A connector assembly having one or more conductive elements in spaced-apart configuration is generally discussed herein with particular discussions extended to connector assemblies for use with implantable medical devices having easy to assemble contact elements.
Implantable medical devices for providing electrical stimulation to body tissues, for monitoring physiologic conditions, and for providing alternative treatments to drugs are well known in the art. Exemplary implantable medical devices include implantable cardio defibrillators, pacemakers, and programmable neurostimulator pulse generators, which are collectively herein referred to as “implantable medical devices” or IMDs. These IMDs typically incorporate a hermetically sealed device enclosing a power source and electronic circuitry. Connected to the sealed housing, also known as a “can”, is a header assembly. The header assembly includes electrical contact elements that are electrically coupled to the electronic circuits or to the power source located inside the can via conductive terminals. The header assembly provides a means for electrically communicating via an external medical lead cable, between the electronic circuits or power source located inside the device and the actual stimulation point.
Industry wide standards have been adopted for, among other things, the dimensions, size, pin spacing, diameter, etc. for the receptacle and the medical lead cable. Furthermore, good electrical contact must be maintained during the life of the implantable medical device, and the medical lead cable for use with the IMD must not disconnect from the receptacle located in the header, yet be detachable for implanting and programming purposes and for replacing the IMD when necessary.
Although prior art connector contacts provide viable options for medical device manufacturers, the overall dimensions of existing receptacles pose manufacturing challenges. Among other things, placing stackable rings in between electrically insulating seals and positioning conductive contact elements in between conductive grooves for forming a receptacle and integrating the contact assembly into the IMD are difficult, costly, and time consuming. Accordingly, there is a need for a receptacle that not only meets the challenges associated with implantable applications but is also easier to manufacture than a variety of existing receptacles. There is also a need for a receptacle that is easily adaptable with existing implantable medical devices that are easier to manufacture than a variety of existing implantable medical devices.
An aspect of the present invention includes an implantable medical device comprising a header attached to a sealed housing; a connector stack disposed in the header, said header comprising at least two header housing sections attached to one another along a seam. A plurality of grooves are disposed in the at least two header housing sections and a plurality of dividing walls each separating two adjacent grooves from one another. A conductive contact ring element having a spring contact element disposed therein is positioned in a first groove and a sealing ring is positioned in a second groove adjacent the conductive contact ring element and having the dividing wall positioned therebetween for maintaining the conductive contact ring element and the sealing ring in a spaced apart relationship.
Aspects of the present invention also include a method of assembling a connector assembly for use with an implantable medical device. In accordance with on method, the steps comprise providing a first header section comprising a plurality of grooves; placing a conductive contact ring element into a first groove; placing a sealing ring into a second groove; separating the contact ring from the sealing ring with a dividing wall; and attaching a second header section to the first header section.
Another aspect of the present invention is a method for forming a connector stack having reduced overall length comprising inserting a tubular ring into a groove of a header, said groove located between two seal ring elements, to form a ring groove; providing a spring in said ring groove; and maintaining a space between said tubular ring and said two seal ring elements.
In other embodiments, a method is provided for assembling an implantable medical connector stack comprising a series of selecting and dropping steps. The method comprises selecting a first stack component for assembly; dropping the first stack component into a header section; selecting a second stack component for assembly; dropping the second stack component into the header section; and providing a dividing wall, formed of a material different from the first stack component and the second component, in between the first stack component and the second stack component to maintain the first stack component and the second stack component in a spaced apart relationship.
Other aspects and features of the receptacles provided herein may be better appreciated as the same become better understood with reference to the specification and claims.
The detailed description set forth below in connection with the appended drawings is intended as a description of the presently preferred embodiments of connector assemblies or stacks for electrically communicating with medical leads or conductive terminals. The leads in turn connect to integrated circuits, a power source, and/or circuit chips located inside a sealed medical implantable housing. The connector assemblies provided in accordance with aspects of the present invention are not intended to represent the only forms in which the present invention may be constructed or utilized. The description sets forth the features and the steps for constructing and using the connector assemblies of the present invention in connection with the illustrated embodiments. It is to be understood that the same or equivalent functions and structures may be accomplished by different embodiments and are also intended to be encompassed within the spirit and scope of the present invention, especially those incorporating a combination of features shown in the different embodiments included herein. As denoted elsewhere herein, like element numbers are intended to indicate like or similar elements or features.
Referring now to
In one exemplary embodiment, the connector assembly 10 comprises a plurality of non-conductive seal rings 24, conductive ring contact elements 26, and spring contact elements 28. Together with a holding ring 30, the plurality of seal rings 24, ring contact elements 26, and spring contact elements 28 form the basic components of the connector assembly 10 of the present embodiment, which has a common bore for receiving the proximal end of the lead cable 12. Broadly speaking, the seal rings 24 are each configured to seal, along its internal diameter, against the lead cable 12 and, along the outer periphery of its exterior shoulders, adjacent ring contact element(s) 26. As is readily apparent to a person of ordinary skill in the art, bodily fluids should be prevented from traveling along the lead cable 12 into the connector assembly or in through the seams between the contact ring element 26 and two adjacent seal rings 24. The ring contact elements 26 are each configured to pass an electric signal from a lead 36 located inside an IMD housing to a corresponding spring contact element 28, which then passes the electric signal to a corresponding electrical terminal 16 on the lead cable 12 then onto a corresponding electrode lead 22 located inside the lead body 20 and to a corresponding electrode terminal on the distal end of the lead cable.
In accordance with aspects of the present invention, two sub-classes of seal rings 24 are incorporated, which include an end seal ring 32 and an intermediate seal ring 34. The end seal ring 32 comprises a single external shoulder 38 for projecting into an adjacent bore 40, which could be that of a contact ring 28 or otherwise. The intermediate seal ring 34 comprises two external shoulders 38 for projecting into two adjacent bores 40, which could be that of two different contact rings 28 or otherwise, such as one contact ring 28 and a holding ring 30. However, an intermediate seal ring 34 can be used in place of an end seal ring 32 without deviating form the spirit and scope of the present invention.
With reference to
The spring contacts 28 are similarly sized so that each is deflected by the lead cable 12 to about 5% and up to about 50% of its total radial deflection with up to about 40% being more preferred. This deflection range ensures a sufficient spring contact force is generated between the contract rings 26 and the electric terminals 16 on the lead cable 12 for transferring electric signals between the two.
Referring again to
Other geometries are also contemplated. For example, the contact ring 26 may have a thicker section so that there are at least two internal diameters. The spring contact element 28 can then be inserted through the larger internal diameter end of the contact ring 26 until it abuts the shoulder formed at the intersection between the two different internal diameters. Thus, different diameters and undulating internal surfaces for the contact rings are contemplated. The ring with a v-shaped groove can be considered a sub-species of a ring having at least two internal diameters. Still alternatively, the plurality of contact rings in a single connector assembly may vary, i.e., are not uniform. For example, it is possible to use a ring with a “v” shaped groove at the distal most end of the connector assembly and rings with a smoother contour as shown in
Thus, in accordance with one aspect of the present invention, there is provided a method for assembling a plurality of components to form a connector assembly comprising engaging a first seal ring 34 to a holding ring 30, engaging a first contact ring 26 with the first seal ring 34, placing a first spring contact element 28 inside the first contact ring, and engaging a second seal ring 34 with the first contact ring to form a ring groove for constraining the first spring contact therein. The method further comprises the steps that include adding other seal rings, contact rings, and spring contact elements to form a connector assembly having a desired number of contact grooves. More preferably, the method further comprises the steps of assembling a connector assembly without having to utilize a tool or by hand or by secondary assembly processes manipulate, compress, bend, or distort a spring contact to fit within a contact groove. The assembled connector assembly is then placed into a mold cavity and over-molded with an implantable grade polymer or elastomer, such as epoxy or silicone. The connector assembly can also be inserted into a pre-molded header, which resembles a housing having a cavity for receiving the connector assembly and one or more openings for placing the connector assembly into the pre-molded header. The one or more openings are then backfilled or sealed, typically after attaching or welding the leads from the sealed housing to the contact rings, to complete the assembly.
In accordance with other aspects of the present invention, there is provided an alternative method for assembling a connector assembly in which a dowel or assembly pin (not shown) is used, which resembles the proximal end 13 of the lead cable 12 shown in
In the embodiment shown, the holding ring 30 functions as an end cap and has an end wall 46 and a shoulder 48 for mating engagement with the shoulder on the seal ring 34. However, a reverse configuration in which the holding ring 30, or contact ring 26, projects into the seal ring 24 is envisioned, although less preferred. A threaded bore 50 for receiving a set screw 52 is incorporated in the holding ring 30 to more securely fixing the lead cable 12 to the connector 10 assembly (
Referring again to
Following assembly of the various components to form the connector assembly 10 shown in
Referring now to
Also shown in
The grooves are each sized to snuggly receive a connector component. Moreover, they are sized and aligned so that when the various connector components are mounted therein, the bores of the various components align. More preferably, the grooves are aligned to provide a generally uniform longitudinal axis among the various connector components to define a common bore.
As can be appreciated, a feature of the present embodiment is a plurality of header walls 114 located in between alternating pairs of ring contact elements 26 and sealing rings 116 to keep the stack components in spaced apart relationships, except for the springs 28 and the ring contact elements 26, which are always in electrical communication with one another. In another aspect of the invention, a method is provided for forming ring grooves for retaining canted coil springs in the absence of conductive side walls. The method comprising placing a first ring contact element into a first groove of a header and forming a ring groove from a bottom wall of the ring contact element and two header walls. The method further comprising placing a dielectric seal element into a second groove, spaced apart from the first groove, and placing a second ring contact element into a third groove, which is spaced apart from the second groove and the first groove.
As is readily apparent to a person of ordinary skill in the art, each contact ring 26 is isolated from an adjacent contact ring by a sealing ring 116 and at least one dividing wall 114. The sealing rings are each preferably generally ring shape (
Although limited preferred embodiments and methods for making and using connector assemblies provided in accordance with aspects of the present invention have been specifically described and illustrated, many modifications and variations will be apparent to those skilled in the art. For example, various material changes may be used, incorporating different mechanical engagement means to attach the various components to one another, making use of two or more different materials or composites, making a sealing ring from multiple pieces rather than a singularly molded piece, etc. Accordingly, it is to be understood that the connector assemblies constructed according to principles of this invention may be embodied in other than as specifically described herein. The invention is also defined in the following claims.
This is an ordinary application claiming priority to provisional application No. 60/911,161, filed Apr. 11, 2007, entitled Integrated Header Connector System; and of provisional application No. 61/024,660, filed Jan. 30, 2008, entitled In-Line Connectors; the contents of each of which are expressly incorporated herein by reference as if set forth in full. This application also expressly incorporates by reference application Ser. No. 12/062,895, filed Apr. 4, 2008, entitled Connector Assembly for Use with Medical Devices.
Number | Name | Date | Kind |
---|---|---|---|
4072154 | Anderson et al. | Feb 1978 | A |
4105037 | Richter et al. | Aug 1978 | A |
4202592 | Rullier et al. | May 1980 | A |
4262673 | Kinney et al. | Apr 1981 | A |
4461194 | Moore | Jul 1984 | A |
4934366 | Truex et al. | Jun 1990 | A |
5012807 | Stutz, Jr. | May 1991 | A |
5076270 | Stutz, Jr. | Dec 1991 | A |
5413595 | Stutz, Jr. | May 1995 | A |
5817984 | Taylor et al. | Oct 1998 | A |
5866851 | Taylor et al. | Feb 1999 | A |
6029277 | Picchione, II | Feb 2000 | A |
6192277 | Lim et al. | Feb 2001 | B1 |
6428368 | Hawkins et al. | Aug 2002 | B1 |
6498952 | Imani et al. | Dec 2002 | B2 |
6671544 | Baudino | Dec 2003 | B2 |
6671554 | Gibson et al. | Dec 2003 | B2 |
6878013 | Behan | Apr 2005 | B1 |
6879857 | Swanson et al. | Apr 2005 | B2 |
6895276 | Kast et al. | May 2005 | B2 |
7003351 | Tvaska et al. | Feb 2006 | B2 |
7047077 | Hansen et al. | May 2006 | B2 |
7062329 | Ostroff | Jun 2006 | B2 |
7063563 | Hsu | Jun 2006 | B1 |
7070455 | Balsells | Jul 2006 | B2 |
7083474 | Fleck et al. | Aug 2006 | B1 |
7108549 | Lyu et al. | Sep 2006 | B2 |
7164954 | Lefebvre et al. | Jan 2007 | B2 |
7187974 | Haeg et al. | Mar 2007 | B2 |
7195523 | Naviaux | Mar 2007 | B2 |
7241180 | Rentas Torres | Jul 2007 | B1 |
7263401 | Scott et al. | Aug 2007 | B2 |
7299095 | Barlow et al. | Nov 2007 | B1 |
7303422 | Hoffer et al. | Dec 2007 | B2 |
7326083 | Mehdizadeh et al. | Feb 2008 | B2 |
7429199 | Burgess | Sep 2008 | B2 |
7601033 | Ries et al. | Oct 2009 | B2 |
7654843 | Olson et al. | Feb 2010 | B2 |
7822477 | Rey et al. | Oct 2010 | B2 |
20030163171 | Kast et al. | Aug 2003 | A1 |
20040068313 | Jenney et al. | Apr 2004 | A1 |
20040078070 | Baudino | Apr 2004 | A1 |
20060166563 | Osypka | Jul 2006 | A1 |
20060224208 | Naviaux | Oct 2006 | A1 |
20080208278 | Janzig et al. | Aug 2008 | A1 |
20080246231 | Sjostedt et al. | Oct 2008 | A1 |
20080255631 | Sjostedt et al. | Oct 2008 | A1 |
20090258519 | Dilmaghanian et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 0064535 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20080255631 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60911161 | Apr 2007 | US | |
61024660 | Jan 2008 | US |