 Rippon Jul 1971 A
3628775 McConnell Dec 1971 A
3847508 Mowen Nov 1974 A
3898018 Weis Aug 1975 A
4169873 Lipert Oct 1979 A
4187263 Lipert Feb 1980 A
4356131 Lipert Oct 1982 A
4439316 Kozima et al. Mar 1984 A
4478211 Haines et al. Oct 1984 A
4569804 Murphy Feb 1986 A
4676225 Bartera Jun 1987 A
4752421 Makino Jun 1988 A
4789503 Murphy Dec 1988 A
4828696 Makino et al. May 1989 A
4906363 Makino et al. Mar 1990 A
4911838 Tanaka Mar 1990 A
4923614 Engelbart May 1990 A
5169781 Nojima et al. Dec 1992 A
5605653 DeVos Feb 1997 A
5618431 Kondo et al. Apr 1997 A
5620891 Drummond et al. Apr 1997 A
5639373 Mahendran et al. Jun 1997 A
5783083 Henshaw et al. Jul 1998 A
6162020 Kondo Dec 2000 A
6245239 Cote et al. Jun 2001 B1
6899812 Cote et al. May 2005 B2
7017557 Rumpf Mar 2006 B2
7022231 Mahendran et al. Apr 2006 B2
7294255 Kondo Nov 2007 B2
7867395 Ekholm et al. Jan 2011 B2
7879229 Phagoo et al. Feb 2011 B2
20030178369 Eguchi et al. Sep 2003 A1
20050006308 Cote et al. Jan 2005 A1
20060201876 Jordan Sep 2006 A1
20070039888 Ginzburg et al. Feb 2007 A1
20070166171 Kondo Jul 2007 A1
20090194477 Hashimoto Aug 2009 A1
20090215142 Tsai et al. Aug 2009 A1
20090255872 Busnot et al. Oct 2009 A1
20100300968 Liu et al. Dec 2010 A1
Foreign Referenced Citations (33)
Number Date Country
1931419 Sep 2005 CN
101448562 Jun 2009 CN
0937494 Aug 1999 EP
1119522 Apr 2004 EP
1652572 May 2006 EP
1897857 Mar 2008 EP
996195 Jun 1965 GB
62262185 Nov 1987 JP
62268838 Nov 1987 JP
01104396 Apr 1989 JP
01111494 Apr 1989 JP
04265128 Sep 1992 JP
07-185270 Jul 1995 JP
07185271 Jul 1995 JP
0810589 Jan 1996 JP
08141566 Apr 1996 JP
08312161 Nov 1996 JP
09-038470 Feb 1997 JP
09220569 Aug 1997 JP
2003-340250 Dec 2003 JP
2004322100 Nov 2004 JP
2006081979 Mar 2006 JP
9706880 Feb 1997 WO
9828066 Jul 1998 WO
0021890 Apr 2000 WO
2004050221 Jun 2004 WO
2004056458 Jul 2004 WO
2005105275 Nov 2005 WO
2006029465 Mar 2006 WO
2006066319 Jun 2006 WO
2008144826 Dec 2008 WO
WO 2008153818 Dec 2008 WO
2011028341 Mar 2011 WO
Non-Patent Literature Citations (17)
Entry
Infilco Degremont, Infilco Cannon Mixer—Enhanced Sludge Mixing Technology, downloaded from http://www.degremont-technologies.com/IMG/pdf/INFILCO-CannonMixer-EN-US.pdf on Oct. 1, 2012.
Infilco Degremont, Cannon Mixer, Undated.
Shinko Pfaudler Co Ltd, English Abstract of JP 01111494 published Apr. 28, 1989.
Shinko Pfaudler Co Ltd, English Abstract of JP 01104396 published Apr. 21, 1989.
International Search Report and Written Opinion issued in connection with PCT/US2010/043926, Oct. 21, 2010.
Kurita Water Ind Ltd, English Abstract of JP 07185270 published Jul. 25, 1995.
Kurita Water Ind Ltd, English Abstract of JP 2004322100 published Nov. 18, 2004.
Kurita Water Ind Ltd, English Abstract of JP 07185271 published Jul. 25, 1995.
Hitachi Ltd, English Abstract of JP09-038470, published Feb. 10, 1997.
China Petrochemical Corp., English Abstract of CN1931419 published Sep. 16, 2005.
Mini-Ject Above-Grade Ejector Lift Station, from http://smithandloveless.com/cgi-local/H2O/H2O.cgi?db+pumps& . . . , printed Jan. 28, 2009.
Kubota Corp, English Abstract of JP 09220569 published Dec. 25, 1997.
Aintetsuku:KK, English Abstract of JP 08312161 published Nov. 26,1996.
Kubota Corp, English Abstract of JP 08141566 published Jun. 4, 1996.
Asahi Kasei Chemicals, English Abstract of JP2006081979 published Mar. 30, 2006.
A copy of PCT Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2011/054530 on Apr. 27, 2012.
Unofficial English Translation of Chinese Office Action issued in connection with corresponding CN Application No. 201180049733.9 on May 26, 2014.
Related Publications (1)
Number Date Country
20120091602 A1 Apr 2012 US