Integrated helmet having blunt force trauma protection

Information

  • Patent Grant
  • 8844066
  • Patent Number
    8,844,066
  • Date Filed
    Monday, June 2, 2014
    10 years ago
  • Date Issued
    Tuesday, September 30, 2014
    10 years ago
  • CPC
  • US Classifications
    Field of Search
    • US
    • 002 410-413
    • 002 010000
    • 002 011000
    • 002 171000
    • 002 181400
    • 002 908000
    • 002 909000
    • 002 918000
    • 002 920000
    • 002 DIG030
    • 002 DIG010
    • 002 DIG011
  • International Classifications
    • A42B3/00
    • A42B3/12
Abstract
An integrated helmet having blunt force trauma protection includes a helmet shell, an inner impact layer and the replaceable impact layer. The helmet shell is preferably fabricated from carbon fiber or a high impact plastic. A plurality of openings are formed through the helmet shell to reduce weight. The inner impact layer is attached to an inside surface of the helmet shell. The inner impact layer includes a plurality of deformable bubbles, which communicate with each other through a plurality of air channels. The inner impact layer will not burst upon impact. The plurality of deformable bubble chambers are filled with air to allow air to be displaced from one area to another area. The replaceable impact layer is attached to an outside surface of the helmet shell. The replaceable impact layer will burst upon impact.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to helmets and more specifically to an integrated helmet having blunt force trauma protection, which includes a replaceable impact layer.


2. Discussion of the Prior Art


The purpose of protective helmets is to prevent head injury incurred during some event, such as football, ice hockey, horseback riding, skiing, lacrosse, baseball, riding a motorcycle, construction and military combat. Helmets were first invented for protection in military engagements, and as such, started as protection from hand held weapons and evolved in the 20th Century to protect from projectiles and explosives. As such, rigid, impenetrable helmets have been the paradigm we have used for the prevention of head injuries.


Rigid helmets have been partially successful at preventing injuries. However, the recent epidemic of concussions and the increasing awareness of the cumulative problems associated with repeated head trauma have unpacked the limitations of the current structure of protective helmets in all sports. Indeed, the same limitation could be claimed for all protective helmets including construction and military helmets.


The physics of head injury is all focused on the distance over which deceleration occurs. The human brain is very fragile, being composed of cells wrapped in membranes made of fluid fatty acids. Several trillion synapses in the brain are delicately poised in proximity to one another, without rigid and strong connections. These synapses are the functional means by which the brain operates. Shaking them disrupts them. The human nervous system has developed a host of strategies to enshrine the delicate neurons and their even more delicate synapse in a protective cocoon of safety. First and foremost, the brain is floating in water (otherwise called the cerebral spinal fluid), creating a bath without rigid inflexible supports. Within that water, the brain is suspended in a delicate spider web of suspending fibers and membranes that keep water from moving too quickly around the surface and allowing the soft brain to be gently suspended within the bony structure of the skull. The skull provides a rigid structure to contain the floating bath of fluid. Of note, the skull can be cracked and shattered as one strategy of dissipating force. This may lead to survival with subsequent healing. It is a unique and delicate bony structure around the brain, not seen anywhere else in the human body. The scalp provides an additional layer of safety. It is mobile and gives when struck, providing a few extra millimeters of deceleration distance. The scalp uniquely tears when stressed by direct blows, creating yet another mechanism of safety. The tearing creates large and dramatic scalp wounds in direct head trauma, but the brain underneath survives. Finally, the human skull is surrounded by hair, which can provide another layer of cushioning.


What are the physics of deceleration injury? The formula is simple: ΔVelocity/time=Deceleration. The change in velocity is divided by time. Rigid structures striking each other have a spike of deceleration within the first 0.00001 seconds. The more rigid and brittle, the higher the G-force generated for a shorter fragment of time. The Holy Grail of injury prevention in deceleration injury is to increase the distance and therefore time during which deceleration occurs. We are familiar with automobiles and have seen the effectiveness of airbags that increase the distance of deceleration of the human torso before it strikes the steering wheel. Vehicles are also designed to crumple so that force is taken up by bending metal, collapsing frames, shattering fenders, stretching seatbelts all of which increase the distance and time over which the human inside decelerates. Each of these strategies also complements the others to have a net effect of human survival, lowing the G forces from sufficient to break bones to simple sprains, strains and bruises.


Protective helmets have, to date, failed to provide a complete cocoon of safety. If the analogy to the human head can be used, protective helmets provide a skull and the inner dura, but there is no outer layer of safety. There is no scalp. No hair. Some advances have been made with the use of external foam with the SG Helmet. The missing ingredient in foam is that it fails to “fail”. The human scalp tears and gives way. Foam doesn't tear. It does provide distance for greater deceleration, resulting in reduction of concussion injuries.


To continue the scalp analogy, helmets also lack the protection afforded the brain inside the skull; water in which to float the brain. All current sports helmets have some sort of light weight foam, some more rigid than others. The innovation claimed in this application is to add the internal effect of air in large chambers that can provide give, air movement and stretch, allowing for further distance of deceleration and thereby decreasing G forces transmitted to the brain.


It appears that the prior art does not teach or suggest the use of air bubbles to create a more fluid means of slowing down deceleration and increasing the time/distance over which the deceleration occurs. The value of air bubbles is that they easily deform, have little weight, stretch, deform rapidly with increasing resistance and, in extreme circumstances, burst. Bursting is a critical component, as it allows for the dissipation of force and then allows distance to increase as the next layer of bubbles can absorb the evolving contact. However, the essential stretching and increasing air pressure upon contact makes for a gradient of deceleration, which will provide protection. Foam deforms but is not as fluid as air bubbles, has greater weight, which may result in rotational injuries of the neck. The foam cannot burst thereby dissipating energy. U.S. Pat. No. 3,872,511 to Nichols discloses protective headgear. U.S. Pat. No. 3,999,220 to Keltner discloses air cushioned protective gear. U.S. Pat. No. 4,586,200 to Poon discloses a protective crash helmet. U.S. Pat. No. 5,129,107 discloses an inflatable safety helmet specially for motorcycling.


Accordingly, there is a clearly felt need in the art for an integrated helmet having blunt force trauma protection, which includes an inner impact layer, a helmet shell and an external replaceable impact layer that covers the helmet shell and extinguishes instantaneous G-force deceleration shock waves applied thereto.


SUMMARY OF THE INVENTION

The present invention provides a helmet having blunt force trauma protection, which includes a replaceable impact layer. The helmet having blunt force trauma protection (blunt force helmet) includes a prior art helmet and a replaceable impact layer. The prior art helmet may be any type of helmet, such as a football helmet, an ice hockey helmet, a horseback riding helmet, a roller derby helmet, a chainsaw, a logging helmet, a construction helmet, a military helmet, a pediatric medical helmet a motorcycle helmet, a bicycle helmet, a baseball helmet, lacrosse helmet or any type of protective helmet for a human head. The replaceable impact layer preferably includes at least one air bubble layer, a removable attachment system and an outer layer of sheet material. The at least one air bubble layer includes a plurality of air bubbles created between two plastic sheets. Each bubble will burst upon a pre-determined impact. The plurality of bubbles preferably have a hexagon shape, but other shapes may also be used, such as round or square. The removable attachment system is preferably hook and loop fasteners, but other suitable removable attachment systems may also be used. At least one first pad of hook and loop fasteners is attached to an exterior surface of a prior art helmet and at least one second pad of hook and loop fasteners is attached to a bottom surface of the replaceable impact layer.


An integrated helmet having blunt force trauma protection (integrated blunt force helmet) includes a helmet shell, an inner impact layer and the replaceable impact layer. The helmet shell is preferably fabricated from carbon fiber or a high impact plastic. A plurality of openings are formed through the helmet shell to reduce weight. The inner impact layer may be permanently or removably attached to an inside surface of the helmet shell. The inner impact layer includes a base sheet and an outside sheet. The outside sheet is attached to the base sheet to form a plurality of deformable bubble chambers, which communicate with each other through a plurality of air channels. The base sheet and the outside sheet are strong to not burst upon impact. The plurality of deformable bubble chambers formed between the base and outside sheets are partially filled with air to allow air to be pushed from one area to another area. An instantaneous force of blunt trauma is dissipated by the plurality of deformable bubble chambers stretching, and then by air moving between the deformable bubble chambers through the plurality of air channels. The replaceable impact layer is attached to an outside surface of the helmet shell as described in the first embodiment.


Accordingly, it is an object of the present invention to provide a blunt force trauma helmet, which includes an external replaceable impact layer that covers a rigid helmet and extinguishes an instantaneous G-force deceleration shock wave applied to the rigid helmet.


It is a further objection of the present invention to provide an integrated blunt force trauma helmet, which includes a helmet shell, an inner impact layer and a replaceable impact layer.


Finally, it is another objection of the present invention to provide an integrated blunt force trauma helmet, which is light weight.


These and additional objects, advantages, features and benefits of the present invention will become apparent from the following specification.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective cut-away view of a blunt force football helmet with a replaceable impact layer having two air bubble layers in accordance with the present invention.



FIG. 1
a is a perspective cut-away view of a blunt force football helmet with a replaceable impact layer having two air bubble layers with round air bubbles in accordance with the present invention.



FIG. 2 is a perspective cut-away view of a blunt force football helmet with a replacement impact layer having a single a bubble layer in accordance with the present invention.



FIG. 3 is a perspective cut-away view of a blunt force bicycle helmet with a replacement impact layer having two air bubble layers in accordance with the present invention.



FIG. 4 is a perspective cut-away view of an integrated blunt force football helmet with a replaceable impact layer having two air bubble layers in accordance with the present invention.



FIG. 5 is a lengthwise cross sectional view of an integrated blunt force football helmet with a replaceable impact layer having two air bubble layers in accordance with the present invention.



FIG. 6 is a widthwise cross sectional view of an integrated blunt force football helmet with a replaceable impact layer having two air bubble layers in accordance with the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference now to the drawings, and particularly to FIG. 1, there is shown a perspective cut-away view of a blunt force football helmet 1. The blunt force helmet 1 includes a prior art helmet and a replaceable impact layer 10. The prior art helmet may be any type of helmet, such as a football helmet 100, a motorcycle helmet, a bicycle helmet, a baseball helmet, lacrosse helmet or any type of protective helmet for a human head. The football helmet 100 includes a hard exterior shell 102, a padded interior 104 and a face mask 106. With reference to FIG. 2, the replaceable impact layer 10 preferably includes at least one air bubble layer 12, a removable attachment system 14 and an outer layer of sheet material 16. The at least one air bubble layer 10 includes a plurality of air bubbles 18 created by a base sheet 20 and a bubble sheet 22. Each of the air bubbles 18 will burst upon a pre-determined impact. The following value is given by way of example and not way of limitation. It is preferably that the plurality of bubbles 18 burst in response to an impact of about 40 gs. The plurality of air bubbles 18 preferably have a hexagon shape, but other shapes may also be used, such as round or square. FIG. 1a discloses two air bubble layers 12′ with a plurality of air bubbles 19 having a round shape. The removable attachment system 14 is preferably hook and loop fasteners, but other suitable removable attachment systems may also be used. At least one first pad 24 of hook and loop fasteners is attached to an exterior surface of the shell 102 and at least one second pad 26 of hook and loop fasteners is attached to a bottom surface of the replaceable impact layer 10. The outer layer of sheet material 16 is preferably attached to a top surface of the air bubble layer 12 with adhesive or any other suitable method.


With reference to FIG. 3, a blunt force helmet 2 includes a bicycle helmet 110 and the replaceable impact layer 30. The bicycle helmet 110 includes a hard exterior shell 112, a padded interior 114 and a strap 116. The replaceable impact layer 30 preferably includes two air bubble layers 32, a removable attachment system 34 and an outer layer of sheet material 36. The replaceable impact layer 30 has all the features of replaceable impact layer 10. A top of a first air bubble layer 32 is attached to a bottom of a second air bubble layer 32 with adhesive or any other suitable method. The removable attachment system 34 has all the features of the replaceable impact layer 14.


The air bubbles 18 on the blunt force helmets 1, 2 will burst in the area of the impact, when a force of about 40 gravitational units (40 gs) is experienced by someone wearing the blunt force helmets 1, 2. A gravitational unit is equal to 9.801 m/s2. Damaged replaceable impact layers 10, 30 are removed from the blunt force helmets 1, 2 and replaced with new replaceable impact layers 10, 30. The outer layer of sheet material 16, 36 allows identification, such as team identification or advertising to be printed on an outside surface of the replacement layer 10, 30.


With reference to FIGS. 4-6, an integrated blunt force helmet 2 includes a helmet shell 40, an inner impact layer 42 and the replaceable impact layer 10. The helmet shell 40 is preferably fabricated from carbon fiber or a high impact plastic. A plurality of openings 44 are preferably formed through the helmet shell 40 to reduce weight. The inner impact layer may be permanently attached to an inside surface of the helmet shell 40 with adhesive or the like, or removably attached to an inside surface of the helmet with VELCRO or any other suitable method. The inner impact layer 42 includes a base sheet 46 and an outside sheet 48. The outside sheet 48 is attached to the base sheet 46 to form a plurality of deformable bubbles 50, which communicate with each other through a plurality of air channels 52. The base sheet 46 and the outside sheet 48 are strong to not burst upon impact. The plurality of deformable bubbles 50 formed between the base and outside sheets are partially filled with air to allow air to be pushed from one area to another area. However, a fill nozzle 54 may be included to allow an end user to fill the inner impact layer 42 with the desired amount of air through an air pump or the like. The replaceable impact layer 10 is attached to an outside surface of the helmet shell 40 with hook and loop fastener pads 24, 26, but other suitable removable attachment systems may also be used.


While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.

Claims
  • 1. An integrated helmet having blunt force trauma protection comprising: a helmet shell having an inside surface and an outside surface;an impact layer including a first sheet and a second sheet, said first sheet is attached to said second sheet to form a plurality of deformable bubble chambers and a plurality of air channels, wherein said plurality of air channels are connected between said plurality of deformable bubble chambers to allow air flow between said plurality of bubble chambers, said inner impact layer is attached to said inside surface of said helmet shell; anda replaceable impact layer includes at least one bubble layer, one of said at least one air bubble layer includes a base sheet and a bubble sheet, a plurality of air bubble chambers are created by joining said bubble sheet to said base sheet, some of said plurality of bubble chambers will burst upon a predetermined impact value, said replaceable impact layer is removably attached to said outside surface of said helmet shell.
  • 2. The integrated helmet having blunt force trauma protection of claim 1, further comprising: an outer layer of sheet material is attached to said bubble sheet.
  • 3. The integrated helmet having blunt force trauma protection of claim 1 wherein: said plurality of bubbles having a shape of at least one of hexagon, round and square.
  • 4. The integrated helmet having blunt force trauma protection of claim 1 wherein: a removable attachment system includes at least one first attachment pad and at least one second attachment.
  • 5. The integrated helmet having blunt force trauma protection of claim 4 wherein: said at least one first attachment pad and at least one second attachment pad include hook and loop fasteners.
  • 6. The integrated helmet having blunt force trauma protection of claim 1 wherein: said helmet is one of a football helmet, a motorcycle helmet, a bicycle helmet, a baseball helmet, a lacrosse helmet, an ice hockey helmet, a horseback riding helmet, a skiing helmet, a lacrosse helmet, a construction and military combat helmet.
  • 7. The integrated helmet having blunt force trauma protection of claim 1 wherein: said impact layer is fillable through an air nozzle.
  • 8. An integrated helmet having blunt force trauma protection comprising: a helmet shell having an inside surface and an outside surface;an impact layer including a first sheet and a second sheet, said first sheet is attached to said second sheet to form a plurality of deformable bubble chambers and a plurality of air channels, wherein said plurality of air channels are connected between said plurality of deformable bubble chambers to allow air flow between said plurality of bubble chambers, said impact layer is applied to said inside surface of said helmet shell,a replaceable impact layer includes at least one bubble layer, one of said at least one air bubble layer includes a base sheet and a bubble sheet, a plurality of air bubbles are created by joining said bubble sheet to said base sheet, some of said plurality of bubbles will burst upon a predetermined impact value; anda removable attachment system for removable attachment of said at least one air bubble layer to said outside surface of said helmet shell.
  • 9. The integrated helmet having blunt force trauma protection of claim 8, further comprising: an outer layer of sheet material is attached to said bubble sheet.
  • 10. The integrated helmet having blunt force trauma protection of claim 8 wherein: said plurality of bubbles having a shape of at least one of hexagon, round and square.
  • 11. The integrated helmet having blunt force trauma protection of claim 8 wherein: said removable attachment system includes at least one first attachment pad and at least one second attachment.
  • 12. The integrated helmet having blunt force trauma protection of claim 11 wherein: said at least one first attachment pad and at least one second attachment pad include hook and loop fasteners.
  • 13. The integrated helmet having blunt force trauma protection of claim 8 wherein: said helmet is one of a football helmet, a motorcycle helmet, a bicycle helmet, a baseball helmet, a lacrosse helmet, an ice hockey helmet, a horseback riding helmet, a skiing helmet, a lacrosse helmet, a construction and military combat helmet.
  • 14. The integrated helmet having blunt force trauma protection of claim 8 wherein: said inner impact layer is fillable through an air nozzle.
  • 15. An integrated helmet having blunt force trauma protection comprising: a helmet shell having an inside surface and an outside surface;an inner impact layer including a first sheet and a second sheet, said first sheet is attached to said second sheet to form a plurality of deformable bubble chambers and a plurality of air channels, wherein said plurality of air channels are connected between said plurality of deformable bubble chambers to allow air flow between said plurality of deformable bubbles chambers, said inner impact layer is attached to said inside surface of said helmet shell; anda replaceable impact layer includes at least one bubble layer, one of said at least one air bubble layer includes a base sheet and a bubble sheet, a plurality of air bubbles are created by joining said bubble sheet to said base sheet, some of said plurality of bubbles will burst upon an impact value of 40 gs, said replaceable impact layer is removably attached to said outside surface of said helmet shell.
  • 16. The integrated helmet having blunt force trauma protection of claim 15, further comprising: an outer layer of sheet material is attached to said bubble sheet.
  • 17. The integrated helmet having blunt force trauma protection of claim 15 wherein: said plurality of bubbles having a shape of at least one of hexagon, round and square.
  • 18. The integrated helmet having blunt force trauma protection of claim 15 wherein: a removable attachment system includes at least one first attachment pad and at least one second attachment pad.
  • 19. The integrated helmet having blunt force trauma protection of claim 18 wherein: said at least one first attachment pad and at least one second attachment pad include hook and loop fasteners.
  • 20. The integrated helmet having blunt force trauma protection of claim 15 wherein: said helmet is one of a football helmet, a motorcycle helmet, a bicycle helmet, a baseball helmet, a lacrosse helmet, an ice hockey helmet, a horseback riding helmet, a skiing helmet, a lacrosse helmet, a construction and military combat helmet.
CROSS-REFERENCES TO RELATED APPLICATIONS

This continuation-in-part patent application claims the benefit of patent application Ser. No. 14/269,341 filed on May 5, 2014, which claims the benefit of provisional application No. 61/962,916 filed on Nov. 13, 2013 and provisional application No. 61/967,291 filed On Mar. 10, 2014.

US Referenced Citations (10)
Number Name Date Kind
3039109 Simpson Jun 1962 A
3872511 Nichols Mar 1975 A
3999220 Keltner Dec 1976 A
4035846 Jencks Jul 1977 A
4586200 Poon May 1986 A
5129107 Lorenzo Jul 1992 A
5263203 Kraemer et al. Nov 1993 A
6131196 Vallion Oct 2000 A
6779200 Shah Aug 2004 B1
7089602 Talluri Aug 2006 B2
Provisional Applications (2)
Number Date Country
61967291 Mar 2014 US
61962916 Nov 2013 US
Continuations (1)
Number Date Country
Parent 14269341 May 2014 US
Child 14292950 US