This invention relates generally to user interfaces, and more particularly to input roller devices providing feedback effects.
Many input devices used to control portable electronic devices provide specific tactile responses to a user that do not vary with time or usage modality. Such devices typically employ fixed mechanical devices, such as domed popples or mechanical springs and detents to provide tactile feedback to a user. Nonetheless, such input devices, such as these “passive” scroll wheels, cannot vary their tactile feedback under software control. Such passive scroll wheels fail to enrich a user's interaction experience to the fullest extent.
By combining the advantages of a rotary mass vibrator with a force-feedback scroll wheel, a richer set of tactile responses, triggered by software, can be experienced by a user. Embodiments in accordance with the invention provide a means for delivering to a user a time varying, mode specific tactile response that can be controlled by software to enrich a user's interaction experience by providing an additional mode of communication between the user and their device.
In accordance with a first embodiment of the present invention, an input roller device can include a roller, an eccentric rotating mass within the roller, a drive mechanism causing the eccentric rotating mass to rotate within the roller, and a processor coupled to the drive mechanism. The roller can be mounted in the hinge of a clam shaped electronic device for example or a roller on a different portion of an electronic device and the drive mechanism can include at least one among an electric motor, a drive circuit coupled to the electric motor, and software to control the processor and drive circuit. The eccentric rotating mass can include at least one magnet coupled to the roller. More specifically, the eccentric rotating mass can include a magnetic clutch that couples the motor to the roller. The input roller device can further include a rotary encoder coupled to the roller such that the rotary encoder can provide data to the processor on a rotation of the roller. Note, the processor can be programmed to cause the input roller to provide a varied tactile feedback to the user to correspond to different events or to cause the input roller to provide a rolling resistance that varies in coordination with inputs from a user interface.
In a second embodiment of the present invention, an electronic device having an input roller device can include a roller, an eccentric rotating mass within the roller, a drive mechanism causing the eccentric rotating mass to rotate within the roller, and a processor coupled to the drive mechanism. The input roller device can further include a rotary encoder coupled to the roller that can provide data to the processor on a rotation of the roller. The electronic device can be a cellular phone, a two-way radio, a messaging device, a mouse, a personal digital assistant, a lap top computer, an MP3 player, a video player or almost any electronic device having a roller-type input device. As noted above, the processor can be programmed to cause the input roller to provide a varied tactile feedback to the user to correspond to different events or to cause the input roller to provide a rolling resistance that varies in coordination with inputs from a user interface.
In a third embodiment of the present invention, a method of providing user feedback using an input roller device can include the steps of causing an eccentric mass to rotate within a roller of the input roller device responsive to movement of the input roller device and varying a tactile feedback to a user using the eccentric mass to correspond to different events occurring at an electronic device having the input roller device. The step of varying the tactile feedback can optionally include the step of varying a rolling resistance in coordination with inputs from a user interface. The method can further include the step of encoding data corresponding to a rotation of the roller.
While the specification concludes with claims defining the features of embodiments of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the figures, in which like reference numerals are carried forward.
Input devices such as rollers or scroll wheels are used to encode input from a human user as part of the physical user interface of electronic devices such as portable electronic devices. The data from such input devices is interpreted by a processor as part of the operating software of the device. In one embodiment in accordance with the present invention and with reference to
Referring once again to
As previously explained above, the forces felt by the user can have two modes. In a first mode, the mass of magnets 26 and 28 can form part of the vibrator counterweight which produces the acceleration forces felt by the user, as experienced in a typical phone vibrator. In a second mode, when the user is using the roller 16, tactile feedback can be directly applied to the user's finger as shown in
As in other applications using haptics, if additional haptic texture is desired, the motor 18 can be bi-directionally driven using H-Bridge circuitry to be able to apply torque against the direction of scrolling, or with, or to superimpose a subtle vibration texture. If the bi-directional option is applied, then this mechanism could be used to implement real-time interactive haptics between two phone users. In a simple example, if a message such as “LOL” for “laugh out load” in a Instant Messaging Application between two users is sent, the receiving phone can vibrate automatically upon detecting such message.
There are many additional use case examples of which only a few are presented. In the case where a phone is in a user's pocket and the vibrator alert goes off, if the roller 16 can move, it spins and shakes the phone due to it's off center counter weighting (magnets and motor counter weight). If the roller 16 can't move (constrained by the user's pocket or otherwise), the motor spins anyway and shakes the phone due to its magnet and counterweight and overcomes the magnetic coupling with the roller. In another instance, when the phone is not in a vibrate alert mode, the coupling of the roller/vibrator magnets can keep the motor directly coupled to the roller, allowing for subtle vibrotactile user feedback. More specifically, if a user is scrolling through a menu with the roller and software can indicate that the user has reached the end of the list, the motor can be programmed to “fight” the direction the user is spinning the roller by applying a pulse of torque in the opposite direction. In another example, as a user scrolls over names in a user interface phonebook, a short, subtle torque pulse can give a “speed bump” effect as each name is scrolled by. In yet another use case, graphics can be printed on the roller, so that when it spins quickly, it forms desired images and patterns that cannot be seen when the roller is still. Control of the rotational velocity of the roller 16 via software can enable viewing of such images and patterns. Different patterns and images can also be presented at different rotation speeds. Further note, any time the roller is spinning it can be touched and stopped by the users hand, causing no harm to the user or the motor (the motor never stalls because it is stronger than the magnetic coupling).
The device described above including the motor 18 can certainly be used as a rotary alert vibrator. If the roller 16 is mounted in a clam-style cellular telephone, for example, then this mode of operation would be applied while the phone is in the closed configuration as shown in
In another application where the user's finger is not in contact with the roller, and when the motor is accelerated or decelerated under software control, the user would perceive an acceleration that is a combination of the acceleration of the motor and acceleration due to the rotation of the eccentric mass. Variations in timing between the application of acceleration/deceleration pulses, and the relative position of the eccentric, mass may be used to create richer tactile responses as discussed above.
Referring to
Referring to
In light of the foregoing description, it should be recognized that embodiments in accordance with the present invention can be realized in hardware, software, or a combination of hardware and software. A network or system according to the present invention can be realized in a centralized fashion in one computer system or processor, or in a distributed fashion where different elements are spread across several interconnected computer systems or processors (such as a microprocessor and a DSP). Any kind of computer system, or other apparatus adapted for carrying out the functions described herein, is suited. A typical combination of hardware and software could be a general purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the functions described herein.
In light of the foregoing description, it should also be recognized that embodiments in accordance with the present invention can be realized in numerous configurations contemplated to be within the scope and spirit of the claims. Additionally, the description above is intended by way of example only and is not intended to limit the present invention in any way, except as set forth in the following claims.