The present application is the US national stage of PCT/CN2012/082010 filed on Sep. 26, 2012, which claims the priorities of the Chinese patent applications No. 201210258443.1 filed on Jul. 24, 2012 and No. 201220388991.1 filed on Aug. 7, 2012, which applications are incorporated herein by reference.
1. Field of Invention
The present invention relates to the field of light-emitting diode (LED) lighting, and specifically to an integrated LED module.
2. Description of Related Arts
At present, light sources for street lighting include an incandescent lamp, a high pressure mercury lamp, a high pressure sodium lamp, a metal halide lamp, a fluorescent lamp, and the like. These street lamps generally have the following disadvantages: they are less environmentally friendly (mercury, lead, arsenic and other heavy metals contained therein are harmful to the environment), have high energy consumption and a short service life. Therefore, with the enhancement of global environmental protection consciousness, in countries throughout the world, especially in developed countries and regions, environmentally friendly lighting is more widely applied, and an environmentally-friendly light source will gradually substitute for these street lamps. An LED module with a 3-5V forward voltage is an environmentally friendly light source that has high efficiency, saves energy, and has a long luminescence lifetime, which is of great significance to environmental protection, energy saving, and protection of human health.
As known in the industry, adjustment of the brightness of the LED module with a 3-5V forward voltage is implemented by adjusting a current flowing through an LED, and therefore a brightness control for the LED is usually implemented by controlling an output current of an LED drive circuit. At present, in the field of LED drivers with a 3-5V forward voltage, products vary in quality. In order to reduce a cost, some products are provided with a simple line, have a power factor merely reaching about 0.5, and incur low luminous efficiency, thereby failing to meet a demand for efficient and energy-saving products in market; and in order to meet a high performance requirement, some products have a very complicated circuit. Refer to
In the current LED lighting schemes, in order to drive an LED module to emit light, it is necessary to add a drive circuit, to generate an appropriate drive current. When the LED module continuously emits light, it may produce a lot of heat, and it is necessary to add a heat sink to make the LED module not overheat. However, in the current general lamp structure, an LED module, a drive circuit part, and a heat sink of the lamp are independent of each other. Refer to
In view of the foregoing disadvantages in the prior art, an objective of the present invention is to provide an integrated LED module, so as to solve the problem in the prior art that an LED lamp presented after assembly has a large size and is heavy as a part of a line of a drive power supply in the LED lamp is complicated.
Another objective of the present invention is to provide an integrated LED module, which is used to solve the problem in the prior art that separate structures of the components in the LED lamp cause a waste of material costs, prolong processing and assembling time, and result in a waste of production costs.
In order to achieve the above objectives and other related objectives, the present invention provides an integrated LED module, where the integrated LED module at least comprises: a light-transmitting plate, having a heat-conducting substrate and a transparent package that covers the heat-conducting substrate and has a built-in space; an LED array, laid on a circuit board and sealed in the light-transmitting plate by the transparent package; a drive circuit, laid on the circuit board, sealed in the light-transmitting plate by the package, electrically connected to the LED array by the circuit board, and used for converting an external power supply into a 12V-75V forward voltage that drives each LED in the LED array; and a heat sink, having a heat-conducting surface clinging to the light-transmitting plate and a plurality of heat-dissipation fins integrally formed with the heat-conducting surface.
The integrated LED module in accordance with the present invention further comprises a control panel disposed on the heat-dissipation fins, which is electrically connected to the drive circuit and used for outputting a control instruction to the drive circuit, so that the drive circuit is in control of the LED array to be turned on or turned off, or to adjust brightness or color temperature.
In the LED module in accordance with the present invention, the plurality of heat-dissipation fins of the heat sink has notches, to form slots for retaining the control panel.
In the LED module in accordance with the present invention, a periphery of the transparent package has a flange, four corners of the flange are provided with through holes, and the heat-conducting surface of the heat sink has screw holes corresponding to the through holes.
The LED module in accordance with the present invention further comprises a seal ring, which is circularly disposed on the periphery of the heat-conducting substrate and the circuit board, and is pressed between the transparent package and the heat sink to seal a gap therebetween.
In the LED module in accordance with the present invention, the light-transmitting plate clings to the heat-conducting surface of the heat sink by screw locking, bonding or fastening.
In the LED module in accordance with the present invention, the heat-conducting surface of the heat sink and the light-transmitting plate have a heat-conducting medium therebetween, where the heat-conducting medium is a heat-conducting glue, a heat-conducting grease, or a heat-conducting pad.
In the LED module in accordance with the present invention, power of each LED in the LED array is 1 W-4 W, and the LED array is a square, rectangular, circular or elongated array arranged by a plurality of singly packaged LEDs, or a square, rectangular, circular or elongated array arranged by LEDs packaged by LED chips on board (COB).
In the LED module in accordance with the present invention, the LED array comprises a plurality of parallel groups formed by a plurality of LEDs connected in parallel, where the parallel groups are connected in series.
In the LED module in accordance with the present invention, the drive circuit comprises: a power supply module, connected to an external alternating current (AC) or direct current (DC) power supply and the LED array, comprising a rectifying unit and an overcurrent overvoltage protection unit connected to the rectifying unit, and used for converting the external power supply into a 12V-75V forward voltage that drives each LED in the LED array; and a control module connected between the power supply module and the LED array, and comprising a plurality of gating switches and a control unit, where the gating switches are disposed corresponding to the parallel groups and used for conducting or cutting off power supply loops of the parallel groups, and the control unit is used for controlling the gating switches to perform a conduction or cutoff operation according to a detected input voltage. The control module further comprises a detection unit used for outputting a different gating instruction to the control unit after detecting a different input voltage.
As stated above, the integrated LED module in accordance with the present invention has the following beneficial effects:
Firstly, as an LED module and a drive circuit are combined into one-piece, they can be assembled to a heat sink in a simple connection manner, to achieve a three-in-one effect, so that the overall size and weight are greatly reduced, thereby effectively reducing the lamp size corresponding thereto, saving materials and saving costs.
Moreover, the number of electronic components is reduced a lot in the drive circuit, and restrictive elements such as electrolytic capacitors and inductors are removed; therefore, it is possible to combine lines and load and make a standardized light source, which can reduce the size of the entire product; and the lamps can be combined into products with different power by using the standardized light source, thereby reducing design costs, shortening a product development cycle and reducing product costs, shortening time to market, and further controlling product quality.
Implementation of the present invention is described below through specific embodiments, and those skilled in the art can easily understand other advantages and efficacy of the present invention according to the content disclosed in the specification.
Please refer to
Referring to
The light-transmitting plate 20 has a heat-conducting substrate 25, and a transparent package that covers the heat-conducting substrate 25 and has a built-in space 200; specifically, a material of the transparent package comprises plastic, glass, and the like, and the heat-conducting substrate 25 may be made of, for example, metal, FR4, ceramic, silicon or the like. In this embodiment, the heat-conducting substrate 25, for example, is an aluminum alloy plate with good thermal conductivity, the transparent package, for example, is a transparent plastic encloser with good light transmission properties, and in more details, the transparent plastic encloser may be a light-transmitting shade having a focalization or scattered reflection function.
Refer to
Refer to
The drive circuit 22 is laid on the circuit board 23, sealed in the light-transmitting plate 20 by the package, electrically connected to the LED array 21 by the circuit board 23, and used for converting an external power supply into a 12V-75V forward voltage that drives each LED 210 in the LED array, so as to drive the LED 210 to be turned on. In this embodiment, the drive circuit 22 preferably converts the external power supply into a 50V forward voltage to drive each LED 210 in the LED array 21. Refer to
The power supply module 221 is connected to an external AC or DC power supply and the LED array 21, comprises a rectifying unit and an overcurrent overvoltage protection unit connected to the rectifying unit, and is used for converting the external power supply into a 12V-75V forward voltage that drives each LED in the LED array, so as to drive each LED 210 to be turned on. In this embodiment, the power supply module 221 is directly connected to AC main power, for example, a 220V AC power supply generally used in China, a 230V AC power supply generally used in Europe, a 110V AC power supply generally used in North America, or a 277V AC power supply generally used in other regions.
The control module 222 is connected between the power supply module 221 and the LED array 21, and comprises a plurality of gating switches, a control unit and a detection unit, where the gating switches are disposed corresponding to the parallel groups and used for conducting or cutting off power supply loops of the parallel groups, the control unit is used for controlling the gating switches to perform a conduction or cutoff operation according to a detected input voltage, and the detection unit is used for outputting a different gating instruction to the control unit after detecting a different input voltage. In an actual application example, the control unit, for example, is a control chip comprising a peripheral circuit thereof, and the plurality of gating switches is a transistor Q1, a transistor Q2, a transistor Q3, and a transistor Q4. The LED array 21 is a series circuit formed by a plurality of parallel groups (for example, the parallel groups D1, D2, D3, D4 shown in
In an example shown in
The heat sink 24 has a heat-conducting surface 240 clinging to the light-transmitting plate 20 and a plurality of heat-dissipation fins 241 integrally formed with the heat-conducting surface 240. In this embodiment, the heat sink 24 is made of, for example, aluminum with good thermal conductivity, and is formed by means of, for example, aluminum extrusion, aluminum die casting, aluminum lamps, and the like.
In this embodiment, the light-transmitting plate 20 clings to the heat-conducting surface 240 of the heat sink 24 by screw locking, bonding or fastening. Moreover, the heat-conducting surface 240 of the heat sink 24 and the light-transmitting plate 20 have a heat-conducting medium (not shown) therebetween, where the heat-conducting medium is a heat-conducting glue, a heat-conducting grease or a heat-conducting pad.
The control panel 27 is disposed on the heat-dissipation fins 241, electrically connected to the drive circuit 22, and used for outputting a control instruction to the drive circuit 22 to instruct it to control the LED array 21 to be turned on or turned off, or to adjust brightness or color temperature. Specifically, the control panel 27 comprises a wired or wireless communication module, used for controlling, according to a control instruction sent by a remote control center, the LED array 21 to be turned on or turned off, or to adjust brightness or color temperature.
In this embodiment, the plurality of heat-dissipation fins 241 of the heat sink 24 have notches (not shown), to form slots (not shown) for retaining the control panel 27. In other implementation manners, the control panel 27 may also be fixed to another position of the LED module, for example, be integrated inside the light-transmitting plate 20.
Refer to
The light-transmitting plate 20 has a heat-conducting substrate 25, and a transparent package that covers the heat-conducting substrate 25 and has a built-in space 200; specifically, a material of the transparent package comprises plastic, glass, and the like, and the heat-conducting substrate 25 may be made of, for example, metal, FR4, ceramic, silicon and the like. In this embodiment, the heat-conducting substrate 25, for example, is an aluminum alloy plate with good thermal conductivity.
In this embodiment, a periphery of the transparent package has a flange 201, four corners of the flange 201 are provided with through holes 202. The transparent package, for example, is a transparent plastic encloser with good light transmission properties, and in more details, the transparent plastic encloser may be a light-transmitting shade having a focalization or scattered reflection function.
Refer to
In this embodiment, the LED array 21 is a rectangular array arranged by a plurality of singly packaged LEDs 210, but the present invention is not limited thereto, and in other implementation manners, the LED array 21 may also be a square, a rectangular, a circular or an elongated array arranged by a plurality of singly packaged LEDs, or a square, a rectangular, a circular or an elongated array arranged by LEDs packaged by LED COBs.
The drive circuit 22 is laid on the circuit board 23, sealed in the light-transmitting plate 20 by the package, electrically connected to the LED array 21 through the circuit board 23, and used for converting an external power supply into a 12V-75V forward voltage that drives each LED 210 in the LED array, so as to drive the LED 210 to be turned on. In this embodiment, the drive circuit 22 preferably converts the external power supply into a 50V forward voltage to drive each LED 210 in the LED array 21. The drive circuit 22 comprises a plurality of electronic elements 220, and the plurality of electronic elements 220 forms a power supply module and a control module. It should be noted that, a principle of the drive circuit in this embodiment is the same as that in Embodiment 1, which is not repeated herein for simplicity.
The heat sink 24 has a heat-conducting surface 240 clinging to the light-transmitting plate 20 and a plurality of heat-dissipation fins 241 integrally formed with the heat-conducting surface 240. The heat sink 24 is made of, for example, aluminum with good thermal conductivity, which is formed by means of, for example, aluminum extrusion, aluminum die casting, aluminum lamps and the like. In this embodiment, the heat-conducting surface 240 of the heat sink 24 has screw holes 242 corresponding to the through holes 202. The light-transmitting plate 20 is locked to the heat sink 24 by screws 28, which will be detailed later.
Refer to
Specifically, the seal ring 26 is pressed between the flange of the transparent package and the heat-conducting surface 240 of the heat sink 24 to seal a gap therebetween, and in this embodiment, the seal ring 26 is disposed in a manner in which the screws 28 penetrate the through holes 202 of the transparent package and are locked to the screw holes 242 of the heat sink 24, so that the seal ring is pressed between the transparent package and the heat sink 24 to seal a gap therebetween. As the seal ring is directly disposed on the LED module in the lamp, an internal circuit of a conventional lamp is prevented from being damaged due to encloser seepage. Compared with the conventional lamp that has difficulty in directly waterproofing an LED light source due to a complicated and large-size drive circuit, a lamp formed by the LED module in accordance with the present invention has good waterproof performance.
From the above, the LED module in accordance with the present invention has changed the traditional waterproofing concept, and first proposes a concept of directly disposing a waterproof structure on a built-in module of a lamp, so that an internal circuit of a conventional lamp is prevented from being damaged due to encloser seepage, and thus the lamp having the LED module in accordance with the present invention can be applied in more environments.
To sum up, the LED module in accordance with the present invention combines an LED array and a drive circuit into one-piece, they can be assembled to a heat sink in a simple connection manner, to achieve a three-in-one effect, so that the overall size and weight are greatly reduced, thereby effectively reducing the lamp size corresponding thereto, saving materials and saving costs; moreover, the number of electronic components is reduced a lot in the drive circuit, and restrictive elements such as electrolytic capacitors and inductors are removed; therefore, it is possible to combine lines and load and make a standardized light source, which can reduce the size of the entire product; and the lamps can be combined into products with different power by using the standardized light source, thereby reducing design costs, shortening a product development cycle and reducing product costs, shortening time to market, and further controlling product quality. Therefore, the present invention effectively overcomes the defects in the prior art and has a high industrial utilization value.
The above embodiments are merely for the purpose of exemplarily describing the principles and effects of the present invention, but are not intended to limit the present invention. Any person skilled in the art can make modifications or variations to the embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications and variations completed by those with ordinary skill in the art without departing from the spirit and technical concepts disclosed in the present invention shall fall within the claims of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2012 1 0258443 | Jul 2012 | CN | national |
2012 2 0388991 U | Aug 2012 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2012/082010 | 9/26/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/015561 | 1/30/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6999318 | Newby | Feb 2006 | B2 |
7976188 | Peng | Jul 2011 | B2 |
8075163 | Xiao | Dec 2011 | B2 |
20060181878 | Burkholder | Aug 2006 | A1 |
20080117647 | Behr | May 2008 | A1 |
20100110679 | Teng | May 2010 | A1 |
20100135020 | Moore | Jun 2010 | A1 |
20100270922 | Lin | Oct 2010 | A1 |
20100277077 | Pong | Nov 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20150204528 A1 | Jul 2015 | US |