Integrated haptic system

Information

  • Patent Grant
  • 11500469
  • Patent Number
    11,500,469
  • Date Filed
    Wednesday, October 6, 2021
    3 years ago
  • Date Issued
    Tuesday, November 15, 2022
    2 years ago
Abstract
An integrated haptic system may include a digital signal processor and an amplifier communicatively coupled to the digital signal processor and integrated with the digital signal processor into the integrated haptic system. The digital signal processor may be configured to receive a force sensor signal indicative of a force applied to a force sensor and generate a haptic playback signal responsive to the force. The amplifier may be configured to amplify the haptic playback signal and drive a vibrational actuator communicatively coupled to the amplifier with the haptic playback signal as amplified by the amplifier.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to electronic devices with user interfaces, (e.g., mobile devices, game controllers, instrument panels, etc.), and more particularly, an integrated haptic system for use in a system for mechanical button replacement in a mobile device, for use in haptic feedback for capacitive sensors, and/or other suitable applications.


BACKGROUND

Linear resonant actuators (LRAs) and other vibrational actuators (e.g., rotational actuators, vibrating motors, etc.) are increasingly being used in mobile devices (e.g., mobile phones, personal digital assistants, video game controllers, etc.) to generate vibrational feedback for user interaction with such devices. Typically, a force/pressure sensor detects user interaction with the device (e.g., a finger press on a virtual button of the device) and in response thereto, the linear resonant actuator vibrates to provide feedback to the user. For example, a linear resonant actuator may vibrate in response to force to mimic to the user the feel of a mechanical button click.


One disadvantage of existing haptic systems is that existing approaches to processing of signals of a force sensor and generating of a haptic response thereto often have longer than desired latency, such that the haptic response may be significantly delayed from the user's interaction with the force sensor. Thus, in applications in which a haptic system is used for mechanical button replacement, capacitive sensor feedback, or other application, and the haptic response may not effectively mimic the feel of a mechanical button click. Accordingly, systems and methods that minimize latency between a user's interaction with a force sensor and a haptic response to the interaction are desired.


In addition, to create appropriate and pleasant haptic feelings for a user, a signal driving a linear resonant actuator may need to be carefully designed and generated. In mechanical button replacement application, a desirable haptic response may be one in which the vibrational impulse generated by the linear resonant actuator should be strong enough to give a user prominent notification as a response to his/her finger pressing and/or releasing, and the vibrational impulse should be short, fast, and clean from resonance tails to provide a user a “sharp” and “crisp” feeling. Optionally, different control algorithms and stimulus may be applied to a linear resonant actuator, to alter the performance to provide alternate tactile feedback—possibly denoting certain user modes in the device—giving more “soft” and “resonant” tactile responses.


SUMMARY

In accordance with the teachings of the present disclosure, the disadvantages and problems associated with haptic feedback in a mobile device may be reduced or eliminated.


In accordance with embodiments of the present disclosure, an integrated haptic system may include a digital signal processor and an amplifier communicatively coupled to the digital signal processor and integrated with the digital signal processor into the integrated haptic system. The digital signal processor may be configured to receive an input signal indicative of a force applied to a force sensor and generate a haptic playback signal responsive to the input signal. The amplifier may be configured to amplify the haptic playback signal and drive a vibrational actuator communicatively coupled to the amplifier with the haptic playback signal as amplified by the amplifier.


In accordance with these and other embodiments of the present disclosure, a method may include receiving, by a digital signal processor, an input signal indicative of a force applied to a force sensor. The method may also include generating, by the digital signal processor, a haptic playback signal responsive to the input signal. The method may further include driving, with an amplifier communicatively coupled to the digital signal processor and integrated with the digital signal processor into an integrated haptic system, the haptic playback signal as amplified by the amplifier.


In accordance with these and other embodiments of the present disclosure, an article of manufacture may include a non-transitory computer-readable medium computer-executable instructions carried on the computer-readable medium, the instructions readable by a processor, the instructions, when read and executed, for causing the processor to receive an input signal indicative of a force applied to a force sensor and generate a haptic playback signal responsive to the input signal, such that an amplifier communicatively coupled to the processor and integrated with the digital signal processor into an integrated haptic system, amplifies and drives the haptic playback signal.


Technical advantages of the present disclosure may be readily apparent to one having ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1 illustrates a block diagram of selected components of an example mobile device, in accordance with embodiments of the present disclosure;



FIG. 2 illustrates a block diagram of selected components of an example integrated haptic system, in accordance with embodiments of the present disclosure;



FIG. 3 illustrates a block diagram of selected components of an example processing system for use in the integrated haptic system of FIG. 2, in accordance with embodiments of the present disclosure;



FIG. 4 illustrates a block diagram of selected components of another example integrated haptic system, in accordance with embodiments of the present disclosure;



FIG. 5 illustrates a graph showing example waveforms of haptic driving signals that may be generated, in accordance with embodiments of the present disclosure;



FIG. 6 illustrates a graph depicting an example transfer function of displacement of linear resonant actuator as a function of frequency at a voltage level equal to a maximum static excursion occurring at low frequencies, in accordance with embodiments of the present disclosure;



FIG. 7 illustrates a graph depicting an example transfer function of acceleration of linear resonant actuator as a function of frequency and a maximum acceleration at maximum excursion, in accordance with embodiments of the present disclosure;



FIG. 8 illustrates a block diagram of selected components of another example integrated haptic system, in accordance with embodiments of the present disclosure;



FIG. 9 illustrates a block diagram of selected components of another example integrated haptic system, in accordance with embodiments of the present disclosure;



FIG. 10 illustrates a block diagram of selected components of another example integrated haptic system, in accordance with embodiments of the present disclosure; and



FIG. 11 illustrates a block diagram of selected components of another example integrated haptic system, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION


FIG. 1 illustrates a block diagram of selected components of an example mobile device 102, in accordance with embodiments of the present disclosure. As shown in FIG. 1, mobile device 102 may comprise an enclosure 101, a controller 103, a memory 104, a force sensor 105, a microphone 106, a linear resonant actuator 107, a radio transmitter/receiver 108, a speaker 110, and an integrated haptic system 112.


Enclosure 101 may comprise any suitable housing, casing, or other enclosure for housing the various components of mobile device 102. Enclosure 101 may be constructed from plastic, metal, and/or any other suitable materials. In addition, enclosure 101 may be adapted (e.g., sized and shaped) such that mobile device 102 is readily transported on a person of a user of mobile device 102. Accordingly, mobile device 102 may include but is not limited to a smart phone, a tablet computing device, a handheld computing device, a personal digital assistant, a notebook computer, a video game controller, or any other device that may be readily transported on a person of a user of mobile device 102.


Controller 103 may be housed within enclosure 101 and may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data, and may include, without limitation a microprocessor, microcontroller, digital signal processor (DSP), application specific integrated circuit (ASIC), or any other digital or analog circuitry configured to interpret and/or execute program instructions and/or process data. In some embodiments, controller 103 interprets and/or executes program instructions and/or processes data stored in memory 104 and/or other computer-readable media accessible to controller 103.


Memory 104 may be housed within enclosure 101, may be communicatively coupled to controller 103, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media). Memory 104 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to mobile device 102 is turned off.


Microphone 106 may be housed at least partially within enclosure 101, may be communicatively coupled to controller 103, and may comprise any system, device, or apparatus configured to convert sound incident at microphone 106 to an electrical signal that may be processed by controller 103, wherein such sound is converted to an electrical signal using a diaphragm or membrane having an electrical capacitance that varies as based on sonic vibrations received at the diaphragm or membrane. Microphone 106 may include an electrostatic microphone, a condenser microphone, an electret microphone, a microelectromechanical systems (MEMS) microphone, or any other suitable capacitive microphone.


Radio transmitter/receiver 108 may be housed within enclosure 101, may be communicatively coupled to controller 103, and may include any system, device, or apparatus configured to, with the aid of an antenna, generate and transmit radio-frequency signals as well as receive radio-frequency signals and convert the information carried by such received signals into a form usable by controller 103. Radio transmitter/receiver 108 may be configured to transmit and/or receive various types of radio-frequency signals, including without limitation, cellular communications (e.g., 2G, 3G, 4G, LTE, etc.), short-range wireless communications (e.g., BLUETOOTH), commercial radio signals, television signals, satellite radio signals (e.g., GPS), Wireless Fidelity, etc.


A speaker 110 may be housed at least partially within enclosure 101 or may be external to enclosure 101, may be communicatively coupled to controller 103, and may comprise any system, device, or apparatus configured to produce sound in response to electrical audio signal input. In some embodiments, a speaker may comprise a dynamic loudspeaker, which employs a lightweight diaphragm mechanically coupled to a rigid frame via a flexible suspension that constrains a voice coil to move axially through a cylindrical magnetic gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the voice coil, making it a variable electromagnet. The coil and the driver's magnetic system interact, generating a mechanical force that causes the coil (and thus, the attached cone) to move back and forth, thereby reproducing sound under the control of the applied electrical signal coming from the amplifier.


Force sensor 105 may be housed within enclosure 101, and may include any suitable system, device, or apparatus for sensing a force, a pressure, or a touch (e.g., an interaction with a human finger) and generating an electrical or electronic signal in response to such force, pressure, or touch. In some embodiments, such electrical or electronic signal may be a function of a magnitude of the force, pressure, or touch applied to the force sensor. In these and other embodiments, such electronic or electrical signal may comprise a general purpose input/output (GPIO) signal associated with an input signal to which haptic feedback is given (e.g., a capacitive touch screen sensor or other capacitive sensor to which haptic feedback is provided). For purposes of clarity and exposition in this disclosure, the term “force” as used herein may refer not only to force, but to physical quantities indicative of force or analogous to force, such as, but not limited to, pressure and touch.


Linear resonant actuator 107 may be housed within enclosure 101, and may include any suitable system, device, or apparatus for producing an oscillating mechanical force across a single axis. For example, in some embodiments, linear resonant actuator 107 may rely on an alternating current voltage to drive a voice coil pressed against a moving mass connected to a spring. When the voice coil is driven at the resonant frequency of the spring, linear resonant actuator 107 may vibrate with a perceptible force. Thus, linear resonant actuator 107 may be useful in haptic applications within a specific frequency range. While, for the purposes of clarity and exposition, this disclosure is described in relation to the use of linear resonant actuator 107, it is understood that any other type or types of vibrational actuators (e.g., eccentric rotating mass actuators) may be used in lieu of or in addition to linear resonant actuator 107. In addition, it is also understood that actuators arranged to produce an oscillating mechanical force across multiple axes may be used in lieu of or in addition to linear resonant actuator 107. As described elsewhere in this disclosure, a linear resonant actuator 107, based on a signal received from integrated haptic system 112, may render haptic feedback to a user of mobile device 102 for at least one of mechanical button replacement and capacitive sensor feedback.


Integrated haptic system 112 may be housed within enclosure 101, may be communicatively coupled to force sensor 105 and linear resonant actuator 107, and may include any system, device, or apparatus configured to receive a signal from force sensor 105 indicative of a force applied to mobile device 102 (e.g., a force applied by a human finger to a virtual button of mobile device 102) and generate an electronic signal for driving linear resonant actuator 107 in response to the force applied to mobile device 102. Detail of an example integrated haptic system in accordance with embodiments of the present disclosure is depicted in FIG. 2.


Although specific example components are depicted above in FIG. 1 as being integral to mobile device 102 (e.g., controller 103, memory 104, force sensor 105, microphone 106, radio transmitter/receiver 108, speakers(s) 110), a mobile device 102 in accordance with this disclosure may comprise one or more components not specifically enumerated above. For example, although FIG. 1 depicts certain user interface components, mobile device 102 may include one or more other user interface components in addition to those depicted in FIG. 1 (including but not limited to a keypad, a touch screen, and a display), thus allowing a user to interact with and/or otherwise manipulate mobile device 102 and its associated components.



FIG. 2 illustrates a block diagram of selected components of an example integrated haptic system 112A, in accordance with embodiments of the present disclosure. In some embodiments, integrated haptic system 112A may be used to implement integrated haptic system 112 of FIG. 1. As shown in FIG. 2, integrated haptic system 112A may include a digital signal processor (DSP) 202, a memory 204, and an amplifier 206.


DSP 202 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In some embodiments, DSP 202 may interpret and/or execute program instructions and/or process data stored in memory 204 and/or other computer-readable media accessible to DSP 202.


Memory 204 may be communicatively coupled to DSP 202, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media). Memory 204 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to mobile device 102 is turned off.


Amplifier 206 may be electrically coupled to DSP 202 and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT. For example, amplifier 206 may use electric power from a power supply (not explicitly shown) to increase the amplitude of a signal. Amplifier 206 may include any suitable amplifier class, including without limitation, a Class-D amplifier.


In operation, memory 204 may store one or more haptic playback waveforms. In some embodiments, each of the one or more haptic playback waveforms may define a haptic response a(t) as a desired acceleration of a linear resonant actuator (e.g., linear resonant actuator 107) as a function of time. DSP 202 may be configured to receive a force signal VSENSE from force sensor 105 indicative of force applied to force sensor 105. Either in response to receipt of force signal VSENSE indicating a sensed force or independently of such receipt, DSP 202 may retrieve a haptic playback waveform from memory 204 and process such haptic playback waveform to determine a processed haptic playback signal VIN. In embodiments in which amplifier 206 is a Class D amplifier, processed haptic playback signal VIN may comprise a pulse-width modulated signal. In response to receipt of force signal VSENSE indicating a sensed force, DSP 202 may cause processed haptic playback signal VIN to be output to amplifier 206, and amplifier 206 may amplify processed haptic playback signal VIN to generate a haptic output signal VOUT for driving linear resonant actuator 107. Detail of an example processing system implemented by DSP 202 is depicted in FIG. 3.


In some embodiments, integrated haptic system 112A may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control. By providing integrated haptic system 112A as part of a single monolithic integrated circuit, latencies between various interfaces and system components of integrated haptic system 112A may be reduced or eliminated.


As shown in FIG. 3, DSP 202 may receive diagnostic inputs from which processing system 300 may monitor and adjust operation of amplifier 206 in response thereto. For example, as discussed below with respect to FIG. 3, DSP 202 may receive measurements from linear resonant actuator 107 to estimate the vibrational transfer function of linear resonant actuator 107. However, in some embodiments, DSP 202 may receive and monitor one or more other diagnostic inputs, and DSP 202 may control operation of amplifier 206 in response thereto. For example, in some embodiments, DSP 202 may monitor a current level associated with linear resonant actuator 107 and/or a voltage level associated with linear resonant actuator 107. From such measurements, DSP 202 may be able to infer or calculate a status (e.g., status of motion) of linear resonant actuator 107. For example, from a monitored voltage and current, DSP 202 may be able to employ a mathematical model of linear resonant actuator 107 to estimate a displacement, velocity, and/or acceleration of linear resonant actuator 107. As another example, DSP 202 may inject a high-frequency signal into linear resonant actuator 107 and infer an inductance of linear resonant actuator 107 based on the current and/or voltage responses of linear resonant actuator 107 to the injected signal. From the inductance, DSP 202 may be able to estimate a displacement of linear resonant actuator 107. Based on determined status information (e.g., displacement, velocity, and/or acceleration), DSP 202 may control processed haptic playback signal VIN for any suitable purpose, including protecting linear resonant actuator 107 from over-excursion that could lead to damage to linear resonant actuator 107 or other components of mobile device 102. As yet another example, one or more diagnostic inputs may be monitored to determine an operational drift of linear resonant actuator 107, and DSP 202 may control amplifier 206 and/or processed haptic playback signal VIN in order to account for the operational drift. As a further example, one or more diagnostic inputs may be monitored to determine temperature effects of linear resonant actuator 107 (e.g., thermally induced changes in the performance of linear resonant actuator 107), and DSP 202 may control amplifier 206 and/or processed haptic playback signal VIN in order to account for the temperature effects.



FIG. 3 illustrates a block diagram of selected components of an example processing system 300 implemented by DSP 202, in accordance with embodiments of the present disclosure. As shown in FIG. 3, processing system 300 may include vibrational pulse processing 302, regulated inversion 304, click-driving pulse processing 306, a comparator 308, and vibrational transfer function estimation 310. In operation, vibrational pulse processing 302 may receive a haptic playback waveform a(t) (or relevant parameters of such a waveform such as frequency and duration) and process such waveform to generate an intermediate signal a1(t). Processing performed by vibrational pulse processing 302 may include, without limitation, filtering (e.g., band-pass filtering) for frequency bands of interest, equalization of haptic playback waveform a(t) to obtain a desired spectral shape, and/or temporal truncation or extrapolation of haptic playback waveform a(t). By adjusting or tuning the temporal duration and frequency envelope of haptic playback waveform a(t), various haptic feelings as perceived by a user and/or audibility of the haptic response may be achieved.


Regulated inversion 304 may apply an inverse transfer function ITF to intermediate signal a1(t), either in the frequency domain or equivalently in the time domain through inverse filtering. Such inverse transfer function ITF may be generated from vibrational transfer function estimation 310 based on actual vibrational measurements of linear resonant actuator 107 and/or model parameters of linear resonant actuator 107. Inverse transfer function ITF may be the inverse of a transfer function that correlates output voltage signal VOUT to actual acceleration of linear resonant actuator 107. By applying inverse transfer function ITF to intermediate signal a1(t), regulated inversion 304 may generate an inverted vibration signal VINT in order to apply inversion to specific target vibrational click pulses to obtain an approximation of certain desired haptic click signals to drive the vibrational actuators for the generation of haptic clicks. In embodiments in which inverse transfer function ITF is calculated based on measurements of linear resonant actuator 107, processing system 300 may implement a closed-loop feedback system for generating output signal VOUT, such that processing system 300 may track vibrational characteristics of linear resonant actuator 107 over the lifetime of linear resonant actuator 107 to enable more accurate control of the haptic response generated by integrated haptic system 112A.


In some embodiments, processing system 300 may not employ an adaptive inverse transfer function ITF, and instead apply a fixed inverse transfer function ITF. In yet other embodiments, the haptic playback waveforms a(t) stored in memory 204 may already include waveforms already adjusted by a fixed inverse transfer function ITF, in which case processing system 300 may not include blocks 302 and 304, and haptic playback waveforms a(t) may be fed directly to click-driving pulse processing block 306.


Click-driving pulse processing 306 may receive inverted vibration signal VINT and control resonant tail suppression of inverted vibration signal VINT in order to generate processed haptic playback signal VIN. Processing performed by click-driving pulse processing 306 may include, without limitation, truncation of inverted vibration signal VINT, minimum phase component extraction for inverted vibration signal VINT, and/or filtering to control audibility of haptic playback signal VINT.


Comparator 308 may compare a digitized version of force signal VSENSE to a signal threshold VTH related to a threshold force, and responsive to force signal VSENSE exceeding signal threshold VTH, may enable haptic playback signal VIN to be communicated to amplifier 206, such that amplifier 206 may amplify haptic playback signal VIN to generate output signal VOUT.


Although FIG. 3 depicts comparator 308 as a simple analog comparator, in some embodiments, comparator 308 may include more detailed logic and/or comparison than shown in FIG. 3, with the enable signal ENABLE output by comparator 308 depending on one or more factors, parameters, and/or measurements in addition to or in lieu of comparison to a threshold force level.


In addition, although FIG. 3 depicts enable signal ENABLE being communicated to click-driving pulse processing 306 and selectively enabling/disabling haptic playback signal VIN, in other embodiments, ENABLE signal ENABLE may be communicated to another component of processing system 300 (e.g., vibrational pulse processing 302) in order to enable, disable, or otherwise condition an output of such other component.



FIG. 4 illustrates a block diagram of selected components of an example integrated haptic system 112B, in accordance with embodiments of the present disclosure. In some embodiments, integrated haptic system 112B may be used to implement integrated haptic system 112 of FIG. 1. As shown in FIG. 4, integrated haptic system 112B may include a digital signal processor (DSP) 402, an amplifier 406, an analog-to-digital converter (ADC) 408, and an ADC 410.


DSP 402 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In some embodiments, DSP 402 may interpret and/or execute program instructions and/or process data stored in a memory and/or other computer-readable media accessible to DSP 402. As shown in FIG. 4, DSP 402 may implement a prototype tonal signal generator 414, nonlinear shaping block 416, a smoothing block 418, and a velocity estimator 420.


Prototype tonal signal generator 414 may be configured to generate a tonal driving signal a(t) at or near a resonance frequency f0 of linear resonant actuator 107, and monitors an estimated velocity signal VEL generated by velocity estimator 420 to determine an occurrence of a predefined threshold level for estimated velocity signal VEL or for an occurrence of a peak of estimated velocity signal VEL. At the occurrence of the predefined threshold level or peak, prototype tonal signal generator 414 may then cause a change of polarity of driving signal a(t), which in turn may cause a moving mass of linear resonant actuator 107 to experience a sudden change in velocity, creating a large acceleration in linear resonant actuator 107, resulting in a sharp haptic feeling. Driving signal a(t) generated by prototype tonal signal generator 414 may be followed by nonlinear shaping block 416 that shapes the waveform driving signal a(t) for a more efficient utilization of a driving voltage, and may be further smoothed by smoothing block 418 to generate input voltage VIN.


Velocity estimator 420 may be configured to, based on a measured voltage VMON of linear resonant actuator 107, a measured current IMON of linear resonant actuator 107, and known characteristics of linear resonant actuator 107 (e.g., modeling of a velocity of linear resonant actuator 107 as a function of voltage and current of linear resonant actuator 107), calculate an estimated velocity VEL of linear resonant actuator 107. In some embodiments, one or more other measurements or characteristics associated with linear resonant actuator 107 (e.g., inductance) may be used in addition to or in lieu of a measured voltage and measured current in order to calculate estimated velocity VEL.


Amplifier 406 may be electrically coupled to DSP 402 and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT. For example, amplifier 406 may use electric power from a power supply (e.g., a boost power supply, not explicitly shown) to increase the amplitude of a signal. Amplifier 406 may include any suitable amplifier class, including without limitation, a Class-D amplifier.


ADC 408 may comprise any suitable system, device, or apparatus configured to convert an analog current associated with linear resonant actuator 107 into a digitally equivalent measured current signal IMON. Similarly, ADC 410 may comprise any suitable system, device, or apparatus configured to convert an analog voltage across sense resistor 412 (having a voltage indicative of an analog current associated with linear resonant actuator 107) into a digitally equivalent measured voltage signal VMON.


In some embodiments, integrated haptic system 112B may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control.



FIG. 5 illustrates a graph depicting example waveforms of haptic driving signals that may be generated, in accordance with embodiments of the present disclosure. For example, as shown in FIG. 5, prototype tonal signal generator 414 may generate a tonal acceleration signal a(t) which begins at resonant frequency f0 and ends at a higher frequency with an average frequency f1 shown in FIG. 5. Such average frequency f1 may be chosen to be a frequency of tone that achieved a maximum acceleration level that avoids clipping of output voltage VOUT. To illustrate, the maximum achievable vibration of linear resonant actuator 107, in terms of acceleration, may be restricted. As an example, linear resonant actuator 107 may be subject to an excursion limit, which defines a maximum displacement (e.g., in both a positive and negative direction) that a moving mass of linear resonant actuator 107 may displace without contacting non-moving parts of a device including linear resonant actuator 107 or otherwise causing audible buzzing and/or rattling distortions.



FIG. 6 illustrates a graph depicting an example transfer function of displacement of linear resonant actuator 107 as a function of frequency (x(f)) at a voltage level equal to a maximum static excursion xMAX occurring at low frequencies, in accordance with embodiments of the present disclosure. It is apparent from the graph of FIG. 6 that linear resonant actuator 107 may not be able to tolerate such a voltage level, because at resonance frequency f0, the excursion x(f) it generates will be over static excursion limit xMAX and therefore cause clipping. In that sense, static excursion limit xMAX may be considered the “clipping-free” excursion limit.



FIG. 7 illustrates a graph depicting an example transfer function of acceleration of linear resonant actuator 107 as a function of frequency (a(f)) and a maximum acceleration aMAX at maximum excursion xMAX, in accordance with embodiments of the present disclosure. In many respects, FIG. 7 is a translation of FIG. 6 from the displacement domain to the acceleration domain. From FIG. 7, it is seen that, below a certain frequency f1, the maximum acceleration level linear resonant actuator 107 may generate may be restricted by the clipping-free excursion limit, and not by a voltage of amplifier 406. This means that below the certain frequency f1, linear resonant actuator 107 needs to be driven at an attenuated voltage level. On the other hand, for such a maximum voltage level that nearly reaches a maximum excursion limit xMAX without clipping, the maximum achievable clipping-free acceleration level aMAX is achievable not at a resonance frequency f0, but at a chosen frequency f1, which is above resonance.


Such chosen frequency f1 may provide a good choice of initialization for the design of haptic clicks and for the timing (e.g., a passage of time T1, as shown in FIG. 5) of the change in polarity of the acceleration signal a(t) to achieve an acceleration peak. However, in addition to the specific example of a very short pulse described above, other examples of waveforms with longer cycles may be used, as well as other logics to determine a passage of time T1 (e.g., time T1) for changing polarity of the acceleration signal a(t), the effect of which is to force the moving mass to rapidly change velocity and generate a large acceleration peak. The larger the change rate of velocity, the higher the acceleration peak linear resonant actuator 107 may create.



FIG. 8 illustrates a block diagram of selected components of another example integrated haptic system 112C, in accordance with embodiments of the present disclosure. In some embodiments, integrated haptic system 112C may be used to implement integrated haptic system 112 of FIG. 1. As shown in FIG. 8, integrated haptic system 112C may include a detector 808 and an amplifier 806.


Detector 808 may include any system, device, or apparatus configured to detect a signal (e.g., VSENSE) indicative of a force. In some embodiments, such signal may be a signal generated by a force sensor. In other embodiments, such signal may comprise a GPIO signal indicative of a force applied to a force sensor. In some embodiments, detector 808 may simply detect whether GPIO signal is asserted or deasserted. In other embodiments, signal VSENSE may indicate a magnitude of force applied and may apply logic (e.g., analog-to-digital conversion where signal VSENSE is analog, comparison to a threshold force level, and/or logic associated with other measurements or parameters). In any event, responsive to signal VSENSE indicating a requisite force, detector 808 may enable amplifier 806 (e.g., by enabling its power supply or power supply boost mode) such that amplifier 806 may amplify haptic playback signal VIN (which may be generated by a component internal to or external to integrated haptic system 112C) to generate output signal VOUT. Accordingly, amplifier 806 may be maintained in a low-power or inactive state until a requisite input signal is received by integrated haptic system 112C, at which amplifier may be powered up or effectively switched on. Allowing for amplifier 806 to be kept in a low-power or inactive state until a requisite input is received may result in a considerable reduction in power consumption of a circuit, and enable “always-on” functionality for a device incorporating integrated haptic system 112C.


In alternative embodiments, detector 808 may be configured to, responsive to a requisite signal VSENSE, enable haptic playback signal VIN to be communicated to amplifier 806, such that amplifier 806 may amplify haptic playback signal VIN to generate output signal VOUT.


In some embodiments, all or a portion of detector 808 may be implemented by a DSP.


Amplifier 806 may be electrically coupled to detector 808 and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT. For example, amplifier 806 may use electric power from a power supply (not explicitly shown) to increase the amplitude of a signal. Amplifier 806 may include any suitable amplifier class, including without limitation, a Class-D amplifier.


In some embodiments, integrated haptic system 112C may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control.



FIG. 9 illustrates a block diagram of selected components of an example integrated haptic system 112D, in accordance with embodiments of the present disclosure. In some embodiments, integrated haptic system 112D may be used to implement integrated haptic system 112 of FIG. 1. As shown in FIG. 9, integrated haptic system 112D may include a digital signal processor (DSP) 902, an amplifier 906, and an applications processor interface 908.


DSP 902 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In some embodiments, DSP 902 may interpret and/or execute program instructions and/or process data stored in a memory and/or other computer-readable media accessible to DSP 902.


Amplifier 906 may be electrically coupled to DSP 902 and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT. For example, amplifier 906 may use electric power from a power supply (not explicitly shown) to increase the amplitude of a signal. Amplifier 906 may include any suitable amplifier class, including without limitation, a Class-D amplifier.


Applications processor interface 908 may be communicatively coupled to DSP 902 and an applications processor (e.g., controller 103 of FIG. 1) external to integrated haptic system 112D. Accordingly, applications processor interface 908 may enable communication between integrated haptic system 112D and an application executing on an applications processor.


In some embodiments, integrated haptic system 112D may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control.


In operation, DSP 902 may be configured to receive a force signal VSENSE from force sensor 105 indicative of force applied to force sensor 105. In response to receipt of force signal VSENSE indicating a sensed force, DSP 902 may generate a haptic playback signal VIN and communicate haptic playback signal VIN to amplifier 906. In addition, in response to the receipt of force signal VSENSE indicating a sensed force, DSP 902 may communicate an activity notification to an appropriate applications processor via applications processor interface 908. DSP 902 may further be configured to receive communications from an applications processor via applications processor interface 908 and generate (in addition to and in lieu of generation responsive to receipt of force signal VSENSE) haptic playback signal VIN and communicate haptic playback signal VIN to amplifier 906.


As the output for an initial haptic feedback response can be generated by the integrated haptic system 112D, integrated haptic system 112D may be configured to provide a low-latency response time for the generation of immediate haptic feedback. Subsequent to the initial feedback being generated, the control of additional haptic feedback signals may be determined by a separate applications processor arranged to interface with integrated haptic system 112D. By offloading the control of subsequent haptic driver signals to a separate applications processor, integrated haptic system 112D may be optimized for low-power, low-latency performance, to generate the initial haptic feedback response. The initial output signal VOUT may be provided at a relatively low resolution, resulting in the generation of a relatively simplified haptic feedback response. For example, the initial output signal VOUT may be provided as a globalized feedback response. Subsequent to the initial response, the applications processor may be used to generate more detailed haptic feedback outputs, for example providing for localized haptic feedback responses, which may require increased processing resources when compared with the relatively straightforward generation of a globalized haptic feedback response.


As another example, in an effort to minimize the power consumption of mobile device 102 for always-on operation, the integrated haptic system 112D may be configured to monitor a single input from a single force-sensing transducer (e.g., force sensor 105) to detect a user input. However, once an initial user input has been detected, the power and resources of an applications processor may be used to provide more detailed signal analysis and response. The applications processor may be configured to receive input signals from multiple force-sensing transducers, and/or to generate output signals for multiple haptic transducers.



FIG. 10 illustrates a block diagram of selected components of an example integrated haptic system 112E, in accordance with embodiments of the present disclosure. In some embodiments, integrated haptic system 112E may be used to implement integrated haptic system 112 of FIG. 1. As shown in FIG. 10, integrated haptic system 112E may include a digital signal processor (DSP) 1002, an amplifier 1006, and a signal combiner 1008.


DSP 1002 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In some embodiments, DSP 1002 may interpret and/or execute program instructions and/or process data stored in a memory and/or other computer-readable media accessible to DSP 1002.


Amplifier 1006 may be electrically coupled to DSP 1002 (e.g., via signal combiner 1008) and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT. For example, amplifier 1006 may use electric power from a power supply (not explicitly shown) to increase the amplitude of a signal Amplifier 1006 may include any suitable amplifier class, including without limitation, a Class-D amplifier.


Signal combiner 1008 may be interfaced between DSP 1002 and amplifier 1006 and may comprise any system, device, or apparatus configured to combine a signal generated by DSP 1002 and a vibration alert signal received from a component external to integrated haptic system 112E.


In some embodiments, integrated haptic system 112E may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control.


In operation, DSP 1002 may be configured to receive a force signal VSENSE from force sensor 105 indicative of force applied to force sensor 105. In response to receipt of force signal VSENSE indicating a sensed force, DSP 1002 may generate an intermediate haptic playback signal VINT. Signal combiner 1008 may receive intermediate haptic playback signal VINT and mix intermediate haptic playback signal VINT with another signal (e.g., the vibration alert signal) received by integrated haptic system 112E to generate a haptic playback signal VIN and communicate haptic playback signal VIN to amplifier 1006. Accordingly, a haptic signal generated responsive to a force (e.g., intermediate haptic playback signal VINT) may be mixed with a further signal (e.g., the vibration alert signal), to provide a composite signal (e.g., haptic playback signal VIN) for linear resonant actuator 107. For example, the signal to generate a pure haptic feedback response may be mixed with a signal used to generate a vibratory notification or alert, for example as notification of an incoming call or message. Such mixing would allow for a user to determine that an alert has been received at the same time as feeling a haptic feedback response. As shown in FIG. 10, signal combiner 1008 may perform mixing on an input signal used as input to the amplifier 1006. However, in other embodiments, a signal combiner may perform mixing on an output signal for driving linear resonant actuator 107.



FIG. 11 illustrates a block diagram of selected components of an example integrated haptic system 112F, in accordance with embodiments of the present disclosure. In some embodiments, integrated haptic system 112F may be used to implement integrated haptic system 112 of FIG. 1. As shown in FIG. 11, integrated haptic system 112F may include a digital signal processor (DSP) 1102, a detector 1104, an amplifier 1106, a sampling control 1108, and a sensor bias generator 1112.


DSP 1102 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In some embodiments, DSP 1102 may interpret and/or execute program instructions and/or process data stored in a memory and/or other computer-readable media accessible to DSP 1102.


Detector 1104 may include any system, device, or apparatus configured to detect a signal (e.g., VSENSE) indicative of a force. In some embodiments, such signal may be a signal generated by a force sensor. In other embodiments, such signal may comprise a GPIO signal indicative of a force applied to a force sensor. In some embodiments, detector 1104 may simply detect whether GPIO signal is asserted or deasserted. In other embodiments, signal VSENSE may indicate a magnitude of force applied and may apply logic (e.g., analog-to-digital conversion where signal VSENSE is analog, comparison to a threshold force level, and/or logic associated with other measurements or parameters). In any event, responsive to signal VSENSE indicating a requisite force, detector 1104 may communicate one or more signals to DSP 1102 indicative of signal VSENSE. In some embodiments, all or a portion of detector 1104 may be implemented by DSP 1102.


Amplifier 1106 may be electrically coupled to DSP 1102 and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT. For example, amplifier 1106 may use electric power from a power supply (not explicitly shown) to increase the amplitude of a signal. Amplifier 1106 may include any suitable amplifier class, including without limitation, a Class-D amplifier.


Sampling control 1108 may be communicatively coupled to DSP 1102 and may comprise any suitable electronic system, device, or apparatus configured to selectively enable force sensor 105 and/or components of integrated haptic system 112F, as described in greater detail below.


Sensor bias 1112 may be communicatively coupled to sampling control 1108 and may comprise any suitable electronic system, device, or apparatus configured to generate an electric bias (e.g., bias voltage or bias current) for force sensor 105, as described in greater detail below.


In some embodiments, integrated haptic system 112F may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control.


In operation, DSP 1102/detector 1104 may be configured to receive a force signal VSENSE from force sensor 105 indicative of force applied to force sensor 105. In response to receipt of force signal VSENSE indicating a sensed force, DSP 1102 may generate a haptic playback signal VIN and communicate haptic playback signal VIN to amplifier 1106, which is amplified by amplifier 1106 to generate output voltage VOUT.


In addition, DSP 1102 may be configured to receive one or more timer signals (either from timing signals generated within integrated haptic system 112F or external to integrated haptic system 112F) and based thereon, generate signals to sampling control 1108. In turn, sampling control 1108 may selectively enable and disable one or more components of an input path of integrated haptic system 112F, including without limitation detector 1104, force sensor 105, a data interface of integrated haptic system 112F, a switch matrix of integrated haptic system 112F, an input amplifier of integrated haptic system 112F, and/or an analog-to-digital converter of integrated haptic system 112F. As shown in FIG. 11, sampling control 1108 may selectively enable and disable force sensor 105 by controlling an electrical bias for force sensor 105 generated by sensor bias 1112. As a result, DSP 1102 and sampling control 1108 may duty cycle durations of time in which force sensor 105, detector 1104, and/or other components of integrated haptic system 112F are active, potentially reducing power consumption of a system comprising integrated haptic system 112F.


Although the foregoing figures and descriptions thereof address integrated haptic systems 112A-112F as being representative of particular embodiments, is it understood that all or a portion of one or more of integrated haptic systems 112A-112F may be combined with all or a portion of another of integrated haptic systems 112A-112F, as suitable.


In addition, in many of the figures above, a DSP is shown generating a haptic playback signal VIN which may be amplified by an amplifier to generate an output voltage VOUT. For purposes of clarity and exposition, digital-to-analog conversion of signals in the output signal path of integrated haptic systems 112A-112F have been omitted from the drawings, but it is understood that digital-to-analog converters may be present in integrated haptic systems 112A-112F to perform any necessary conversions from a digital domain to an analog domain.


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.

Claims
  • 1. An integrated haptic system comprising: a digital signal processor configured to: receive an input signal indicative of a force applied to a force sensor; andgenerate a haptic playback signal responsive to the input signal; andan amplifier communicatively coupled to the digital signal processor, integrated with the digital signal processor into the integrated haptic system, and configured to amplify the haptic playback signal and drive a vibrational actuator communicatively coupled to the amplifier with the haptic playback signal as amplified by the amplifier;wherein the digital signal processor is further configured to: monitor one or more diagnostic inputs indicative of a status of the vibrational actuator;determine a displacement of the vibrational actuator based on the one or more diagnostic inputs; andcontrol the haptic playback signal to prevent the vibrational actuator from exceeding a displacement limit.
  • 2. The integrated haptic system of claim 1, further comprising a memory communicatively coupled to the digital signal processor, and wherein the digital signal processor is further configured to: retrieve from the memory a haptic playback waveform; andprocess the haptic playback waveform to generate the haptic playback signal.
  • 3. The integrated haptic system of claim 2, wherein the haptic playback waveform defines a haptic response as an acceleration as a function of time.
  • 4. The integrated haptic system of claim 3, wherein the digital signal processor generates the haptic playback signal to render haptic feedback for at least one of mechanical button replacement and capacitive sensor feedback.
  • 5. The integrated haptic system of claim 4, wherein the digital signal processor applies an inverse transfer function to the haptic playback waveform in order to generate the haptic playback signal, wherein the inverse transfer function is an inverse of a transfer function defining a relationship between a voltage applied to the vibrational actuator and an acceleration of the vibrational actuator responsive to the voltage applied.
  • 6. The integrated haptic system of claim 5, wherein the digital signal processor controls the haptic playback signal in a closed feedback loop whereby the digital signal processor adapts the inverse transfer function based on at least one of modeled parameters and measured parameters of the vibrational actuator.
  • 7. The integrated haptic system of claim 2, wherein the digital signal processor applies an inverse transfer function to the haptic playback waveform in order to generate the haptic playback signal, wherein the inverse transfer function is an inverse of a transfer function defining a relationship between a voltage applied to the vibrational actuator and an acceleration of the vibrational actuator responsive to the voltage applied.
  • 8. The integrated haptic system of claim 7, wherein the digital signal processor controls the haptic playback signal in a closed feedback loop whereby the digital signal processor adapts the inverse transfer function based on at least one of modeled parameters and measured parameters of the vibrational actuator.
  • 9. The integrated haptic system of claim 1, wherein: the input signal is a force sensor signal generated by the force sensor; andthe digital signal processor communicates the haptic playback signal to the amplifier in response to receipt of the force sensor signal.
  • 10. The integrated haptic system of claim 1, wherein: the input is a force sensor signal generated by the force sensor; andthe digital signal processor communicates the haptic playback signal to the amplifier in response to the force sensor signal exceeding a threshold.
  • 11. The integrated haptic system of claim 1, wherein the digital signal processor generates the haptic playback signal to render haptic feedback for at least one of mechanical button replacement and capacitive sensor feedback.
  • 12. The integrated haptic system of claim 1, wherein the digital signal processor controls the haptic playback signal in a closed feedback loop whereby the digital signal processor adapts its processing based on at least one of modeled parameters and measured parameters of the vibrational actuator.
  • 13. The integrated haptic system of claim 1, wherein the digital signal processor is further configured to, responsive to a condition for changing a polarity of the haptic playback signal, change the polarity of the haptic playback signal.
  • 14. The integrated haptic system of claim 13, wherein the digital signal processor is further configured to calculate an estimated velocity based on one or more measured electrical parameters of the vibrational actuator, wherein the condition for changing the polarity of the haptic playback signal comprises the estimated velocity reaching a threshold velocity level or velocity peak.
  • 15. The integrated haptic system of claim 14, wherein measured electrical parameters comprise one or more of a voltage and a current.
  • 16. The integrated haptic system of claim 13, wherein the condition for changing the polarity of the haptic playback signal comprises the passage of a time equal to an inverse of a frequency at which a maximum clipping-free acceleration level is obtainable.
  • 17. The integrated haptic system of claim 1, wherein the one or more diagnostic inputs are indicative of one or more of a current, a voltage, and an inductance of the vibrational actuator.
  • 18. The integrated haptic system of claim 1, further comprising an applications processor interface interfaced between the digital signal processor and an applications processor external to the integrated haptic system, wherein the digital signal processor is further configured to communicate an activity notification to the applications processor via the applications processor interface responsive to the force.
  • 19. The integrated haptic system of claim 1, further comprising an applications processor interface interfaced between the digital signal processor and an applications processor external to the integrated haptic system, wherein the digital signal processor is further configured to: receive communications from the applications processor via the applications processor interface; andmodify the haptic playback signal responsive to the communications.
  • 20. The integrated haptic system of claim 1, wherein the integrated haptic system is further configured to mix an intermediate haptic playback signal generated by the digital signal processor with another signal received by the integrated haptic system to generate the haptic playback signal.
  • 21. The integrated haptic system of claim 1, wherein the digital signal processor is further configured to selectively enable and disable the amplifier based on the input signal.
  • 22. The integrated haptic system of claim 1, wherein the integrated haptic system is integral to one of a mobile phone, personal digital assistant, and game controller.
  • 23. The integrated haptic system of claim 1 wherein the digital signal processor and the amplifier are formed on and integral to a single integrated circuit.
  • 24. An integrated haptic system comprising: a digital signal processor configured to: receive an input signal indicative of a force applied to a force sensor; andgenerate a haptic playback signal responsive to the input signal; andan amplifier communicatively coupled to the digital signal processor, integrated with the digital signal processor into the integrated haptic system, and configured to amplify the haptic playback signal and drive a vibrational actuator communicatively coupled to the amplifier with the haptic playback signal as amplified by the amplifier;wherein the digital signal processor is further configured to: monitor one or more diagnostic inputs indicative of a status of the vibrational actuator;determine operational drift of the vibrational actuator based on the one or more diagnostic inputs; andcontrol the haptic playback signal to account for the operational drift.
  • 25. An integrated haptic system comprising: a digital signal processor configured to: receive an input signal indicative of a force applied to a force sensor; andgenerate a haptic playback signal responsive to the input signal; andan amplifier communicatively coupled to the digital signal processor, integrated with the digital signal processor into the integrated haptic system, and configured to amplify the haptic playback signal and drive a vibrational actuator communicatively coupled to the amplifier with the haptic playback signal as amplified by the amplifier;wherein the digital signal processor is further configured to: monitor one or more diagnostic inputs indicative of a status of the vibrational actuator;determine temperature effects of the vibrational actuator based on the one or more diagnostic inputs; andcontrol the haptic playback signal to account for the temperature effects.
  • 26. An integrated haptic system comprising: a digital signal processor configured to: receive a force sensor signal generated by a force sensor and indicative of a force applied to the force sensor; andgenerate a haptic playback signal responsive to the input signal; andan amplifier communicatively coupled to the digital signal processor, integrated with the digital signal processor into the integrated haptic system, and configured to amplify the haptic playback signal and drive a vibrational actuator communicatively coupled to the amplifier with the haptic playback signal as amplified by the amplifier;a sampling controller communicatively coupled to the digital signal processor and configured to generate a duty-cycling signal to duty-cycle the force sensor in order to reduce an active duration of the force sensor; andthe integrated haptic system further comprises an input path arranged to communicate the force sensor signal to the digital signal processor, and wherein the sampling controller is further configured to generate a second duty-cycling signal to duty-cycle to one or more components of the input path to reduce an active duration of the input path;wherein the digital signal processor is further configured to: monitor one or more diagnostic inputs indicative of a status of the vibrational actuator; andcontrol at least one of operation of the amplifier and the haptic playback signal responsive to monitoring of the one or more diagnostic inputs.
  • 27. The integrated haptic system of claim 26, wherein the one or more components comprise one or more of a detector, a data interface, a switch matrix, an input path amplifier, and an analog-to-digital converter.
  • 28. A method comprising: receiving, by a digital signal processor, an input signal indicative of a force applied to a force sensor;generating, by the digital signal processor, a haptic playback signal responsive to the input signal;driving, with an amplifier communicatively coupled to the digital signal processor and integrated with the digital signal processor into an integrated haptic system, the haptic playback signal as amplified by the amplifier;monitoring, by the digital signal processor, one or more diagnostic inputs indicative of a status of a vibrational actuator; anddetermining, by the digital signal processor, a displacement of the vibrational actuator based on the one or more diagnostic inputs; andcontrolling, by the digital signal processor, the haptic playback signal to prevent the vibrational actuator from exceeding a displacement limit.
  • 29. The method of claim 28, further comprising: retrieving, by the digital signal processor from a memory communicatively coupled to the digital signal processor, a haptic playback waveform; andprocessing, by the digital signal processor, the haptic playback waveform to generate the haptic playback signal.
  • 30. The method of claim 29, wherein the haptic playback waveform defines a haptic response as an acceleration as a function of time.
  • 31. The method of claim 30, wherein the digital signal processor generates the haptic playback signal to render haptic feedback for at least one of mechanical button replacement and capacitive sensor feedback.
  • 32. The method of claim 31, further comprising applying, by the digital signal processor, an inverse transfer function to the haptic playback waveform in order to generate the haptic playback signal, wherein the inverse transfer function is an inverse of a transfer function defining a relationship between a voltage applied to a vibrational actuator and an acceleration of the vibrational actuator responsive to the voltage applied.
  • 33. The method of claim 32, further comprising controlling, by the digital signal processor, the haptic playback signal in a closed feedback loop whereby the digital signal processor adapts the inverse transfer function based on at least one of modeled parameters and measured parameters of the vibrational actuator.
  • 34. The method of claim 33, further comprising applying, by the digital signal processor, the inverse transfer function to the haptic playback waveform in order to generate the haptic playback signal, wherein the inverse transfer function is an inverse of a transfer function defining a relationship between a voltage applied to the vibrational actuator and an acceleration of the vibrational actuator responsive to the voltage applied.
  • 35. The method of claim 34, further comprising controlling, by the digital signal processor, the haptic playback signal in a closed feedback loop whereby the digital signal processor adapts the inverse transfer function based on at least one of modeled parameters and measured parameters of the vibrational actuator.
  • 36. The method of claim 28, wherein: the input signal is a force sensor signal generated by the force sensor; andthe method further comprises communicating, by the digital signal processor, the haptic playback signal to the amplifier in response to receipt of the force sensor signal.
  • 37. The method of claim 28, wherein: the input signal is a force sensor signal generated by the force sensor; andthe method further comprises communicating, by the digital signal processor, the haptic playback signal to the amplifier in response to the force sensor signal exceeding a threshold.
  • 38. The method of claim 28, wherein the digital signal processor generates the haptic playback signal to render haptic feedback for at least one of mechanical button replacement and capacitive sensor feedback.
  • 39. The method of claim 28, further comprising controlling, by the digital signal processor, the haptic playback signal in a closed feedback loop whereby the digital signal processor adapts its processing based on at least one of modeled parameters and measured parameters of a vibrational actuator.
  • 40. The method of claim 28, further comprising changing, by the digital signal processor, a polarity of the haptic playback signal responsive to a condition for changing the polarity of the haptic playback signal.
  • 41. The method of claim 40, further comprising calculating, by the digital signal processor, estimated velocity based on one or more measured electrical parameters of a vibrational actuator, wherein the condition for changing the polarity of the haptic playback signal comprises the estimated velocity reaching a threshold velocity level or velocity peak.
  • 42. The method of claim 41, wherein measured electrical parameters comprise one or more of a voltage and a current.
  • 43. The method of claim 40, wherein the condition for changing the polarity of the haptic playback signal comprises the passage of a time equal to an inverse of a frequency at which a maximum clipping-free acceleration level is obtainable.
  • 44. The method of claim 28, wherein the one or more diagnostic inputs are indicative of one or more of a current, a voltage, and an inductance of the vibrational actuator.
  • 45. The method of claim 28, further comprising communicating, by the digital signal processor, an activity notification to an applications processor external to the integrated haptic system via an applications processor interface responsive to the force, wherein the applications processor interface is interfaced between the digital signal processor and the applications processor.
  • 46. The method of claim 28, further comprising, by the digital signal processor: receiving communications from an applications processor external to the integrated haptic system via an applications processor interface, wherein the applications processor interface is interfaced between the digital signal processor and the applications processor; andmodifying the haptic playback signal responsive to the communications.
  • 47. The method of claim 28, further comprising mixing an intermediate haptic playback signal generated by the digital signal processor with another signal received by the integrated haptic system to generate the haptic playback signal.
  • 48. The method of claim 28, further comprising selectively enabling and disabling the amplifier based on the input signal.
  • 49. The method of claim 28, wherein the digital signal processor and the amplifier are formed on and integral to a single integrated circuit.
  • 50. A method comprising: receiving, by a digital signal processor, an input signal indicative of a force applied to a force sensor;generating, by the digital signal processor, a haptic playback signal responsive to the input signal;driving, with an amplifier communicatively coupled to the digital signal processor and integrated with the digital signal processor into an integrated haptic system, the haptic playback signal as amplified by the amplifier;monitoring, by the digital signal processor, one or more diagnostic inputs indicative of a status of a vibrational actuator; anddetermining, by the digital signal processor, operational drift of the vibrational actuator based on the one or more diagnostic inputs; andcontrolling, by the digital signal processor, the haptic playback signal to account for the operational drift.
  • 51. A method comprising: receiving, by a digital signal processor, an input signal indicative of a force applied to a force sensor;generating, by the digital signal processor, a haptic playback signal responsive to the input signal;driving, with an amplifier communicatively coupled to the digital signal processor and integrated with the digital signal processor into an integrated haptic system, the haptic playback signal as amplified by the amplifier;monitoring, by the digital signal processor, one or more diagnostic inputs indicative of a status of a vibrational actuator; anddetermining temperature effects of the vibrational actuator based on the one or more diagnostic inputs; andcontrolling the haptic playback signal to account for the temperature effects.
  • 52. A method comprising: receiving, by a digital signal processor, a force sensor signal generated by the force sensor and indicative of a force applied to a force sensor;generating, by the digital signal processor, a haptic playback signal responsive to the input signal;driving, with an amplifier communicatively coupled to the digital signal processor and integrated with the digital signal processor into an integrated haptic system, the haptic playback signal as amplified by the amplifier;monitoring, by the digital signal processor, one or more diagnostic inputs indicative of a status of a vibrational actuator;controlling, by the digital signal processor, at least one of operation of the amplifier and the haptic playback signal responsive to monitoring of the one or more diagnostic inputs;generating a duty-cycling signal to duty-cycle the force sensor in order to reduce an active duration of the force sensor; andgenerating a second duty-cycling signal to duty-cycle to one or more components of an input path of the integrated haptic system to reduce an active duration of the input path, wherein the input path is arranged to communicate the force sensor signal to the digital signal processor.
  • 53. The method of claim 52, wherein the one or more components comprise one or more of a detector, a data interface, a switch matrix, an input path amplifier, and an analog-to-digital converter.
RELATED APPLICATIONS

The present disclosure is a continuation of U.S. Non-Provisional patent application Ser. No. 16/871,832, filed May 11, 2020, which is a divisional of U.S. Non-Provisional patent application Ser. No. 15/722,128, filed Oct. 2, 2017, issued as U.S. Pat. No. 10,732,714 on Aug. 4, 2020, which claims priority to U.S. Provisional Patent Application Ser. No. 62/503,163, filed May 8, 2017, and U.S. Provisional Patent Application Ser. No. 62/540,921, filed Aug. 3, 2017, each of which is incorporated by reference herein in its entirety.

US Referenced Citations (302)
Number Name Date Kind
3686927 Scharton Aug 1972 A
4902136 Mueller et al. Feb 1990 A
5374896 Sato et al. Dec 1994 A
5684722 Thorner et al. Nov 1997 A
5748578 Schell May 1998 A
5857986 Moriyasu Jan 1999 A
6050393 Murai et al. Apr 2000 A
6278790 Davis et al. Aug 2001 B1
6294891 McConnell et al. Sep 2001 B1
6332029 Azima et al. Dec 2001 B1
6388520 Wada et al. May 2002 B2
6567478 Oishi et al. May 2003 B2
6580796 Kuroki Jun 2003 B1
6683437 Fierling Jan 2004 B2
6703550 Chu Mar 2004 B2
6762745 Braun et al. Jul 2004 B1
6768779 Nielsen Jul 2004 B1
6784740 Tabatabaei Aug 2004 B1
6906697 Rosenberg Jun 2005 B2
6995747 Casebolt et al. Feb 2006 B2
7042286 Meade et al. May 2006 B2
7154470 Tierling Dec 2006 B2
7277678 Rozenblit et al. Oct 2007 B2
7333604 Zernovizky et al. Feb 2008 B2
7392066 Haparnas Jun 2008 B2
7456688 Okazaki et al. Nov 2008 B2
7623114 Rank Nov 2009 B2
7639232 Grant et al. Dec 2009 B2
7777566 Drogi et al. Aug 2010 B1
7791588 Tierling et al. Sep 2010 B2
7979146 Ullrich et al. Jul 2011 B2
8068025 Devenyi et al. Nov 2011 B2
8098234 Lacroix et al. Jan 2012 B2
8102364 Tierling Jan 2012 B2
8325144 Tierling et al. Dec 2012 B1
8427286 Grant et al. Apr 2013 B2
8441444 Moore et al. May 2013 B2
8466778 Hwang et al. Jun 2013 B2
8480240 Kashiyama Jul 2013 B2
8572293 Cruz-Hernandez et al. Oct 2013 B2
8572296 Cruz-Hernandez et al. Oct 2013 B2
8593269 Grant et al. Nov 2013 B2
8648659 Oh et al. Feb 2014 B2
8648829 Shahoian et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8754757 Ullrich et al. Jun 2014 B1
8947216 Da Costa et al. Feb 2015 B2
8981915 Birnbaum et al. Mar 2015 B2
8994518 Gregorio et al. Mar 2015 B2
9030428 Fleming May 2015 B2
9063570 Weddle et al. Jun 2015 B2
9070856 Rose et al. Jun 2015 B1
9083821 Hughes Jul 2015 B2
9092059 Bhatia Jul 2015 B2
9117347 Matthews Aug 2015 B2
9128523 Buuck et al. Sep 2015 B2
9164587 Da Costa et al. Oct 2015 B2
9196135 Shah et al. Nov 2015 B2
9248840 Truong Feb 2016 B2
9326066 Kilppel Apr 2016 B2
9329721 Buuck et al. May 2016 B1
9354704 Lacroix et al. May 2016 B2
9368005 Cruz-Hernandez et al. Jun 2016 B2
9489047 Jiang et al. Nov 2016 B2
9495013 Underkoffler et al. Nov 2016 B2
9507423 Gandhi et al. Nov 2016 B2
9513709 Gregorio et al. Dec 2016 B2
9520036 Buuck Dec 2016 B1
9588586 Rihn Mar 2017 B2
9640047 Choi et al. May 2017 B2
9652041 Jiang et al. May 2017 B2
9696859 Heller et al. Jul 2017 B1
9697450 Lee Jul 2017 B1
9715300 Sinclair Jul 2017 B2
9740381 Chaudhri et al. Aug 2017 B1
9842476 Rihn et al. Dec 2017 B2
9864567 Seo Jan 2018 B2
9881467 Levesque Jan 2018 B2
9886829 Levesque Feb 2018 B2
9946348 Ullrich et al. Apr 2018 B2
9947186 Macours Apr 2018 B2
9959744 Koskan et al. May 2018 B2
9965092 Smith May 2018 B2
10032550 Zhang et al. Jul 2018 B1
10055950 Saboune et al. Aug 2018 B2
10074246 Da Costa et al. Sep 2018 B2
10110152 Hajati Oct 2018 B1
10171008 Nishitani et al. Jan 2019 B2
10175763 Shah Jan 2019 B2
10191579 Forlines et al. Jan 2019 B2
10264348 Harris et al. Apr 2019 B1
10275087 Smith Apr 2019 B1
10402031 Vandermeijden Sep 2019 B2
10564727 Billington et al. Feb 2020 B2
10620704 Rand et al. Apr 2020 B2
10667051 Stahl May 2020 B2
10726683 Mondello et al. Jul 2020 B1
10732714 Rao Aug 2020 B2
10735956 Bae et al. Aug 2020 B2
10782785 Hu et al. Sep 2020 B2
10795443 Hu et al. Oct 2020 B2
10820100 Stahl et al. Oct 2020 B2
10828672 Stahl et al. Nov 2020 B2
10832537 Doy et al. Nov 2020 B2
10848886 Rand Nov 2020 B2
10860202 Sepehr et al. Dec 2020 B2
10955955 Peso Parada et al. Mar 2021 B2
10969871 Rand et al. Apr 2021 B2
11069206 Rao et al. Jul 2021 B2
11079874 Lapointe et al. Aug 2021 B2
11139767 Janko et al. Oct 2021 B2
11150733 Das et al. Oct 2021 B2
11259121 Lindemann et al. Feb 2022 B2
20010043714 Asada et al. Nov 2001 A1
20020018578 Burton Feb 2002 A1
20020085647 Oishi et al. Jul 2002 A1
20030068053 Chu Apr 2003 A1
20030214485 Roberts Nov 2003 A1
20050031140 Browning Feb 2005 A1
20050134562 Grant et al. Jun 2005 A1
20060028095 Maruyama et al. Feb 2006 A1
20060197753 Hotelling Sep 2006 A1
20070024254 Radecker et al. Feb 2007 A1
20070241816 Okazaki et al. Oct 2007 A1
20080077367 Odajima Mar 2008 A1
20080226109 Yamakata et al. Sep 2008 A1
20080240458 Goldstein et al. Oct 2008 A1
20080293453 Atlas et al. Nov 2008 A1
20080316181 Nurmi Dec 2008 A1
20090020343 Rothkopf et al. Jan 2009 A1
20090079690 Watson et al. Mar 2009 A1
20090088220 Persson Apr 2009 A1
20090096632 Ullrich et al. Apr 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090128306 Luden et al. May 2009 A1
20090153499 Kim et al. Jun 2009 A1
20090189867 Krah Jul 2009 A1
20090278819 Goldenberg et al. Nov 2009 A1
20090313542 Cruz-Hernandez et al. Dec 2009 A1
20100013761 Birnbaum et al. Jan 2010 A1
20100080331 Garudadr et al. Apr 2010 A1
20100085317 Park et al. Apr 2010 A1
20100141408 Doy et al. Jun 2010 A1
20100141606 Bae et al. Jun 2010 A1
20100260371 Afshar Oct 2010 A1
20100261526 Anderson et al. Oct 2010 A1
20110056763 Tanase et al. Mar 2011 A1
20110075835 Hill Mar 2011 A1
20110077055 Pakula et al. Mar 2011 A1
20110141052 Bernstein et al. Jun 2011 A1
20110161537 Chang Jun 2011 A1
20110163985 Bae et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20120011436 Jinkinson et al. Jan 2012 A1
20120105358 Momeyer et al. May 2012 A1
20120112894 Yang et al. May 2012 A1
20120206246 Cruz-Hernandez et al. Aug 2012 A1
20120206247 Bhatia et al. Aug 2012 A1
20120229264 Company Bosch et al. Sep 2012 A1
20120249462 Flanagan et al. Oct 2012 A1
20120253698 Cokonaj Oct 2012 A1
20120306631 Hughes Dec 2012 A1
20130016855 Lee et al. Jan 2013 A1
20130027359 Schevin et al. Jan 2013 A1
20130038792 Quigley et al. Feb 2013 A1
20130096849 Campbell et al. Apr 2013 A1
20130141382 Simmons et al. Jun 2013 A1
20130275058 Awad Oct 2013 A1
20130289994 Newman et al. Oct 2013 A1
20140056461 Afshar Feb 2014 A1
20140064516 Cruz-Hernandez et al. Mar 2014 A1
20140079248 Short et al. Mar 2014 A1
20140085064 Crawley et al. Mar 2014 A1
20140118125 Bhatia May 2014 A1
20140118126 Garg et al. May 2014 A1
20140119244 Steer et al. May 2014 A1
20140139327 Bau et al. May 2014 A1
20140222377 Bitan et al. Aug 2014 A1
20140226068 Lacroix et al. Aug 2014 A1
20140292501 Lim et al. Oct 2014 A1
20140340209 Lacroix et al. Nov 2014 A1
20140347176 Modarres et al. Nov 2014 A1
20150061846 Yliaho Mar 2015 A1
20150070149 Cruz-Hernandez et al. Mar 2015 A1
20150070151 Cruz-Hernandez et al. Mar 2015 A1
20150070154 Levesque et al. Mar 2015 A1
20150070260 Saboune et al. Mar 2015 A1
20150084752 Heubel et al. Mar 2015 A1
20150130767 Myers et al. May 2015 A1
20150208189 Tsai Jul 2015 A1
20150216762 Oohashi et al. Aug 2015 A1
20150234464 Yliaho Aug 2015 A1
20150324116 Marsden et al. Nov 2015 A1
20150325116 Umminger, III Nov 2015 A1
20150341714 Ahn et al. Nov 2015 A1
20150356981 Johnson et al. Dec 2015 A1
20160004311 Yliaho Jan 2016 A1
20160007095 Lacroix Jan 2016 A1
20160063826 Morrell et al. Mar 2016 A1
20160070392 Wang et al. Mar 2016 A1
20160074278 Muench et al. Mar 2016 A1
20160097662 Chang et al. Apr 2016 A1
20160132118 Park et al. May 2016 A1
20160162031 Westerman et al. Jun 2016 A1
20160179203 Modarres et al. Jun 2016 A1
20160187987 Ullrich et al. Jun 2016 A1
20160239089 Taninaka et al. Aug 2016 A1
20160246378 Sampanes et al. Aug 2016 A1
20160277821 Kunimoto Sep 2016 A1
20160291731 Liu et al. Oct 2016 A1
20160328065 Johnson et al. Nov 2016 A1
20160358605 Ganong, III et al. Dec 2016 A1
20170052593 Jiang et al. Feb 2017 A1
20170078804 Guo et al. Mar 2017 A1
20170083096 Rihn et al. Mar 2017 A1
20170090572 Holenarsipur et al. Mar 2017 A1
20170090573 Hajati et al. Mar 2017 A1
20170153760 Chawda et al. Jun 2017 A1
20170168574 Zhang Jun 2017 A1
20170169674 Macours Jun 2017 A1
20170180863 Biggs et al. Jun 2017 A1
20170220197 Matsumoto et al. Aug 2017 A1
20170256145 Macours et al. Sep 2017 A1
20170277350 Wang et al. Sep 2017 A1
20170031495 Tse Dec 2017 A1
20170357440 Tse Dec 2017 A1
20180021811 Kutej et al. Jan 2018 A1
20180059733 Gault et al. Mar 2018 A1
20180059793 Hajati Mar 2018 A1
20180067557 Robert et al. Mar 2018 A1
20180074637 Rosenberg et al. Mar 2018 A1
20180082673 Tzanetos Mar 2018 A1
20180084362 Zhang et al. Mar 2018 A1
20180095596 Turgeman Apr 2018 A1
20180151036 Cha et al. May 2018 A1
20180158289 Vasilev et al. Jun 2018 A1
20180159452 Eke et al. Jun 2018 A1
20180159457 Eke Jun 2018 A1
20180159545 Eke et al. Jun 2018 A1
20180160227 Lawrence et al. Jun 2018 A1
20180165925 Israr et al. Jun 2018 A1
20180178114 Mizuta et al. Jun 2018 A1
20180182212 Li et al. Jun 2018 A1
20180183372 Li et al. Jun 2018 A1
20180196567 Klein et al. Jul 2018 A1
20180224963 Lee et al. Aug 2018 A1
20180237033 Hakeem et al. Aug 2018 A1
20180206282 Singh Sep 2018 A1
20180253123 Levesque et al. Sep 2018 A1
20180255411 Lin et al. Sep 2018 A1
20180267897 Jeong Sep 2018 A1
20180294757 Feng et al. Oct 2018 A1
20180301060 Israr et al. Oct 2018 A1
20180321748 Rao et al. Nov 2018 A1
20180323725 Cox et al. Nov 2018 A1
20180329172 Tabuchi Nov 2018 A1
20180335848 Moussette et al. Nov 2018 A1
20180367897 Bjork et al. Dec 2018 A1
20190020760 DeBates et al. Jan 2019 A1
20190035235 Da Costa et al. Jan 2019 A1
20190227628 Rand et al. Jan 2019 A1
20190044651 Nakada Feb 2019 A1
20190051229 Ozguner et al. Feb 2019 A1
20190064925 Kim et al. Feb 2019 A1
20190069088 Seiler Feb 2019 A1
20190073078 Sheng et al. Mar 2019 A1
20190102031 Shutzberg et al. Apr 2019 A1
20190103829 Vasudevan et al. Apr 2019 A1
20190138098 Shah May 2019 A1
20190163234 Kim et al. May 2019 A1
20190196596 Yokoyama et al. Jun 2019 A1
20190206396 Chen Jul 2019 A1
20190215349 Adams et al. Jul 2019 A1
20190220095 Ogita et al. Jul 2019 A1
20190228619 Yokoyama et al. Jul 2019 A1
20190114496 Lesso Aug 2019 A1
20190235629 Hu et al. Aug 2019 A1
20190294247 Hu et al. Sep 2019 A1
20190296674 Janko et al. Sep 2019 A1
20190297418 Stahl Sep 2019 A1
20190305851 Vegas-Olmos et al. Oct 2019 A1
20190311590 Doy et al. Oct 2019 A1
20190341903 Kim Nov 2019 A1
20190384393 Cruz-Hernandez et al. Dec 2019 A1
20200117506 Chan Apr 2020 A1
20200139403 Palit May 2020 A1
20200150767 Karimi Eskandary et al. May 2020 A1
20200218352 Macours et al. Jul 2020 A1
20200313529 Lindemann Oct 2020 A1
20200313654 Marchais et al. Oct 2020 A1
20200314969 Marchais et al. Oct 2020 A1
20200403546 Janko et al. Dec 2020 A1
20210108975 Parada et al. Apr 2021 A1
20210125469 Alderson Apr 2021 A1
20210153562 Fishwick et al. May 2021 A1
20210157436 Peso Parada et al. May 2021 A1
20210174777 Marchais et al. Jun 2021 A1
20210175869 Taipale Jun 2021 A1
20210200316 Das et al. Jul 2021 A1
20210325967 Khenkin et al. Oct 2021 A1
20210328535 Khenkin et al. Oct 2021 A1
20210365118 Rajapurkar et al. Nov 2021 A1
Foreign Referenced Citations (41)
Number Date Country
2002347829 Apr 2003 AU
103165328 Jun 2013 CN
204903757 Dec 2015 CN
105264551 Jan 2016 CN
106438890 Feb 2017 CN
103403796 Jul 2017 CN
106950832 Jul 2017 CN
107665051 Feb 2018 CN
210628147 May 2020 CN
114237414 Mar 2022 CN
0784844 Jun 2005 EP
2306269 Apr 2011 EP
2363785 Sep 2011 EP
2487780 Aug 2012 EP
2600225 Jun 2013 EP
2846218 Mar 2015 EP
2846229 Mar 2015 EP
2846329 Mar 2015 EP
2988528 Feb 2016 EP
3125508 Feb 2017 EP
3379382 Sep 2018 EP
201620746 Jan 2017 GB
201747044027 Aug 2018 IN
H02130433 May 1990 JP
H10184782 Jul 1998 JP
6026751 Nov 2016 JP
6250985 Dec 2017 JP
6321351 May 2018 JP
20120126446 Nov 2012 KR
2013104919 Jul 2013 WO
2013186845 Dec 2013 WO
2014018086 Jan 2014 WO
2014094283 Jun 2014 WO
2016105496 Jun 2016 WO
2016164193 Oct 2016 WO
2017113651 Jul 2017 WO
2018053159 Mar 2018 WO
2018067613 Apr 2018 WO
2018125347 Jul 2018 WO
2020004840 Jan 2020 WO
2020055405 Mar 2020 WO
Non-Patent Literature Citations (42)
Entry
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/050964, dated Sep. 3, 2019.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/050770, dated Jul. 5, 2019.
Communication Relating to the Results of the Partial International Search, and Provisional Opinion Accompanying the Partial Search Result, of the International Searching Authority, International Application No. PCT/US2018/031329, dated Jul. 20, 2018.
Combined Search and Examination Report, UKIPO, Application No. GB1720424.9, dated Jun. 5, 2018.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/052991, dated Mar. 17, 2020, received by Applicant Mar. 19, 2020.
Communication Relating to the Results of the Partial International Search, and Provisional Opinion Accompanying the Partial Search Result, of the International Searching Authority, International Application No. PCT/GB2020/050822, dated Jul. 9, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/024864, dated Jul. 6, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051035, dated Jul. 10, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/050823, dated Jun. 30, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051037, dated Jul. 9, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/050822, dated Aug. 31, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051438, dated Sep. 28, 2020.
First Examination Opinion Notice, State Intellectual Property Office of the People's Republic of China, Application No. 201880037435.X, dated Dec. 31, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/056610, dated Jan. 21, 2021.
Examination Report under Section 18(3), United Kingdom Intellectual Property Office, Application No. GB2106247.6, dated Mar. 31, 2022.
Invitation to Pay Additional Fees, Partial International Search Report and Provisional Opinion of the International Searching Authority, International Application No. PCT/US2020/052537, dated Jan. 14, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/052537, dated Mar. 9, 2021.
Office Action of the Intellectual Property Office, ROC (Taiwan) Patent Application No. 107115475, dated Apr. 30, 2021.
First Office Action, China National Intellectual Property Administration, Patent Application No. 2019800208570, dated Jun. 3, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2021/021908, dated Jun. 9, 2021.
Notice of Preliminary Rejection, Korean Intellectual Property Office, Application No. 10-2019-7036236, dated Jun. 29, 2021.
Combined Search and Examination Report, United Kingdom Intellectual Property Office, Application No. GB2018051.9, dated Jun. 30, 2021.
Communication pursuant to Rule 164(2)(b) and Article 94(3) EPC, European Patent Office, Application No. 18727512.8, dated Jul. 8, 2021.
Gottfried Behler: “Measuring the Loudspeaker's Impedance during Operation for the Derivation of the Voice Coil Temperature”, AES Convention Preprint, Feb. 25, 1995 (Feb. 25, 1995), Paris.
First Office Action, China National Intellectual Property Administration, Patent Application No. 2019800211287, dated Jul. 5, 2021.
Steinbach et al., Haptic Data Compression and Communication, IEEE Signal Processing Magazine, Jan. 2011.
Pezent et al., Syntacts Open-Source Software and Hardware for Audio-Controlled Haptics, IEEE Transactions on Haptics, vol. 14, No. 1, Jan.-Mar. 2021.
Danieau et al., Enhancing Audiovisual Experience with Haptic Feedback: A Survey on HAV, IEEE Transactions on Haptics, vol. 6, No. 2, Apr.-Jun. 2013.
Danieau et al., Toward Haptic Cinematography: Enhancing Movie Experiences with Camera-Based Haptic Effects, IEEE Computer Society, IEEE MultiMedia, Apr.-Jun. 2014.
Jaijongrak et al., A Haptic and Auditory Assistive User Interface: Helping the Blinds on their Computer Operations, 2011 IEEE International Conference on Rehabilitation Robotics, Rehab Week Zurich, ETH Zurich Science City, Switzerland, Jun. 29-Jul. 1, 2011.
Lim et al. , An Audio-Haptic Feedbacks for Enhancing User Experience in Mobile Devices, 2013 IEEE International Conference on Consumer Electronics (ICCE).
Weddle et al., How Does Audio-Haptic Enhancement Influence Emotional Response to Mobile Media, 2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX), QMEX 2013.
Final Notice of Preliminary Rejection, Korean Patent Office, Application No. 10-2019-7036236, dated Nov. 29, 2021.
Examination Report, United Kingdom Intellectual Property Office, Application No. GB2018051.9, dated Nov. 5, 2021.
Examination Report under Section 18(3), United Kingdom Intellectual Property Office, Application No. GB2018050.1, dated Dec. 22, 2021.
Second Office Action, National Intellectual Property Administration, PRC, Application No. 2019800208570, dated Jan. 19, 2022.
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2210174.5, dated Aug. 1, 2022.
Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2112207.2, dated Aug. 18, 2022.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/030541, dated Sep. 1, 2022.
Vanderborght, B. et al., Variable impedance actuators: A review; Robotics and Autonomous Systems 61, Aug. 6, 2013, pp. 1601-1614.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/033190, dated Sep. 8, 2022.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/033230, dated Sep. 15, 2022.
Related Publications (1)
Number Date Country
20220026989 A1 Jan 2022 US
Provisional Applications (2)
Number Date Country
62540921 Aug 2017 US
62503163 May 2017 US
Divisions (1)
Number Date Country
Parent 15722128 Oct 2017 US
Child 16871832 US
Continuations (1)
Number Date Country
Parent 16871832 May 2020 US
Child 17495277 US