All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention generally relates to the fixation or fusion of bone.
Many types of hardware are available both for the fixation of bones that are fractured and for the fixation of bones that are to be fused. A fusion is an operation where two bones, usually separated by a joint, are allowed to grow together into one bone. The medical term for this type of fusion procedure is arthrodesis.
For example, lumbar fusion procedures have been used in the treatment of pain and the effects of degenerative changes in the lower back. An example of a lumbar fusion is a fusion in the S1-L5-L4 region in the spine.
Another example, the human hip girdle (see
The SI-Joint functions in the transmission of forces from the spine to the lower extremities, and vice-versa. The SI-Joint has been described as a pain generator for up to 22% of lower back pain.
To relieve pain generated from the SI Joint, sacroiliac joint fusion is typically indicated as a surgical treatment, e.g., for degenerative sacroiliitis, inflammatory sacroiliitis, iatrogenic instability of the sacroiliac joint, osteitis condensans ilii, or traumatic fracture dislocation of the pelvis. Currently, screws and screws with plates are used for sacro-iliac fusion. At the same time the cartilage has to be removed from the “synovial joint” portion of the SI joint. This requires a large incision to approach the damaged, subluxed, dislocated, fractured, or degenerative joint.
There is a need for improved bone fusion treatments for addressing chronic hip, joint or back pain.
The present invention relates to the fixation or fusion of bone.
Some embodiments provide for an integrated implant delivery assembly having an integrated bone fusion implant having a core and a cutting broach at a distal end of the core; a delivery rod; a delivery pin; and a flexible sheath. In some embodiments, a cannula extends through the delivery rod and the implant. In some embodiments, the implant includes a socket at a proximal end configured to engage a threaded distal end of the delivery rod.
In any of the preceding embodiments, the delivery pin is adapted to slide through a cannula extending through the delivery rod and the implant. The delivery pin can be configured to removably slide through the cannula. In some variations, the delivery pin is permanently attached to the implant. The delivery pin can be retractable in some cases. Additionally, the delivery pin can be configured to releasably attach to a distal end of the implant. In some variations, the delivery pin is adapted to disengage and slip into an interior of the implant. The delivery pin may have a length between about 5 mm to about 30 mm. In any of the preceding embodiments, a portion of the length of the delivery pin extends distal of a distal end of the implant. The portion of length can be between about 5 mm to about 30 mm.
In any of the preceding embodiments, the flexible sheath is adapted to protect soft tissue as the implant is advanced through bone, the flexible sheath having a plurality of outer wall portions forming a pyramidal tip at a distal end of the sheath. The pyramidal tip may be positioned at a distal end of the implant near the cutting broach. In some cases, the outer wall portions are angled at 60 degrees to form vertices of the pyramidal tip. In any of the preceding embodiments, the flexible sheath includes a tapered distal tip.
In any of the preceding embodiments, the broach is coupled to the core. In some embodiments, the broach includes a plurality of cutting edges located on a tapered distal end of the broach. In further embodiments, the broach includes teeth adapted to remove bone material as the implant is inserted through bone. In any of the preceding embodiments, the implant includes an outer surface having surface features configured to promote bony in-growth on the implant. In some embodiments, the surface features include fenestrations. In some variations the outer surface of the implant is porous. In any of the preceding embodiments, the surface features extend longitudinally along the outer surface between a proximal end and a distal end of the implant. In any of the preceding embodiments, the surface features include longitudinally extending ridges adapted to contact the two bones. In some cases, the surface features include a porous plasma spray coating. In other embodiments, the surface features include a surface coating having a biologic aid for promoting bony in-growth. A biologic aid includes growth factors or a controlled release formulation.
In any of the preceding embodiments, the implant includes a geometric configuration adapted to resist loosening during movement. The geometric configuration may be a triangular cross-section, rectilinear cross-section, or curvilinear cross-section.
In any of the preceding embodiments, the delivery rod includes a protrusion configured to control advancement through bone. In any of the preceding embodiments, the implant includes a safety protrusion configured to indicate implant insertion depth. In some embodiments, the implant includes a safety marking to indicate implant insertion depth.
Other embodiments provide for a bone fusion implant having a core adapted for placement between two bones, the core having a first end and a second end; and a cutting broach at the second end of the core. In some embodiments, the broach is coupled to the core. The broach may include a plurality of cutting edges located on a tapered distal end of the broach. In some cases, the broach includes teeth adapted to remove bone material as the implant is inserted through the two bones.
In any of the preceding embodiments, the implant includes an outer surface having surface features configured to promote bony in-growth on the implant. In some embodiments, the surface features include fenestrations. In some variations the outer surface of the implant is porous. In any of the preceding embodiments, the surface features extend longitudinally along the outer surface between a proximal end and a distal end of the implant. In any of the preceding embodiments, the surface features include longitudinally extending ridges adapted to contact the two bones. In some cases, the surface features include a porous plasma spray coating. In other embodiments, the surface features include a surface coating having a biologic aid for promoting bony in-growth. A biologic aid includes growth factors or a controlled release formulation.
In any of the preceding embodiments, the implant includes a socket on the first end of the core, the socket adapted to couple to a delivery tool configured to deliver the implant into bone.
In any of the preceding embodiments, the implant includes a delivery pin permanently attached to the implant. In some cases, the delivery pin is retractable. In other cases, the delivery pin has a length between about 5 mm to about 30 mm. In some cases, a portion of the length of the delivery pin extends distal of a distal end of the implant. The portion of length may be between about 5 mm to about 30 mm.
In any of the preceding embodiments, the implant may include a delivery pin configured to releasably attach to a distal end of the implant. In some cases, the delivery pin is adapted to disengage and slip into an interior of the implant.
In any of the preceding embodiments, the implant includes a geometric configuration adapted to resist loosening during movement. The geometric configuration may be a triangular cross-section, rectilinear cross-section, or curvilinear cross-section.
In any of the preceding embodiments, the implant has a length between about 30 mm to about 70 mm.
In any of the preceding embodiments, the implant includes a safety protrusion configured to indicate implant insertion depth. In some embodiments, the implant includes a safety marking to indicate implant insertion depth.
Further embodiments provide for an integrated implant delivery assembly having a bone fusion implant including a core; a cutting broach at a distal end of the core; and a cutting burr having a cutting assembly configured to remove and cut through bone; and a delivery pin assembly having a delivery pin and a driving device, the delivery pin assembly configured to be partially received within the cutting burr to rotationally drive the cutting burr.
In any of the preceding embodiments, the driving device and the delivery pin are separate interlocking components. In some cases, the driving device and the delivery pin are fused to form a single component. In other variations, the length of the driving device is between about 30 mm and 150 mm. In further embodiments, the delivery pin is configured to be slidably received within a cannula of the cutting burr, the delivery pin adapted to extend distally from a distal end of the cutting burr.
In any of the preceding embodiments, the driving device includes a drive socket; drive shaft, and a drive member configured to engage an implant socket at a proximal end of the implant to rotationally lock therewith. The driving member can be configured to rotationally drive the cutting burr when engaged with the implant socket.
In any of the preceding embodiments, the delivery pin includes a pin socket configured to engage with the drive member of the driving device and a pin shaft extending distally from the pin socket. In some cases, the pin socket is configured to be rotationally driven by the driving device when engaged with the drive member. In further embodiments, the pin socket includes a tapered distal point. In other variations, the length of the pin shaft is about 30 mm to about 90 mm. In any of the preceding embodiments, the pin shaft extends beyond a distal end of the cutting burr by a length between about 5 mm to about 30 mm.
In any of the preceding embodiments, the drive socket is configured to receive a drill member, the drill member coupled to a draft shaft and a drill. The drill may be an impact drill. The drill shaft may be configured to rotationally drive the drill member to thereby rotationally drive the driving device while the drill member is engaged in the drive socket.
In any of the preceding embodiments, the cutting burr is positioned along a central axis of the implant and extends through the core and the cutting broach. The cutting burr can be configured to rotate while positioned inside the core. In some variations, the cutting burr is configured to rotate while positioned inside the cutting broach. In further variations, the cutting burr is configured to be collapsible and removable by retraction.
In any of the preceding embodiments, the cutting burr includes an expanded configuration and a collapsed configuration, the cutting burr adapted to transition to the collapsed configuration by retraction. In any of the preceding embodiments, the cutting burr is adapted to extend beyond a distal end of the implant. In any of the preceding embodiments, the cutting burr is adapted to extend a length between about 5 mm to about 20 mm beyond the distal end of the implant.
In any of the preceding embodiments, the cutting assembly includes a set of centrifugal blades, the blades having an expanded state and a retracted state, the blades extending beyond a distal end of the implant in the expanded state and the blades retracted inward of the distal end of the implant in the retracted state.
In any of the preceding embodiments, the cutting assembly includes a plurality of cutting blades extending radially outward from the center of the cutting assembly. In any of the preceding embodiments, the plurality of cutting blades are hinged to thereby expand and collapse the cutting assembly. In any of the preceding embodiments, the cutting blades are configured to bore through bone.
Further embodiments provide for a bone fusion implant having a core having a first end and a second end; a cutting broach at the second end of the core; and a cutting burr having a cutting assembly configured to remove and cut through bone.
In any of the preceding embodiments, the cutting burr is positioned along a central axis of the implant and extends through the core and the cutting broach. In some cases, the cutting burr is configured to rotate while positioned inside the core. In any of the preceding embodiments, the cutting burr is configured to rotate while positioned inside the cutting broach. Additionally, the cutting burr may be fixed translationally on a center axis of the implant.
In any of the preceding embodiments, the cutting burr includes an expanded configuration and a collapsed configuration, the cutting burr adapted to transition to the collapsed configuration by retraction. In any of the preceding embodiments, the cutting burr is adapted to extend beyond a distal end of the implant. In any of the preceding embodiments, the cutting burr is adapted to extend a length between about 5 mm to about 20 mm beyond the distal end of the implant. In any of the preceding embodiments, the cutting burr is configured to be collapsible and removable by retraction.
In any of the preceding embodiments, the cutting burr further includes a socket positioned at a proximal end of the cutting burr; a cannula extending between the cutting assembly and the socket, and a shaft coupled to the socket and residing in the cannula. In some embodiments, the socket includes an interior surface having a square or hexagon shape. The socket may be configured with an interior surface adapted to fit and receive a driving device. In further embodiments, the socket is configured to impart a rotational driving force from the driving device to the shaft.
In any of the preceding embodiments, the shaft includes a channel adapted to move bone debris into an interior of the implant.
In any of the preceding embodiments, the cutting assembly includes a plurality of cutting blades extending radially outward from the center of the cutting assembly. In any of the preceding embodiments, the plurality of cutting blades are hinged to thereby expand and collapse the cutting assembly. In any of the preceding embodiments, the cutting blades are configured to bore through bone.
In any of the preceding embodiments, the broach is coupled to the core. The broach may include a plurality of cutting edges located on a tapered distal end of the broach. Additionally, the broach may include teeth adapted to remove bone material as the implant is inserted through the two bones.
In any of the preceding embodiments, the implant includes an outer surface having surface features configured to promote bony in-growth on the implant. In some embodiments, the surface features include fenestrations. In some variations the outer surface of the implant is porous. In any of the preceding embodiments, the surface features extend longitudinally along the outer surface between a proximal end and a distal end of the implant. In any of the preceding embodiments, the surface features include longitudinally extending ridges adapted to contact the two bones. In some cases, the surface features include a porous plasma spray coating. In other embodiments, the surface features include a surface coating having a biologic aid for promoting bony in-growth. A biologic aid includes growth factors or a controlled release formulation.
In any of the preceding embodiments, the implant includes a socket on the first end of the core, the socket adapted to couple to a delivery tool configured to deliver the implant into bone.
In any of the preceding embodiments, the implant may include a delivery pin permanently attached to the implant. In some cases, the delivery pin is retractable. The delivery pin may have a length between about 5 mm to about 30 mm. In some cases, the delivery pin is configured to releasably attach to a distal end of the implant. In any of the preceding embodiments, the delivery pin is adapted to disengage and slip into an interior of the implant. In any of the preceding embodiments, the pin may extend beyond a distal end of the cutting burr by a length between about 5 mm to about 30 mm.
In any of the preceding embodiments, the implant may include geometric configuration adapted to resist loosening during movement. These include a triangular, rectilinear, and curvilinear cross-section.
In any of the preceding embodiments, the implant may include a safety protrusion configured to indicate implant insertion depth. In any of the preceding embodiments, the implant may include a safety marking to indicate implant insertion depth.
Further embodiments provide for a bone fusion implant having a core having a hollow structure formed by a multi-sided wall; a delivery pin hole within the core extending from a proximal end to a distal end of the core; and a plurality of cutting edges at a distal end of the multi-sided wall.
In any of the preceding embodiments, the multi-sided wall includes a plurality of interlocking wall sections. In some cases, the plurality of interlocking wall sections include interlocking edges, the wall sections configured to be implanted independently and interlocked after insertion into a patient. In any of the preceding embodiments, the multi-sided wall has a thickness between about 0.5 mm to about 5 mm. In any of the preceding embodiments, the multi-sided wall is formed from a plurality of wall portions, each wall portion having a tapering distal end. In any of the preceding embodiments, the tapering distal end forms a point at the center of the tapering distal end of each wall portion. In any of the preceding embodiments, the tapering distal end forms a vertex between intersecting wall portions. In some embodiments, the tapering distal end forms a jagged cutting edge at the distal end of the multi-sided wall.
In any of the preceding embodiments, the surface area of the implant gradually increases with distance moving from the tapering distal end toward a proximal end of the implant.
In any of the preceding embodiments, the cutting edges are corrugated or tapered. In any of the preceding embodiments, the cutting edges are positioned on an interior surface of the multi-sided wall. In other embodiments, the cutting edges are configured to cut bone and pass cut bone through the core.
In any of the preceding embodiments, the core is formed from three wall portions having a first hollow triangular member, a second hollow triangular member, and a connecting member attached to the first and second triangular members. In some cases, wherein the first and second members are coupled together at an apex point for each triangular member.
In any of the preceding embodiments, the implant includes a bow-tie shaped cross-section.
In any of the preceding embodiments, the thickness of the three wall portions is between about 0.5 mm to about 5 mm.
In any of the preceding embodiments, the length of the implant is between about 30 mm to about 70 mm.
In any of the preceding embodiments, the implant includes an I-shaped cross-section.
In any of the preceding embodiments, the core is formed from three wall portions having a first elongate member, a second elongate member, and a third elongate member, the first and second members positioned relatively parallel to one another and the third elongate member intersecting the first and second members to couple the three members together.
In any of the preceding embodiments, the third elongate member perpendicularly intersects the first and second members.
In any of the preceding embodiments, the implant has a tri-legged cross-section. In any of the preceding embodiments, the implant has a T-shaped cross-section. In any of the preceding embodiments, the implant has a X-shaped cross-section. In any of the preceding embodiments, the implant has a rectilinear cross-section. In any of the preceding embodiments, the implant has a curved cross-section.
Further embodiments describe methods for fusing bone. These methods include identifying a bone site having a first bone segment, a second bone segment, and a non-bony region between the first and second bone segments; providing a bone fusion implant having a core with a distal end and cutting broach on the distal end of the core; inserting a delivery pin through a first bone segment and into a second bone segment, wherein the delivery pin is inserted partially through the second bone segment; forming a pilot insertion bore in the first and second bone segments; and inserting the implant into the first and second bone segments to thereby fuse the bone segments, wherein inserting the implant advances the cutting broach through the bore and cuts at least one edge of the bore to accommodate the implant shape.
In any of the preceding embodiments, the method may include inserting the implant entirely through the first bone segment and non-bony region and partially through the second bone segment.
Additionally, any of the preceding embodiments may include passing a cannulated drill bit over the delivery pin and forming the pilot insertion bore with the cannulated drill.
In any of the preceding embodiments, the implant further includes a cutting burr on the distal end of the core.
In any of the preceding embodiments, forming a pilot insertion bore includes advancing the cutting burr into the first and second bone segments.
Additionally, any of the preceding embodiments may include generating the pilot insertion bore by tapping the implant into the first and second bone segments.
In any of the preceding embodiments, inserting the implant further includes tapping a delivery rod engaged with the implant to form a pilot insertion bore with the cutting burr.
Additionally, any of the preceding embodiments may include rotationally driving the cutting burr to form the pilot insertion bore.
Additionally, any of the preceding embodiments may include retracting the cutting bore into an interior of the implant.
Additionally, any of the preceding embodiments may include an implant with a triangular cross-section.
Additionally, any of the preceding embodiments may include an implant with an I-shaped cross-section.
In any of the preceding embodiments for fusing bone, the first bone segment is the ilium and the second bone segment is the sacrum.
In any of the preceding embodiments for fusing bone, the steps may include inserting the implant laterally through the ilium and into the sacrum.
In any of the preceding embodiments for fusing bone, the steps may include inserting a plurality of implants laterally through the ilium and into the sacrum.
Additional embodiments provide for methods for fusion of the sacral-iliac joint between an iliac and a sacrum. These methods include providing an integrated implant delivery assembly and a delivery pin; inserting the delivery pin laterally through the ilium and into the sacrum; sliding the flexible sheath over the delivery pin to protect soft tissue around the delivery pin; tapping the implant into the ilium, through the sacral-iliac joint, and into the sacrum.
In any of the preceding embodiments, the assembly may include a flexible sheath and a bone fusion implant having a core and a cutting broach on a distal end of the core.
In any of the preceding embodiments, the method may include forming a pilot insertion bore by the tapping the implant into the ilium, through the sacral-iliac joint, and into the sacrum.
In any of the preceding embodiments, the method may include broaching the bore by advancing the implant through the bore. In any of the preceding embodiments, the implant further includes a cutting burr at the distal end of the core.
In any of the preceding embodiments, the method may include rotationally driving the cutting burr to generate a pilot insertion bore. In any of the preceding embodiments, the method may include retracting the cutting burr inside the implant after generating the bore.
In any of the preceding embodiments, the method may include positioning the implant to be flush with a lateral wall of the ilium. In any of the preceding embodiments, the method may include positioning a proximal end of the implant to extend about 1 mm to about 5 mm outside of the ilium.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Reference will now be made in detail to exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the exemplary embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as described herein.
Various aspects of the present invention relate to an integrated implant having a cutting broach and/or cutting burr. In various embodiments, the integrated implants may be used to fuse the sacroiliac joint. Integrated implants discussed herein may also be used to fuse other bones within a human patient. For example, the integrated implant may be used to fuse the lumbar region of the spine and other bones. As such, those of ordinary skill in the art will realize that exemplary embodiments related to sacroiliac joint fusion are not limited to this type of fusion, but rather set forth as examples.
Integrated implant 20 may be formed from a durable material usable in the prosthetic arts that is not subject to significant bio-absorption or resorption by surrounding bone or tissue over time. Integrated implant 20 is intended to remain in place for a time sufficient to stabilize the fracture or fusion site. Integrated implant 20 may also remain in place in the patient permanently. Such materials include, but are not limited to, titanium, titanium alloys, tantalum, tivanium (aluminum, vanadium, and titanium), chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, sintered glass,⋅ artificial bone, any uncemented metal or ceramic surface, or a combination thereof. Alternatively, the integrated implant 20 may be formed from a suitable durable biologic material or a combination of metal and biologic material, such as a biocompatible bone-filling material. The integrated implant 20 may be molded from a flowable biologic material, e.g., acrylic bone cement, that is cured, e.g., by UV light, to a non-flowable or solid material. e.g. polymers such as PLA, PLGA, PGA, or other similar materials.
The integrated implant 20 may be sized according to the local anatomy. The morphology of the local structures can be generally understood by medical professionals using textbooks of human skeletal anatomy along with their knowledge of the site and its disease or injury. The physician is also able to ascertain the dimensions of the appropriately sized integrated implant 20 based upon prior analysis of the morphology of the targeted bone region using, for example, plain film x-ray, fluoroscopic x-ray, or MRI or CT scanning, as well as intraoperative sizing methods using provided instrumentation. In various embodiments, the length of the integrated implant LI is in the range of about 30 mm to 70 mm. In various embodiments, the length of the integrated implant LI is about 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, and 70 mm.
The integrated implant 20 may take various shapes and have various cross-sectional geometries. The integrated implant 20 may have a generally curvilinear (e.g., round or oval) cross-section or a generally rectilinear cross section (e.g., square or rectangular or triangular) or combinations thereof. The shape of integrated implant 20 is further discussed with respect to
In
Secondary implant stability, which is achieved over time, may depend on the level of primary stability and the biological response to the surgery and implant. Newly formed bone tissue may fill voids at the implant/bone interface, create direct contact with the implant surface, and engage with surface irregularities. This interlocking effect is amplified when the newly formed bone matures over time.
The outer surface of the integrated implant 20 may have longitudinal channels that extend from the distal end to the proximal end. In various embodiments, the outer surface of the integrated implant 20 is corrugated having a series of parallel ridges and furrows (not shown) that extend longitudinally between the proximal and distal ends. The channels, corrugations and furrows may increase the bony contact area between the bones and implant 20
Additionally, integrated implant 20 may have a portion on the outer surface that is conducive to bony in-growth, on-growth, or through-growth. In various embodiments, the portion may include the entire outer surface of the integrated implant 20. The bony in-growth, on-growth, or through-growth portion may include through holes, various surface patterns, various surface textures, and/or pores, or combinations thereof. In various embodiments, the outer surface may have a mesh configuration, beaded configuration, trabecular configuration, holes or fenestrations or any surface conducive to bony through-growth.
The outer surface of the integrated implant 20 may be coated, wrapped or surface treated to promote the bony in-growth or through-growth. In various embodiments, the coating material can include a biologic aid that can promote and/or enhance bony ingrowth, tissue repair, and/or reduce inflammation, infection and pain. The biologic aid may include growth factors, such as bone morphogenetic proteins (BMPs), hydroxyapatite in a liquid or slurry carrier, demineralized bone, morselized autograft or allograft bone, medications to reduce inflammation, infection and pain such as analgesics, antibiotics and steroids. In various embodiments, the growth factors may be human recombinant growth factors, such as rh-BMP-2 and/or rh-BMP-7, or any other human recombinant form of BMP. The carrier for the biologic aid may be a liquid or gel such as saline or a collagen gel. The biologic aid may also be encapsulated or incorporated in a controlled released formulation so that the biologic aid is released to the patient at the implant site over a longer duration. For example, the controlled release formulation may be configured to release the biologic aid over the course of days, weeks or months, and can be configured to release the biologic aid over an estimated time it would take for the implant site to heal. The amount of biologic aid delivered to the integrated implant 20 may be controlled using a variety of techniques, such as controlling or varying the amount of coating material applied to the integrated implant 20 and/or controlling or varying the amount of biologic aid incorporated into the coating material. Controlling the amount of biologic aid delivered may be important because excessive use of certain biologic aids may result in negative effects such as localized inflammation, local pain, or radicular pain.
In a various embodiments, the bony in-growth portion, on-growth, or through-growth portion comprises a porous plasma spray coating on the integrated implant 20. The coating may create a biomechanically rigorous fixation/fusion system, designed to support reliable fixation/fusion and acute weight bearing capacity.
Alternatively, the outer surface may be formed from a material that itself inherently possesses a structure conducive to bony in-growth or through-growth, such as a porous mesh, hydroxyapetite, or other porous surface.
The bony in-growth or through-growth portion may further be covered with various other coatings such as antimicrobial, antithrombotic, and osteoinductive agents, or a combination thereof. In various embodiments, the entire integrated implant 20 may be impregnated with such agents.
The delivery pin 26 of the integrated implant assembly 10 shown in
In various embodiments, integrated implant assembly 10 includes a cannulated delivery rod 24 and cannulated integrated implant 20 that is used with a standard delivery pin 26, for example a Steinman pin. In various embodiments, the integrated implant assembly 10 includes a delivery pin 26 that is coupled to the integrated implant 20. There may be no canula 32 within integrated implant 20 or delivery rod 24. In various embodiments, integrated implant assembly 10 includes a delivery rod 24 and a cannulated integrated implant 20. Delivery rod 24 may be coupled to delivery pin 26.
In various embodiments, the cutting burr 38 is collapsible and removable by retraction. Cutting burr 38 may extend beyond the distal end of integrated implant 50. In various embodiments, the cutting burr 38 may extend beyond the distal end of the integrated implant 50 a distance in the range of about 0 mm and 20 mm. In various embodiments, may extend beyond the distal end of the integrated implant 50 a distance of 0 mm, 5 mm, 10 mm, 15 mm, and 20 mm.
Socket 40 is positioned at the proximal end of the cutting burr 38 and may include an opening or a hollow cavity into which an inserted part is designed to fit. The interior surface of the socket 40 may form a geometrical shape such as a square, hexagon or other geometrical shape. In various embodiments, the interior surface of socket 40 is designed to fit and receive a driver or driving device. Socket 40 may be coupled to the shaft 42 for imparting a rotational driving force from a driver to shaft 42. The shaft 42 may extend longitudinally from the distal end of the socket 40 to the proximal end of the cutting assembly 46.
Cutting assembly 46 may include an arrangement of a plurality of cutting blades 48 (shown in
Generally, the cutting broach 30 may be used to cut pointed or angulated corners of bone and the cutting burr 38 may be used to cut the main diameter of bone. The core 28, cutting broach 30 and cutting burr 38 of integrated implant 50 may be formed in a similar manner to that of integrated implant 20 of
In various embodiments, the driving device 52 and delivery pin 54 may be separate pieces that may be assembled. In operation, the drill shaft 68 turns in a rotational direction which drives the drill member 66 in a rotational direction. Drill member 66 engages drive socket 56 and drives the driving device 52 in a rotational direction. The interior surface of the drive socket 56 may form a geometrical shape such as a hexagon or other geometrical shape. A drive shaft 58 extends longitudinally between the distal end of the drive socket 56 and proximal end of the drive member 60. The drive member 60 may engage the pin socket 62.
Pin socket 62 is driven by the drive member 60 in a rotational direction. The interior surface of the pin socket 62 may form a geometrical shape such as a hexagon or other geometrical shape. The distal end of the pin socket 62 may be coupled to a pin shaft 64 that has a length of LS. The distal end the pin shaft 64 may form a point. In various embodiments, the length LS of pin shaft 64 is in a range of about 30 mm to 90 mm. In various embodiments, the length LS of pin shaft 64 is about 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 75 mm, 80 mm, 85 mm, and 90 mm.
Delivery pin assembly 100 may be used to implant integrated implant 50. Delivery pin assembly 100 may be formed from one or more of various metals, metal alloys (e.g. stainless steel, titanium alloy), polymers, carbon fibers and other materials.
Alternatively, the driving device 52 and delivery pin 54 may be formed as a single piece or fused together to form a single piece. In operation, such as with integrated implant 50, an embodiment that includes a single driving member/delivery pin piece, the drill member 66 may engage the drive socket 56 and may move the single piece in a rotational direction. Drive socket 56 may be coupled to drive member 60. Drive member 60 may engage socket 40 on the proximal end of the cutting burr 38 (shown in
In various embodiments, the length LS of the pin shaft 64 extends beyond the distal end of the cutting burr 38 by a distance of about 0 mm to 30 mm. In various embodiments, the length LS of the pin shaft 64 extends beyond the distal end of the cutting burr 38 by a distance of about 0 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. The length LS of the pin shaft 64 may be specific to the length of the integrated implant 50. The length LD of the driving device 52 may be the length which the integrated implant 50 will be driven into the bone. In various embodiments, the length LD of driving device 52 is a range of about 30 mm and 150 mm. In various embodiments, the length LD of driving device 52 is 30 mm, 60 mm, 90 mm, 120 mm, and 150 mm.
Integrated implants 20 and 50 may include a safety feature for preventing the implant from being driven too far into a patient. In various embodiments, the safety feature may include a marking, a protrusion, or some other feature on implants 20 and 50. The protrusion may be located on delivery rod 24 or drill shaft 68 and may come in contact with a patient's skin or outer ilium surface to prevent further advancement into the bone. The marking may be located on delivery rod 24 or drill shaft 68 and may indicate a measure of the insertion depth, for example depth gauge.
The integrated implant structures discussed with respect to
Cutting edges 76 may be implemented as a corrugated edge, razor edge, serrated edge or some other cutting edge. In various embodiments, the cutting edges 76 are tapered (See
Wall portions 74 may have fenestrations 80 conducive to bony in-growth. (See
In various embodiments, the distal end 43 of each wall portion 74 may taper to one or more points. The integrated implants of
The cutting edges 76 may be implemented on one or more of the wall portions 74. In various embodiments, each wall portion 74 may include a cutting edge 76. Each cutting edge 76 may be implemented as any of the cutting edges discussed with respect to
The hollow integrated implant 100 may include one or more delivery pins 78. Each delivery pin hole may be configured to receive a delivery pin. In various embodiments, each delivery pin hole 78 may be formed from a structure that may be soldered or otherwise attached to or formed in an interior, middle or exterior region of a wall portion. Wall portions 74 having cutting edges 76 may be configured to cut through bone and allow the bone to pass through the hollow structure formed by wall portions 74.
The cutting edges 76 may be implemented on one or more of the wall portions 74. In various embodiments, each wall portion 74 may include a cutting edge 76. Each cutting edge 76 may be implemented as any of the cutting edges discussed with respect to
The physician identifies the bone segments or adjacent bone regions that are to be fixated or fused (arthrodesed) (see
A cannulated drill bit 90 may be passed over the delivery pin 26 (see
An integrated implant 20, which is triangular in the illustrated embodiment (see
In various embodiments, integrated implant 20 may be positioned without forming a pilot insertion path or bore 92. Integrated implant 20 may be positioned by directly tapping the delivery rod until progress is prevented by the safety stop feature as described with respect to
In the case of integrated implant 50 shown in
Before undertaking a lateral implantation procedure, the physician identifies the SI-Joint segments that are to be fixated or fused (arthrodesed) using, e.g., the Fortin finger test, thigh thrust, FABER, Gaenslen's, compression, distraction, and diagnostic SI joint injection.
Aided by lateral, inlet, and outlet C-arm views, and with the patient lying in a prone position (on their stomach), the physician aligns the greater sciatic notches using lateral visualization to provide a true lateral position. A 3 cm incision is made starting aligned with the posterior cortex of the sacral canal, followed by blunt-tissue separation to the ilium. From the lateral view, the delivery pin 26, a Steinmann Pin for example, with a pin sleeve (not shown), is started resting on the ilium at a position inferior to the sacrum end plate and just anterior to the sacral canal and at a shallow angle (e. g., 15° to 20° off the floor, as
The pilot bore 92 may be drilled in the manner previously described over the delivery pin 26 (and through the soft tissue protector or flexible sheath), as illustrated in
The integrated implant 20 is tapped into the pilot bore 92 over the delivery pin 26 (and through the soft tissue protector or flexible sheath). The integrated implant 20 with cutting broach 30 eliminates an additional step that requires using a separate broach to create a broached bore with the desired profile for the integrated implant structure 20.
As shown in
In the case of integrated implant 50, the implant structure includes cutting broach 30 and cutting burr 38. The addition of cutting burr 38 allows for elimination of creating a pilot bore 92 in the bone with a separate drill. Rather, the pilot bore 92 is generated by cutting bore 38 as part of the insertion of integrated implant 50.
The integrated implants 20, 50 are sized according to the local anatomy. For the SI-Joint, representative integrated implants 20, 50 may range in size, depending upon the local anatomy, from about 30 mm to about 70 mm in length, and about a 7 mm inscribed diameter (i.e. a triangle having a height of about 10.5 mm and a base of about 12 mm). The morphology of the local structures can be generally understood by medical professionals using textbooks of human skeletal anatomy along with their knowledge of the site and its disease or injury. The physician is also able to ascertain the dimensions of the integrated implant 20, 50 based upon prior analysis of the morphology of the targeted bone using, for example, plain film x-ray, fluoroscopic x-ray, or MRI or CT scanning, as well as intraoperative sizing methods using provided instrumentation.
The integrated implant structures can obviate the need for autologous grafts, bone graft material, additional pedicle screws and/or rods, hollow modular anchorage screws, cannulated compression screws, cages, or fixation screws. Still, in the physician's discretion, bone graft material and other fixation instrumentation can be used in combination with the integrated implants 20.
The integrated implants 20, 50 make possible surgical techniques that are less invasive than traditional open surgery with no extensive soft tissue stripping and no disc removal. The assemblies make possible straightforward surgical approaches that complement the minimally invasive surgical techniques. The profile and design of the integrated implants 20 minimize rotation and micro-motion. Rigid integrated implants 20 made from titanium provide immediate post-op fusion stability. A bony in-growth region comprising a porous plasma spray coating with irregular surface supports stable bone fixation/fusion. The integrated implants 20 and surgical approaches make possible the placement of larger fusion surface areas designed to maximize post-surgical weight bearing capacity and provide a biomechanically rigorous implant designed specifically to stabilize the heavily loaded sacroiliac joint.
Additional details pertinent to the present invention, including materials and manufacturing techniques, may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the examples described herein, but only by the plain meaning of the claim terms employed.
This patent application is a divisional of U.S. patent application Ser. No. 14/719,274, titled “INTEGRATED IMPLANT,” filed May 21, 2015, which is a divisional of U.S. patent application Ser. No. 13/791,746, titled “INTEGRATED IMPLANT,” filed Mar. 8, 2013, now U.S. Pat. No. 9,044,321, which claims priority to U.S. Provisional Patent Application No. 61/609,221, titled “INTEGRATED IMPLANT,” filed on Mar. 9, 2012. This patent application may be related to one or more of the following patent applications: U.S. Pat. No. 8,986,348, issued Mar. 24, 2015, titled “SYSTEMS AND METHODS FOR THE FUSION OF THE SACRAL-ILIAC JOINT,” and U.S. Pat. No. 8,425,570, issued Apr. 23, 2013, titled “APPARATUS, SYSTEMS, AND METHODS FOR ACHIEVING ANTERIOR LUMBAR INTERBODY FUSION”. Each of these references is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1951278 | Ericsson | Mar 1934 | A |
2136471 | Schneider | Nov 1938 | A |
2243717 | Moreira | May 1941 | A |
2414882 | Longfellow | Jul 1947 | A |
2562419 | Ferris | Jul 1951 | A |
2675801 | Bambara et al. | Apr 1954 | A |
2697433 | Zehnder | Dec 1954 | A |
3076453 | Tronzo | Feb 1963 | A |
3506982 | Steffee | Apr 1970 | A |
3694821 | Moritz | Oct 1972 | A |
3709218 | Halloran | Jan 1973 | A |
3744488 | Cox | Jul 1973 | A |
4059115 | Jumashev et al. | Nov 1977 | A |
4156943 | Collier | Jun 1979 | A |
4292964 | Ulrich | Oct 1981 | A |
4341206 | Perrett et al. | Jul 1982 | A |
4344190 | Lee et al. | Aug 1982 | A |
4399813 | Barber | Aug 1983 | A |
4423721 | Otte et al. | Jan 1984 | A |
4475545 | Ender | Oct 1984 | A |
4501269 | Bagby | Feb 1985 | A |
4569338 | Edwards | Feb 1986 | A |
4612918 | Slocum | Sep 1986 | A |
4622959 | Marcus | Nov 1986 | A |
4630601 | Harder et al. | Dec 1986 | A |
4638799 | Moore | Jan 1987 | A |
4657550 | Daher | Apr 1987 | A |
4743256 | Brantigan | May 1988 | A |
4773402 | Asher et al. | Sep 1988 | A |
4787378 | Sodhi | Nov 1988 | A |
4790303 | Steffee | Dec 1988 | A |
4834757 | Brantigan | May 1989 | A |
4846162 | Moehring | Jul 1989 | A |
4877019 | Vives | Oct 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4898186 | Ikada et al. | Feb 1990 | A |
4904261 | Dove et al. | Feb 1990 | A |
4950270 | Bowman et al. | Aug 1990 | A |
4961740 | Ray et al. | Oct 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
4981481 | Kranz et al. | Jan 1991 | A |
5034011 | Howland | Jul 1991 | A |
5034013 | Kyle et al. | Jul 1991 | A |
5035697 | Frigg | Jul 1991 | A |
5041118 | Wasilewski | Aug 1991 | A |
5053035 | McLaren | Oct 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5066296 | Chapman et al. | Nov 1991 | A |
5098434 | Serbousek | Mar 1992 | A |
5102414 | Kirsch | Apr 1992 | A |
5108397 | White | Apr 1992 | A |
5122141 | Simpson et al. | Jun 1992 | A |
5139498 | Astudillo Ley | Aug 1992 | A |
5139500 | Schwartz | Aug 1992 | A |
5147367 | Ellis | Sep 1992 | A |
5147402 | Bohler et al. | Sep 1992 | A |
5190551 | Chin et al. | Mar 1993 | A |
5197961 | Castle | Mar 1993 | A |
5242444 | MacMillan | Sep 1993 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5334205 | Cain | Aug 1994 | A |
5380325 | Lahille et al. | Jan 1995 | A |
5390683 | Pisharodi | Feb 1995 | A |
5433718 | Brinker | Jul 1995 | A |
5443466 | Shah | Aug 1995 | A |
5458638 | Kuslich et al. | Oct 1995 | A |
5470334 | Ross et al. | Nov 1995 | A |
5480402 | Kim | Jan 1996 | A |
5569249 | James et al. | Oct 1996 | A |
5591235 | Kuslich | Jan 1997 | A |
5593409 | Michelson | Jan 1997 | A |
5607424 | Tropiano | Mar 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5626616 | Speece | May 1997 | A |
5643264 | Sherman et al. | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5667510 | Combs | Sep 1997 | A |
5669909 | Zdeblick et al. | Sep 1997 | A |
5672178 | Petersen | Sep 1997 | A |
5683391 | Boyd | Nov 1997 | A |
5709683 | Bagby | Jan 1998 | A |
5713904 | Errico et al. | Feb 1998 | A |
5716358 | Ochoa et al. | Feb 1998 | A |
5725581 | Brånemark | Mar 1998 | A |
5743912 | LaHille et al. | Apr 1998 | A |
5759035 | Ricci | Jun 1998 | A |
5766174 | Perry | Jun 1998 | A |
5766252 | Henry et al. | Jun 1998 | A |
5766261 | Neal et al. | Jun 1998 | A |
5788699 | Bobst et al. | Aug 1998 | A |
5800440 | Stead | Sep 1998 | A |
5868749 | Reed | Feb 1999 | A |
5897556 | Drewry et al. | Apr 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5941885 | Jackson | Aug 1999 | A |
5961522 | Mehdizadeh | Oct 1999 | A |
5961554 | Janson et al. | Oct 1999 | A |
6010507 | Rudloff | Jan 2000 | A |
6015409 | Jackson | Jan 2000 | A |
6030162 | Huebner et al. | Feb 2000 | A |
6053916 | Moore | Apr 2000 | A |
6056749 | Kuslich | May 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6086589 | Kuslich et al. | Jul 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6120292 | Buser et al. | Sep 2000 | A |
6120504 | Brumback et al. | Sep 2000 | A |
6143031 | Knothe et al. | Nov 2000 | A |
6197062 | Fenlin | Mar 2001 | B1 |
6206924 | Timm | Mar 2001 | B1 |
6210442 | Wing et al. | Apr 2001 | B1 |
6214049 | Gayer et al. | Apr 2001 | B1 |
6221074 | Cole et al. | Apr 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6241732 | Overaker et al. | Jun 2001 | B1 |
6264657 | Urbahns et al. | Jul 2001 | B1 |
6270528 | McKay | Aug 2001 | B1 |
6287343 | Kuslich et al. | Sep 2001 | B1 |
6302885 | Essiger | Oct 2001 | B1 |
6302914 | Michelson | Oct 2001 | B1 |
6306140 | Siddiqui | Oct 2001 | B1 |
6319253 | Ackeret et al. | Nov 2001 | B1 |
6406498 | Tormala et al. | Jun 2002 | B1 |
6409768 | Tepic et al. | Jun 2002 | B1 |
6451020 | Zucherman et al. | Sep 2002 | B1 |
6471707 | Miller et al. | Oct 2002 | B1 |
6485518 | Cornwall et al. | Nov 2002 | B1 |
6497707 | Bowman et al. | Dec 2002 | B1 |
6517541 | Sesic | Feb 2003 | B1 |
6520969 | Lambrecht et al. | Feb 2003 | B2 |
6524314 | Dean et al. | Feb 2003 | B1 |
6527775 | Warburton | Mar 2003 | B1 |
6556857 | Estes et al. | Apr 2003 | B1 |
6558386 | Cragg | May 2003 | B1 |
6565566 | Wagner et al. | May 2003 | B1 |
6575899 | Foley et al. | Jun 2003 | B1 |
6575991 | Chesbrough et al. | Jun 2003 | B1 |
6579293 | Chandran | Jun 2003 | B1 |
6582431 | Ray | Jun 2003 | B1 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6602293 | Biermann et al. | Aug 2003 | B1 |
6605090 | Trieu et al. | Aug 2003 | B1 |
6607530 | Carl et al. | Aug 2003 | B1 |
6620163 | Michelson | Sep 2003 | B1 |
6635059 | Randall et al. | Oct 2003 | B2 |
6666868 | Fallin | Dec 2003 | B2 |
6669529 | Scaries | Dec 2003 | B1 |
6673075 | Santilli | Jan 2004 | B2 |
6692501 | Michelson | Feb 2004 | B2 |
6712852 | Chung et al. | Mar 2004 | B1 |
6723099 | Goshert | Apr 2004 | B1 |
6723100 | Biedermann et al. | Apr 2004 | B2 |
6740118 | Eisermann et al. | May 2004 | B2 |
6743257 | Castro | Jun 2004 | B2 |
D493533 | Blain | Jul 2004 | S |
6793656 | Mathews | Sep 2004 | B1 |
6827740 | Michelson | Dec 2004 | B1 |
6984235 | Huebner | Jan 2006 | B2 |
6989033 | Schmidt | Jan 2006 | B1 |
6991461 | Gittleman | Jan 2006 | B2 |
6993406 | Cesarano et al. | Jan 2006 | B1 |
7018416 | Hanson et al. | Mar 2006 | B2 |
7118579 | Michelson | Oct 2006 | B2 |
7147666 | Grisoni | Dec 2006 | B1 |
7175663 | Stone | Feb 2007 | B1 |
7211085 | Michelson | May 2007 | B2 |
7223269 | Chappuis | May 2007 | B2 |
7314488 | Reiley | Jan 2008 | B2 |
7335205 | Aeschlimann et al. | Feb 2008 | B2 |
7338500 | Chappuis | Mar 2008 | B2 |
7396365 | Michelson | Jul 2008 | B2 |
7452359 | Michelson | Nov 2008 | B1 |
7452369 | Barry | Nov 2008 | B2 |
7481831 | Bonutti | Jan 2009 | B2 |
7527649 | Blain | May 2009 | B1 |
7534254 | Michelson | May 2009 | B1 |
7537616 | Branch et al. | May 2009 | B1 |
7569054 | Michelson | Aug 2009 | B2 |
7569059 | Cerundolo | Aug 2009 | B2 |
7601155 | Petersen | Oct 2009 | B2 |
7608097 | Kyle | Oct 2009 | B2 |
7648509 | Stark | Jan 2010 | B2 |
7686805 | Michelson | Mar 2010 | B2 |
7699852 | Frankel et al. | Apr 2010 | B2 |
7708761 | Petersen | May 2010 | B2 |
7727235 | Contiliano et al. | Jun 2010 | B2 |
7758646 | Khandkar et al. | Jul 2010 | B2 |
7780704 | Markworth et al. | Aug 2010 | B2 |
7846162 | Nelson et al. | Dec 2010 | B2 |
7850732 | Heinz | Dec 2010 | B2 |
7857832 | Culbert et al. | Dec 2010 | B2 |
7887565 | Michelson | Feb 2011 | B2 |
7892265 | Perez-Cruet et al. | Feb 2011 | B2 |
7901439 | Horton | Mar 2011 | B2 |
7909832 | Michelson | Mar 2011 | B2 |
7922765 | Reiley | Apr 2011 | B2 |
7942879 | Christie et al. | May 2011 | B2 |
8052728 | Hestad | Nov 2011 | B2 |
8062365 | Schwab | Nov 2011 | B2 |
8066705 | Michelson | Nov 2011 | B2 |
8066709 | Michelson | Nov 2011 | B2 |
8142481 | Warnick | Mar 2012 | B2 |
8202305 | Reiley | Jun 2012 | B2 |
8268099 | O'Neill et al. | Sep 2012 | B2 |
8308779 | Reiley | Nov 2012 | B2 |
8308783 | Morris et al. | Nov 2012 | B2 |
8317862 | Troger et al. | Nov 2012 | B2 |
8348950 | Assell et al. | Jan 2013 | B2 |
8350186 | Jones et al. | Jan 2013 | B2 |
8388667 | Reiley et al. | Mar 2013 | B2 |
8394129 | Morgenstern Lopez | Mar 2013 | B2 |
8398635 | Vaidya | Mar 2013 | B2 |
8414648 | Reiley | Apr 2013 | B2 |
8425570 | Reiley | Apr 2013 | B2 |
8430930 | Hunt | Apr 2013 | B2 |
8444693 | Reiley | May 2013 | B2 |
8449585 | Wallenstein et al. | May 2013 | B2 |
8467851 | Mire et al. | Jun 2013 | B2 |
8470004 | Reiley | Jun 2013 | B2 |
8475505 | Nebosky et al. | Jul 2013 | B2 |
8529608 | Terrill et al. | Sep 2013 | B2 |
8608802 | Bagga et al. | Dec 2013 | B2 |
D697209 | Walthall et al. | Jan 2014 | S |
8641737 | Matthis et al. | Feb 2014 | B2 |
8663332 | To et al. | Mar 2014 | B1 |
8672986 | Klaue et al. | Mar 2014 | B2 |
8734462 | Reiley et al. | May 2014 | B2 |
8778026 | Mauldin | Jul 2014 | B2 |
8840623 | Reiley | Sep 2014 | B2 |
8840651 | Reiley | Sep 2014 | B2 |
8845693 | Smith et al. | Sep 2014 | B2 |
8858601 | Reiley | Oct 2014 | B2 |
8920477 | Reiley | Dec 2014 | B2 |
8945190 | Culbert et al. | Feb 2015 | B2 |
8945193 | Kirschman | Feb 2015 | B2 |
8951254 | Mayer et al. | Feb 2015 | B2 |
8951293 | Glazer et al. | Feb 2015 | B2 |
8951295 | Matityahu et al. | Feb 2015 | B2 |
8961571 | Lee et al. | Feb 2015 | B2 |
8979911 | Martineau et al. | Mar 2015 | B2 |
8986348 | Reiley | Mar 2015 | B2 |
RE45484 | Foley et al. | Apr 2015 | E |
9039743 | Reiley | May 2015 | B2 |
9044321 | Mauldin et al. | Jun 2015 | B2 |
9131955 | Swofford | Sep 2015 | B2 |
9149286 | Greenhalgh et al. | Oct 2015 | B1 |
9198676 | Pilgeram et al. | Dec 2015 | B2 |
9220535 | Röbling et al. | Dec 2015 | B2 |
9375243 | Vestgaarden | Jun 2016 | B1 |
9375323 | Reiley | Jun 2016 | B2 |
9445852 | Sweeney | Sep 2016 | B2 |
9492201 | Reiley et al. | Nov 2016 | B2 |
9526548 | Asfora | Dec 2016 | B2 |
9554909 | Donner | Jan 2017 | B2 |
9561063 | Reiley | Feb 2017 | B2 |
9566100 | Asfora | Feb 2017 | B2 |
9603613 | Schoenefeld et al. | Mar 2017 | B2 |
9603644 | Sweeney | Mar 2017 | B2 |
9615856 | Arnett et al. | Apr 2017 | B2 |
9622783 | Reiley et al. | Apr 2017 | B2 |
9662124 | Assell et al. | May 2017 | B2 |
9662128 | Reiley | May 2017 | B2 |
9662157 | Schneider et al. | May 2017 | B2 |
9662158 | Reiley | May 2017 | B2 |
9675394 | Reiley | Jun 2017 | B2 |
9743969 | Reiley | Aug 2017 | B2 |
9757154 | Donner et al. | Sep 2017 | B2 |
9820789 | Reiley | Nov 2017 | B2 |
9839448 | Reckling et al. | Dec 2017 | B2 |
9848892 | Biedermann et al. | Dec 2017 | B2 |
9936983 | Mesiwala et al. | Apr 2018 | B2 |
9949776 | Mobasser et al. | Apr 2018 | B2 |
9949843 | Reiley et al. | Apr 2018 | B2 |
9956013 | Reiley et al. | May 2018 | B2 |
10004547 | Reiley | Jun 2018 | B2 |
10058430 | Donner et al. | Aug 2018 | B2 |
10166033 | Reiley et al. | Jan 2019 | B2 |
10194962 | Schneider et al. | Feb 2019 | B2 |
10201427 | Mauldin et al. | Feb 2019 | B2 |
10219885 | Mamo et al. | Mar 2019 | B2 |
10258380 | Sinha | Apr 2019 | B2 |
10271882 | Biedermann et al. | Apr 2019 | B2 |
10653454 | Frey et al. | May 2020 | B2 |
10729475 | Childs | Aug 2020 | B2 |
10799367 | Vrionis et al. | Oct 2020 | B2 |
20010012942 | Estes et al. | Aug 2001 | A1 |
20010046518 | Sawhney | Nov 2001 | A1 |
20010047207 | Michelson | Nov 2001 | A1 |
20010049529 | Cachia et al. | Dec 2001 | A1 |
20020019637 | Frey et al. | Feb 2002 | A1 |
20020029043 | Ahrens et al. | Mar 2002 | A1 |
20020038123 | Visotsky et al. | Mar 2002 | A1 |
20020049497 | Mason | Apr 2002 | A1 |
20020077641 | Michelson | Jun 2002 | A1 |
20020082598 | Teitelbaum | Jun 2002 | A1 |
20020120275 | Schmieding et al. | Aug 2002 | A1 |
20020128652 | Ferree | Sep 2002 | A1 |
20020143334 | von Hoffmann et al. | Oct 2002 | A1 |
20020143335 | von Hoffmann et al. | Oct 2002 | A1 |
20020151903 | Takei et al. | Oct 2002 | A1 |
20020169507 | Malone | Nov 2002 | A1 |
20020183858 | Contiliano et al. | Dec 2002 | A1 |
20020198527 | Mückter | Dec 2002 | A1 |
20030018336 | Vandewalle | Jan 2003 | A1 |
20030032961 | Pelo et al. | Feb 2003 | A1 |
20030050642 | Schmieding et al. | Mar 2003 | A1 |
20030065332 | TenHuisen et al. | Apr 2003 | A1 |
20030074000 | Roth et al. | Apr 2003 | A1 |
20030078660 | Clifford et al. | Apr 2003 | A1 |
20030083668 | Rogers et al. | May 2003 | A1 |
20030083688 | Simonson | May 2003 | A1 |
20030088251 | Braun et al. | May 2003 | A1 |
20030097131 | Schon et al. | May 2003 | A1 |
20030139815 | Grooms et al. | Jul 2003 | A1 |
20030181979 | Ferree | Sep 2003 | A1 |
20030181982 | Kuslich | Sep 2003 | A1 |
20030199983 | Michelson | Oct 2003 | A1 |
20030229358 | Errico et al. | Dec 2003 | A1 |
20030233146 | Grinberg et al. | Dec 2003 | A1 |
20030233147 | Nicholson et al. | Dec 2003 | A1 |
20040010315 | Song | Jan 2004 | A1 |
20040024458 | Senegas et al. | Feb 2004 | A1 |
20040034422 | Errico et al. | Feb 2004 | A1 |
20040073216 | Lieberman | Apr 2004 | A1 |
20040073314 | White et al. | Apr 2004 | A1 |
20040082955 | Zirkle | Apr 2004 | A1 |
20040087948 | Suddaby | May 2004 | A1 |
20040097927 | Yeung et al. | May 2004 | A1 |
20040106925 | Culbert | Jun 2004 | A1 |
20040117022 | Marnay et al. | Jun 2004 | A1 |
20040127990 | Bartish, Jr. et al. | Jul 2004 | A1 |
20040138750 | Mitchell | Jul 2004 | A1 |
20040138753 | Ferree | Jul 2004 | A1 |
20040147929 | Biedermann et al. | Jul 2004 | A1 |
20040158324 | Lange | Aug 2004 | A1 |
20040176287 | Harrison et al. | Sep 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20040181282 | Zucherman et al. | Sep 2004 | A1 |
20040186572 | Lange et al. | Sep 2004 | A1 |
20040210221 | Kozak et al. | Oct 2004 | A1 |
20040225360 | Malone | Nov 2004 | A1 |
20040230305 | Gorensek et al. | Nov 2004 | A1 |
20040260286 | Ferree | Dec 2004 | A1 |
20040267369 | Lyons et al. | Dec 2004 | A1 |
20050015059 | Sweeney | Jan 2005 | A1 |
20050015146 | Louis et al. | Jan 2005 | A1 |
20050033435 | Belliard et al. | Feb 2005 | A1 |
20050049590 | Alleyne et al. | Mar 2005 | A1 |
20050055023 | Sohngen et al. | Mar 2005 | A1 |
20050075641 | Singhatat et al. | Apr 2005 | A1 |
20050080415 | Keyer et al. | Apr 2005 | A1 |
20050107878 | Conchy | May 2005 | A1 |
20050112397 | Rolfe et al. | May 2005 | A1 |
20050113919 | Cragg et al. | May 2005 | A1 |
20050124993 | Chappuis | Jun 2005 | A1 |
20050131409 | Chervitz et al. | Jun 2005 | A1 |
20050137605 | Assell et al. | Jun 2005 | A1 |
20050143837 | Ferree | Jun 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050159749 | Levy et al. | Jul 2005 | A1 |
20050159812 | Dinger et al. | Jul 2005 | A1 |
20050165398 | Reiley | Jul 2005 | A1 |
20050192572 | Abdelgany et al. | Sep 2005 | A1 |
20050216082 | Wilson et al. | Sep 2005 | A1 |
20050228384 | Zucherman et al. | Oct 2005 | A1 |
20050246021 | Ringeisen et al. | Nov 2005 | A1 |
20050251146 | Martz et al. | Nov 2005 | A1 |
20050273101 | Schumacher | Dec 2005 | A1 |
20050277940 | Neff | Dec 2005 | A1 |
20060036247 | Michelson | Feb 2006 | A1 |
20060036251 | Reiley | Feb 2006 | A1 |
20060036252 | Baynham et al. | Feb 2006 | A1 |
20060054171 | Dall | Mar 2006 | A1 |
20060058793 | Michelson | Mar 2006 | A1 |
20060058800 | Ainsworth et al. | Mar 2006 | A1 |
20060062825 | Maccecchini | Mar 2006 | A1 |
20060084986 | Grinberg et al. | Apr 2006 | A1 |
20060089656 | Allard et al. | Apr 2006 | A1 |
20060111779 | Petersen | May 2006 | A1 |
20060129247 | Brown et al. | Jun 2006 | A1 |
20060142772 | Ralph et al. | Jun 2006 | A1 |
20060161163 | Shino | Jul 2006 | A1 |
20060178673 | Curran | Aug 2006 | A1 |
20060195094 | McGraw et al. | Aug 2006 | A1 |
20060217717 | Whipple | Sep 2006 | A1 |
20060241776 | Brown et al. | Oct 2006 | A1 |
20060271054 | Sucec et al. | Nov 2006 | A1 |
20060293662 | Boyer, II et al. | Dec 2006 | A1 |
20070027544 | McCord et al. | Feb 2007 | A1 |
20070038219 | Matthis et al. | Feb 2007 | A1 |
20070049933 | Ahn et al. | Mar 2007 | A1 |
20070066977 | Assell et al. | Mar 2007 | A1 |
20070083265 | Malone | Apr 2007 | A1 |
20070088362 | Bonutti et al. | Apr 2007 | A1 |
20070093841 | Hoogland | Apr 2007 | A1 |
20070093898 | Schwab et al. | Apr 2007 | A1 |
20070106383 | Abdou | May 2007 | A1 |
20070149976 | Hale et al. | Jun 2007 | A1 |
20070156144 | Ulrich et al. | Jul 2007 | A1 |
20070156241 | Reiley et al. | Jul 2007 | A1 |
20070156246 | Meswania et al. | Jul 2007 | A1 |
20070161989 | Heinz et al. | Jul 2007 | A1 |
20070173820 | Trieu | Jul 2007 | A1 |
20070219634 | Greenhalgh et al. | Sep 2007 | A1 |
20070233080 | Na et al. | Oct 2007 | A1 |
20070233146 | Henniges et al. | Oct 2007 | A1 |
20070233247 | Schwab | Oct 2007 | A1 |
20070250166 | McKay | Oct 2007 | A1 |
20070270879 | Isaza et al. | Nov 2007 | A1 |
20070282443 | Globerman et al. | Dec 2007 | A1 |
20080021454 | Chao et al. | Jan 2008 | A1 |
20080021455 | Chao et al. | Jan 2008 | A1 |
20080021456 | Gupta et al. | Jan 2008 | A1 |
20080021461 | Barker et al. | Jan 2008 | A1 |
20080021480 | Chin et al. | Jan 2008 | A1 |
20080065093 | Assell et al. | Mar 2008 | A1 |
20080065215 | Reiley | Mar 2008 | A1 |
20080071356 | Greenhalgh et al. | Mar 2008 | A1 |
20080109083 | Van Hoeck et al. | May 2008 | A1 |
20080132901 | Recoules-Arche et al. | Jun 2008 | A1 |
20080140082 | Erdem et al. | Jun 2008 | A1 |
20080147079 | Chin et al. | Jun 2008 | A1 |
20080154374 | Labrom | Jun 2008 | A1 |
20080161810 | Melkent | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080234758 | Fisher et al. | Sep 2008 | A1 |
20080255562 | Gil et al. | Oct 2008 | A1 |
20080255618 | Fisher et al. | Oct 2008 | A1 |
20080255622 | Mickiewicz et al. | Oct 2008 | A1 |
20080255664 | Hogendijk et al. | Oct 2008 | A1 |
20080255666 | Fisher et al. | Oct 2008 | A1 |
20080255667 | Horton | Oct 2008 | A1 |
20080275454 | Geibel | Nov 2008 | A1 |
20080294202 | Peterson et al. | Nov 2008 | A1 |
20080306554 | McKinley | Dec 2008 | A1 |
20090012529 | Blain et al. | Jan 2009 | A1 |
20090018660 | Roush | Jan 2009 | A1 |
20090024174 | Stark | Jan 2009 | A1 |
20090036927 | Vestgaarden | Feb 2009 | A1 |
20090037148 | Lin et al. | Feb 2009 | A1 |
20090043393 | Duggal et al. | Feb 2009 | A1 |
20090082810 | Bhatnagar et al. | Mar 2009 | A1 |
20090082869 | Slemker et al. | Mar 2009 | A1 |
20090099602 | Aflatoon | Apr 2009 | A1 |
20090099610 | Johnson et al. | Apr 2009 | A1 |
20090105770 | Berrevooets et al. | Apr 2009 | A1 |
20090118771 | Gonzalez-Hernandez | May 2009 | A1 |
20090131986 | Lee et al. | May 2009 | A1 |
20090138053 | Assell et al. | May 2009 | A1 |
20090157119 | Hale | Jun 2009 | A1 |
20090163920 | Hochschuler et al. | Jun 2009 | A1 |
20090187247 | Metcalf, Jr. et al. | Jul 2009 | A1 |
20090216238 | Stark | Aug 2009 | A1 |
20090270929 | Suddaby | Oct 2009 | A1 |
20090287254 | Nayet et al. | Nov 2009 | A1 |
20090312798 | Varela | Dec 2009 | A1 |
20090319043 | McDevitt et al. | Dec 2009 | A1 |
20090324678 | Thorne et al. | Dec 2009 | A1 |
20100003638 | Collins et al. | Jan 2010 | A1 |
20100022535 | Lee et al. | Jan 2010 | A1 |
20100076502 | Guyer et al. | Mar 2010 | A1 |
20100081107 | Bagambisa et al. | Apr 2010 | A1 |
20100094290 | Vaidya | Apr 2010 | A1 |
20100094295 | Schnieders et al. | Apr 2010 | A1 |
20100094420 | Grohowski | Apr 2010 | A1 |
20100106194 | Bonutti et al. | Apr 2010 | A1 |
20100106195 | Serhan et al. | Apr 2010 | A1 |
20100114174 | Jones et al. | May 2010 | A1 |
20100114317 | Lambrecht et al. | May 2010 | A1 |
20100131011 | Stark | May 2010 | A1 |
20100137990 | Apatsidis et al. | Jun 2010 | A1 |
20100145461 | Landry et al. | Jun 2010 | A1 |
20100160977 | Gephart et al. | Jun 2010 | A1 |
20100168798 | Clineff et al. | Jul 2010 | A1 |
20100191292 | DeMeo et al. | Jul 2010 | A1 |
20100262242 | Chavatte et al. | Oct 2010 | A1 |
20100268228 | Petersen | Oct 2010 | A1 |
20100280619 | Yuan et al. | Nov 2010 | A1 |
20100280622 | McKinley | Nov 2010 | A1 |
20100286778 | Eisermann et al. | Nov 2010 | A1 |
20100331851 | Huene | Dec 2010 | A1 |
20100331893 | Geist et al. | Dec 2010 | A1 |
20110009869 | Marino et al. | Jan 2011 | A1 |
20110022089 | Assell et al. | Jan 2011 | A1 |
20110029019 | Ainsworth et al. | Feb 2011 | A1 |
20110040362 | Godara et al. | Feb 2011 | A1 |
20110046737 | Teisen | Feb 2011 | A1 |
20110060373 | Russell et al. | Mar 2011 | A1 |
20110060375 | Bonutti | Mar 2011 | A1 |
20110066190 | Schaller et al. | Mar 2011 | A1 |
20110082551 | Kraus | Apr 2011 | A1 |
20110093020 | Wu | Apr 2011 | A1 |
20110098747 | Donner et al. | Apr 2011 | A1 |
20110098816 | Jacob et al. | Apr 2011 | A1 |
20110098817 | Eckhardt et al. | Apr 2011 | A1 |
20110106175 | Rezach | May 2011 | A1 |
20110153018 | Walters et al. | Jun 2011 | A1 |
20110160866 | Laurence et al. | Jun 2011 | A1 |
20110178561 | Roh | Jul 2011 | A1 |
20110184417 | Kitch et al. | Jul 2011 | A1 |
20110184518 | Trieu | Jul 2011 | A1 |
20110184519 | Trieu | Jul 2011 | A1 |
20110184520 | Trieu | Jul 2011 | A1 |
20110196372 | Murase | Aug 2011 | A1 |
20110230966 | Trieu | Sep 2011 | A1 |
20110238074 | Ek | Sep 2011 | A1 |
20110238124 | Richelsoph | Sep 2011 | A1 |
20110238181 | Trieu | Sep 2011 | A1 |
20110245930 | Alley et al. | Oct 2011 | A1 |
20110257755 | Bellemere et al. | Oct 2011 | A1 |
20110264229 | Donner | Oct 2011 | A1 |
20110276098 | Biedermann et al. | Nov 2011 | A1 |
20110295272 | Assell et al. | Dec 2011 | A1 |
20110295370 | Suh et al. | Dec 2011 | A1 |
20110313471 | McLean et al. | Dec 2011 | A1 |
20110313532 | Hunt | Dec 2011 | A1 |
20110319995 | Voellmicke et al. | Dec 2011 | A1 |
20120004730 | Castro | Jan 2012 | A1 |
20120083887 | Purcell et al. | Apr 2012 | A1 |
20120095560 | Donner | Apr 2012 | A1 |
20120179256 | Reiley | Jul 2012 | A1 |
20120191191 | Trieu | Jul 2012 | A1 |
20120226318 | Wenger et al. | Sep 2012 | A1 |
20120253398 | Metcalf et al. | Oct 2012 | A1 |
20120259372 | Glazer et al. | Oct 2012 | A1 |
20120271424 | Crawford | Oct 2012 | A1 |
20120277866 | Kalluri et al. | Nov 2012 | A1 |
20120296428 | Donner | Nov 2012 | A1 |
20120323285 | Assell et al. | Dec 2012 | A1 |
20130018427 | Pham et al. | Jan 2013 | A1 |
20130030456 | Assell et al. | Jan 2013 | A1 |
20130030529 | Hunt | Jan 2013 | A1 |
20130035727 | Datta | Feb 2013 | A1 |
20130053852 | Greenhalgh et al. | Feb 2013 | A1 |
20130053854 | Schoenefeld et al. | Feb 2013 | A1 |
20130053902 | Trudeau | Feb 2013 | A1 |
20130053963 | Davenport | Feb 2013 | A1 |
20130072984 | Robinson | Mar 2013 | A1 |
20130085535 | Greenhalgh et al. | Apr 2013 | A1 |
20130096683 | Kube | Apr 2013 | A1 |
20130116793 | Kloss | May 2013 | A1 |
20130123850 | Schoenefeld et al. | May 2013 | A1 |
20130123935 | Hunt et al. | May 2013 | A1 |
20130131678 | Dahners | May 2013 | A1 |
20130144343 | Arnett et al. | Jun 2013 | A1 |
20130158609 | Mikhail et al. | Jun 2013 | A1 |
20130172736 | Abdou | Jul 2013 | A1 |
20130197590 | Assell et al. | Aug 2013 | A1 |
20130203088 | Baerlecken et al. | Aug 2013 | A1 |
20130218215 | Ginn et al. | Aug 2013 | A1 |
20130218282 | Hunt | Aug 2013 | A1 |
20130231746 | Ginn et al. | Sep 2013 | A1 |
20130237988 | Mauldin | Sep 2013 | A1 |
20130245703 | Warren et al. | Sep 2013 | A1 |
20130245763 | Mauldin | Sep 2013 | A1 |
20130267836 | Mauldin et al. | Oct 2013 | A1 |
20130267961 | Mauldin et al. | Oct 2013 | A1 |
20130267989 | Mauldin et al. | Oct 2013 | A1 |
20130274890 | McKay | Oct 2013 | A1 |
20130296953 | Mauldin et al. | Nov 2013 | A1 |
20130325129 | Huang | Dec 2013 | A1 |
20140012334 | Armstrong et al. | Jan 2014 | A1 |
20140012340 | Beck et al. | Jan 2014 | A1 |
20140031934 | Trieu | Jan 2014 | A1 |
20140031935 | Donner et al. | Jan 2014 | A1 |
20140031938 | Lechmann et al. | Jan 2014 | A1 |
20140031939 | Wolfe et al. | Jan 2014 | A1 |
20140046380 | Asfora | Feb 2014 | A1 |
20140074175 | Ehler et al. | Mar 2014 | A1 |
20140088596 | Assell et al. | Mar 2014 | A1 |
20140088707 | Donner et al. | Mar 2014 | A1 |
20140121776 | Hunt | May 2014 | A1 |
20140135927 | Pavlov et al. | May 2014 | A1 |
20140142700 | Donner et al. | May 2014 | A1 |
20140172027 | Biedermann et al. | Jun 2014 | A1 |
20140200618 | Donner et al. | Jul 2014 | A1 |
20140207240 | Stoffman et al. | Jul 2014 | A1 |
20140257294 | Gedet et al. | Sep 2014 | A1 |
20140257408 | Trieu et al. | Sep 2014 | A1 |
20140276846 | Mauldin et al. | Sep 2014 | A1 |
20140276851 | Schneider et al. | Sep 2014 | A1 |
20140277139 | Vrionis et al. | Sep 2014 | A1 |
20140277462 | Yerby et al. | Sep 2014 | A1 |
20140277463 | Yerby et al. | Sep 2014 | A1 |
20140296982 | Cheng | Oct 2014 | A1 |
20140330382 | Mauldin | Nov 2014 | A1 |
20140364917 | Sandstrom et al. | Dec 2014 | A1 |
20150147397 | Altschuler | May 2015 | A1 |
20150150683 | Donner et al. | Jun 2015 | A1 |
20150216566 | Mikhail et al. | Aug 2015 | A1 |
20150238203 | Asfora | Aug 2015 | A1 |
20150250513 | De Lavigne Sainte | Sep 2015 | A1 |
20150257892 | Lechmann et al. | Sep 2015 | A1 |
20150320469 | Biedermann et al. | Nov 2015 | A1 |
20160022429 | Greenhalgh et al. | Jan 2016 | A1 |
20160095711 | Castro | Apr 2016 | A1 |
20160184103 | Fonte et al. | Jun 2016 | A1 |
20160242912 | Lindsey et al. | Aug 2016 | A1 |
20160249940 | Stark | Sep 2016 | A1 |
20160287171 | Sand et al. | Oct 2016 | A1 |
20160324643 | Donner et al. | Nov 2016 | A1 |
20160374727 | Greenhalgh et al. | Dec 2016 | A1 |
20170007409 | Mauldin et al. | Jan 2017 | A1 |
20170014235 | Jones et al. | Jan 2017 | A1 |
20170049488 | Vestgaarden | Feb 2017 | A1 |
20170128214 | Mayer | May 2017 | A1 |
20170135737 | Krause | May 2017 | A1 |
20170143513 | Sandstrom et al. | May 2017 | A1 |
20170209155 | Petersen | Jul 2017 | A1 |
20180104071 | Reckling et al. | Apr 2018 | A1 |
20180177534 | Mesiwala et al. | Jun 2018 | A1 |
20180228621 | Reiley et al. | Aug 2018 | A1 |
20190298542 | Kloss | Oct 2019 | A1 |
20190343640 | Donner et al. | Nov 2019 | A1 |
20190343653 | McKay | Nov 2019 | A1 |
20200246158 | Bergey | Aug 2020 | A1 |
20200268525 | Mesiwala et al. | Aug 2020 | A1 |
20200345507 | Reiley | Nov 2020 | A1 |
20200345508 | Reiley | Nov 2020 | A1 |
20200345509 | Reiley | Nov 2020 | A1 |
20200345510 | Reiley | Nov 2020 | A1 |
20210169660 | Reckling et al. | Jun 2021 | A1 |
20210212734 | Mesiwala et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
1128944 | Aug 1996 | CN |
1190882 | Aug 1998 | CN |
1909848 | Feb 2007 | CN |
101795632 | Aug 2010 | CN |
102361601 | Feb 2012 | CN |
102012106336 | Jan 2014 | DE |
1287796 | Mar 2003 | EP |
2070481 | Feb 2012 | EP |
2796104 | Oct 2014 | EP |
2590576 | Oct 2015 | EP |
2749238 | Mar 2017 | EP |
2887899 | Aug 2017 | EP |
2341852 | Aug 2018 | EP |
2496162 | Oct 2018 | EP |
3616634 | Mar 2020 | EP |
2408389 | Apr 2021 | EP |
59200642 | Nov 1984 | JP |
05-176942 | Jul 1993 | JP |
05184615 | Jul 1993 | JP |
09149906 | Oct 1997 | JP |
10-85231 | Apr 1998 | JP |
11318931 | Nov 1999 | JP |
2002509753 | Apr 2002 | JP |
2003511198 | Mar 2003 | JP |
2003533329 | Nov 2003 | JP |
2003534046 | Nov 2003 | JP |
2004121841 | Apr 2004 | JP |
2004512895 | Apr 2004 | JP |
2004516866 | Jun 2004 | JP |
2006506181 | Feb 2006 | JP |
2007535973 | Dec 2007 | JP |
2008540036 | Nov 2008 | JP |
2009521990 | Jun 2009 | JP |
2009533159 | Sep 2009 | JP |
2010137016 | Jun 2010 | JP |
2015510506 | Apr 2015 | JP |
WO9731517 | Aug 1997 | WO |
WO 0117445 | Mar 2001 | WO |
WO0238054 | May 2002 | WO |
WO03007839 | Jan 2003 | WO |
WO0402344 | Jan 2004 | WO |
WO2004043277 | May 2004 | WO |
WO2005009729 | Feb 2005 | WO |
WO2006003316 | Jan 2006 | WO |
WO2006023793 | Mar 2006 | WO |
WO2006074321 | Jul 2006 | WO |
WO2009025884 | Feb 2009 | WO |
WO2009029074 | Mar 2009 | WO |
WO2010105196 | Sep 2010 | WO |
WO2011010463 | Jan 2011 | WO |
WO2011110865 | Sep 2011 | WO |
WO2011124874 | Oct 2011 | WO |
WO2011149557 | Dec 2011 | WO |
WO2013000071 | Jan 2013 | WO |
WO2013119907 | Aug 2013 | WO |
Entry |
---|
Mauldin et al.; U.S. Appl. No. 16/523,992 entitled “Systems, devices, and methods for joint fusion,” filed Jul. 26, 2019. |
Reiley et al.; U.S. Appl. No. 16/550,032 entitled “Implants for bone fixation or fusion,” filed Aug. 23, 2019. |
Mauldin et al.; U.S. Appl. No. 16/552,912 entitled “Fenestrated Implant,” filed Aug. 27, 2019. |
Mesiwala et al.; U.S. Appl. No. 16/276,430 entitled “Implants for spinal fixation and or fusion,” filed Feb. 14, 2019. |
Lindsey et al.; U.S. Appl. No. 16/368,686 entitled “Threaded implants and methods of use across bone segments,” filed Mar. 28, 2019. |
Acumed; Acutrak Headless Compressioin Screw (product information); 12 pgs; © 2005; retrieved Sep. 25, 2014 from http://www.rcsed.ac.uk/fellows/Ivanrensburg/classification/surgtech/acumed/manuals/acutrak-brochure%200311.pdf. |
Al-Khayer et al.; Percutaneous sacroiliac joint arthrodesis, a novel technique; J Spinal Disord Tech; vol. 21; No. 5; pp. 359-363; Jul. 2008. |
Khurana et al.; Percutaneous fusion of the sacroiliac joint with hollow modular anchorage screws, clinical and radiological outcome; J Bone Joint Surg; vol. 91-B; No. 5; pp. 627-631; May 2009. |
Lu et al.; Mechanical properties of porous materials; Journal of Porous Materials; 6(4); pp. 359-368; Nov. 1, 1999. |
Peretz et al.; The internal bony architecture of the sacrum; Spine; 23(9); pp. 971-974; May 1, 1998. |
Richards et al.; Bone density and cortical thickness in normal, osteopenic, and osteoporotic sacra; Journal of Osteoporosis; 2010(ID 504078); 5 pgs; Jun. 9, 2010. |
Wise et al.; Minimally invasive sacroiliac arthrodesis, outcomes of a new technique; J Spinal Disord Tech; vol. 21; No. 8; pp. 579-584; Dec. 2008. |
Reiley, Mark A.; U.S. Appl. No. 12/357,483 entitled “Systems and methods for the fixation or fusion of bone in the hand and wrist,” filed Jan. 22, 2009 (abandoned). |
Sand et al.; U.S. Appl. No. 16/143,061 entitled “Systems and methods for decorticating the sacroiliac joint,” filed Sep. 26, 2018. |
Reiley et al.; U.S. Appl. No. 16/237,409 entitled “Implants for bone fixation or fusion,” filed Dec. 31, 2018. |
Schneider et al.; U.S. Appl. No. 16/263,971 entitled “Matric Implant,” filed Jan. 31, 2019. |
Stuart et al.; U.S. Appl. No. 17/104,753 entitled “Bone stabilizing implants and methods of placement across SI joints,” filed Nov. 25, 2020. |
Sand et al.; U.S. Appl. No. 17/447,550 entitled “Systems and methods for decorticating the sacroloac joint,” filed Sep. 13, 2021. |
Schneider et al.; U.S. Appl. No. 17/443,388 entitled “Matrix implant,” filed Jul. 26, 2021. |
Number | Date | Country | |
---|---|---|---|
20190159901 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
61609221 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14719274 | May 2015 | US |
Child | 16261393 | US | |
Parent | 13791746 | Mar 2013 | US |
Child | 14719274 | US |