1. Field of the Invention
This invention relates to a circuit for controlling the operation of a device based at least partly on sensing a fluid level; and more particularly, relates to a circuit board for controlling a pump based at least partly on sensing a fluid level.
2. Description of Related Art
Touch sensitive technology is known in the art and available in the marketplace. For example, one company, known as Touch Sensor, provides touch sensitive technology that is based at least partly on using an application specific integrated circuit (ASIC) device. For a particular application, the ASIC device and related components are required for each TouchCell™, which is basically a sensing pad that detects if a person's finger, or an aqueous solution, or a conductive mass is touching the dielectric substrate to which the TouchCell™ is attached behind. Each TouchCell™ has only two possible output states—“activated” and “not activated.” Based on a present understanding, it seems that the output state depends on a threshold at the input, once the input is over or under that threshold the output state will reflect it. Moreover, Touch Sensor's product is focused on the ASIC and related hardware; they describe their product as “a software free, solid-state switch.” The design and manufacturing are done by Touch Sensor based on costumer specifications.
In comparison, another company, know as Atmel, provides touch sensitive technology that is based on using a software library that can be downloaded into their microcontrollers and performs the tasks related to the processing of the signals from the sensing pads, so there is proprietary hardware involved. However, Atmel's product seems to be more flexible, from the user's point of view, because the user can buy Atmel's microcontrollers, download the software library and proceed to design and manufacture the hardware. Each sensing pad has only two states associated to it, “activated” and “not activated”, just like the Touch sensor's product.
Some disadvantages of the known prior art products include the following:
1) Any developed application is tied to proprietary hardware/software.
2) There is not intermediate or proportional responses from the sensing pads. Because of the second disadvantage, multiple sensing pads and microcontroller inputs are required to perform level detection; so the cost increases with the number of sensing pads; no distinction can be made between different types of materials; and only electrically conductive materials can be detected.
3) At least one microcontroller input is required for each sensing pad.
4) There are some location restrictions regarding the separation between the supporting hardware and the sensing pads.
Moreover, U.S. Pat. No. 5,153,572 discloses touch sensitive technology that includes a touch control circuit having an oscillator with a positive plate of a capacitor connected to an inverting input of a comparator, and includes resistors configured in relation to the inverting input, the non-inverting input and the output of the comparator, for providing a square wave output. A touch panel has on/off touch pads arranged in relation to pads and coupled to a connector. The square wave output is provided from the connector to the pads. In operation, the on/off touch pads are contacted in order to make a selection. The on/off touch pads are not directly connected to the positive plate of the capacitor which is directly connected to the inverting input of the comparator of the oscillator; instead, the square wave signal is coupled to the on/off touch pads via the connector, the pads, an adhesive and a glass element. Further, the touch-sensitive control circuit for touch pads also has a coincidence detector responding to simultaneous change of impedance of two or more different touch pads using logic circuits.
According to some embodiments, the invention may take the form of apparatus, such as a level sensing circuit board, comprising: at least one processor and at least one memory including computer program code, where the at least one memory and computer program code are configured, with the at least one processor, to cause the apparatus at least to:
According to some embodiments of the present invention, the level sensing circuit may be used as a means to turn a device, equipment or apparatus, including a pump, on or off based on a sensed fluid level, and may also form part of the device, equipment or apparatus, including the pump, e.g., as a circuit board component.
According to some embodiments of the present invention, the signal may contain information about a frequency variation that is proportional to the electrical conductivity of the material placed in front of the sensing plate, how much of the sensing plate's surface the material is facing, and/or the distance between the material and the sensing plate.
According to some embodiments of the present invention, the proportional response may contain information about at least one of the following:
the type of material in the proximity of the sensing plate; or
the distance between the material and sensing plate; or
the size of the material's surface facing the sensing plate.
According to some embodiments of the present invention, the ground plane may be configured to surround the sensing plate laterally and from behind to act as a barrier that nullifies the response from the sensing plate and cause the sensing plate to detect objects placed in front of it.
According to some embodiments of the present invention, the at least one memory and computer program code may be configured to, with the at least one processor, cause the apparatus at least to do one or more of the following: to implement multiple sensing plates based at least partly on one input; or to distinguish between material types, so as to determine if the material is water or a part of a person in contact with the sensing plate; or to detect a non-conductive material, including plastic; or to provide an output signal containing information about the proportional response, including for turning on a device, equipment or apparatus, including a pump, based on a fluid level; or to determine the proportional response based at least partly on a change in a relationship between a value of a capacitor and the frequency of an oscillator, where the sensing plate corresponds to a positive plate of the capacitor, and the capacitor is coupled to a comparator that forms part of the oscillator; or to count pulses produced by an oscillator during a constant time interval or time base, so the proximity of any material to the sensing plate is reflected as a reduction in the pulses counted so as to detect a material.
According to some embodiments of the present invention, the capacitor may be built using conductive strokes on a printed circuit board, having the variable frequency oscillator and a microcontroller that includes the at least one memory and computer program code and the at least one processor. The variable frequency oscillator may include a comparator, e.g., that is directly connected to an inverting input and ground. The output of the comparator and the inverting input are connected through a resistor (RY); the non-inverting input is connected through three resistors, all having substantially the same value (RXa, RXb, RXc), to power (+V), ground and the comparator's output; and the comparator output is used as feedback for both inputs. In operation, the comparator may be configured to do the following: When the comparator output is high, it generates a current that charges the capacitor connected to the inverting input and a reference voltage applied to the non-inverting input, the value of the reference voltage is higher than the capacitor's voltage when the comparator's output changes from low to high, as a result, the comparator output remains high until the capacitor voltage reaches the reference voltage, at which point the comparator output changes from high to low; the low state generates a current that discharges the capacitor connected to the inverting input and a different value for the reference voltage applied to the non-inverting input, the value of the reference voltage is lower than the capacitor's voltage when the comparator's output changes from high to low, as a result, the comparator's output remains low until the capacitor's voltage reaches the reference voltage, then the comparator's output changes from low to high and the cycle starts again.
According to some embodiments of the present invention, the negative plate of the capacitor corresponds to a ground plane of the printed circuit board.
According to some embodiments of the present invention, the at least one memory and computer program code may be configured to, with the at least one processor, cause the apparatus at least to detect the distance between the sensing plate and the material based at least partly on the fact that, if the type of material doesn't change, and the amount of sensing plate's surface facing the material remains substantially constant, then the frequency variation of a variable frequency oscillator coupled to the sensing plate will be inversely proportional to the distance between the material and the sensing plate.
According to some embodiments of the present invention, the at least one memory and computer program code may be configured to, with the at least one processor, cause the apparatus at least to detect a fluid level and the size of a flat object facing the sensor plate based at least partly on the fact that, if the type of material doesn't change, and the distance between the material and the sensing plate remains substantially constant, then the frequency variation in a variable frequency oscillator coupled to the sensing plate is directly proportional to the amount of sensing plate's surface facing the material.
According to some embodiments of the present invention, the at least one memory and computer program code may be configured to, with the at least one processor, cause the apparatus at least to detect different types of materials based at least partly on the fact that, if the distance between the material and the sensing plate remains substantially constant as well as the amount of sensing plate's surface facing the material, then the frequency change of a variable frequency oscillator coupled to the sensing plate will be directly proportional to the electrical conductivity of the material.
According to some embodiments of the present invention, the sensing plate may be segmented into several discrete surfaces, each one with a well defined contribution to the net capacitance value but all them interconnected in a different printed circuit board layer, so that only one sensing plate can act as multiple virtual sensor surfaces, and so that the sensing plate need not be located on the same printed circuit board as the at least one memory, the at least one processor, and the oscillator.
According to some embodiments, the level sensing circuit board may comprise a sensing plate in combination with a signal processing module. By way of example, and consistent with that described above, the sensing plate corresponds to the positive plate of the capacitor directly connected to the inverting input of the comparator that forms part of the variable frequency oscillator; and the signal processing module has the at least one processor and the at least one memory including the computer program code.
The present invention provides a significant improvement over the known prior art technology. Some advantages of the invention include the following:
1) The described invention can be implemented with generic components, so there is not proprietary hardware/software involved.
2) The described invention has a proportional response to the stimulus, in other words, the output signal is proportional to the following:
Type of material in the proximity to the sensing plate (also called sensing pad).
Distance between the material and the sensing plate.
Size the material's surface facing the sensing plate.
Because of the second advantage, with one microcontroller input multiple sensing pads can be implemented; no multiple hardware resources are required to perform level detection; so the cost of implementation is lower; and a distinction can be made between materials types, so the system can determine if it is water or a person's finger what is in contact with the sensing plate.
Because of the second advantage, non conductive materials (like plastic) can be detected.
3) There are no location restrictions.
These and other features, aspects, and advantages of embodiments of the invention will become apparent with reference to the following description in conjunction with the accompanying drawing. It is to be understood, however, that the drawing is designed solely for the purposes of illustration and not as a definition of the limits of the invention.
The drawing, which is not necessarily to scale, include the following Figures:
In the following description of the exemplary embodiment, reference is made to the accompanying drawing, which form a part hereof, and in which is shown by way of illustration of an embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized, as structural and operational changes may be made without departing from the scope of the present invention.
In
Referring back to
The material may take the form of a fluid such as water, and in operation the level sensing circuit 18 may be used as a means to turn the pump 16 on or off based on a sensed fluid level, according to some embodiments of the present invention. The signal would be received either directly or indirectly from the output of the comparator 42.
According to some embodiments, the present invention may be described by way of example with the sensing capacitor forming part of a printed circuit board. However, embodiments are also envisioned, and the scope of the invention is also intended to include, the sensing capacitor being a stand alone capacitor coupled directly or indirectly to a printed circuit board consistent with that described herein, including that described in relation to the embodiment featuring the reference capacitor Cref set forth herein. Embodiments are also envisioned, and the scope of the invention is also intended to include, the sensing capacitor and printed circuit board having other types or kinds of configurations either now known or later developed in the future.
The functionality of the signal processing module 20 may be implemented using hardware, software, firmware, or a combination thereof, although the scope of the invention is not intended to be limited to any particular embodiment thereof. In a typical software implementation, the signal processing module 20 may take the form of one or more microprocessor-based architectures having a processor or microprocessor like element 22, a random access memory (RAM), a read only memory (ROM), the RAM and ROM together forming at least part of the memory like element 24, input/output devices and control, data and address buses connecting the same. A person skilled in the art would be able to program such a microprocessor-based implementation with computer program code to perform the functionality described herein without undue experimentation. The scope of the invention is not intended to be limited to any particular implementation using technology either now known or later developed in the future. Moreover, the scope of the invention is intended to include the signal processing module 20 being a stand alone module, or in some combination with other circuitry for implementing another module. Moreover still, the scope of the invention is not intended to be limited to any particular type or kind of signal processor used to perform the signal processing functionality, or the manner in which the computer program code is programmed or implemented in order to make the signal processor operate.
The signal processing module 20 may include one or more other sub-modules for implementing other functionality that is known in the art, but does not form part of the underlying invention per se, and is not described in detail herein. For example, the functionality of the one or more other modules may include the techniques for the provisioning of the signal for activating or deactivating the pump based on certain processing control functionality, including providing the signal automatically, providing the signal after a certain time period, etc., that can depend on a particular application for a particular customer.
In concept, the main parts of the system are a capacitor built using the conductive strokes on the printed circuit board 30 as shown in
The oscillator 40 may include the comparator 42 as can be seen in
As shown in
If any material is placed in front of the sensing plate 36a, 36b, the resulting effect is that the net value of the capacitor C seen from the inverting input (−) increases, so the frequency of the oscillator 40 decreases. The increase in capacitance C and decrease in frequency is proportional to (1) the electrical conductivity of the material placed in front of the sensing plate, (2) how much of the sensing plate's surface the material is facing, and (3) the distance between the material and the sensing plate.
The microcontroller like element 20 counts the pulses produced by the oscillator 40 during a constant time interval or time base, so the proximity of any material to the sensing plate 36a, 36b is reflected as a reduction in the pulses counted by the microcontroller 20, and this is why the material can actually be detected.
Whereas the output voltage has a tolerance and a variation range, it is desired that the oscillator's frequency be independent of voltage. To this end, the circuit shown in
According to some embodiments of the present invention, discrimination against distance is possible. For example, if the type of material doesn't change, and the amount of sensing plate's surface facing the material remains substantially constant, then the frequency variation will be inversely proportional to the distance between the material and the sensing plate 36a, 36b. This response can be used in an application to detect distance.
If the type of material doesn't change, and the distance between the material and the sensing plate 36a, 36b remains substantially constant, then the frequency variation is directly proportional to the amount of sensing plate's surface facing the material. This response can be used in an application for detecting fluid level and the size of a flat object facing the sensor plate 36a, 36b.
If the distance between the material and the sensing plate 36a, 36b remains substantially constant as well as the amount of sensing plate's surface facing the material, then the frequency change will be directly proportional to the electrical conductivity of the material. This response can be used in an application to detect different types of materials.
The sensing plate 36a, 36b may have any shape and may also be segmented into several discrete surfaces, each one with a well defined contribution to the net capacitance value but all of them interconnected in a different printed circuit board layer. This feature provides this design another distinctive characteristic; it is possible to have only one sensing plate 36a, 36b acting as multiple virtual sensor surfaces. Moreover, the sensing plate 36a, 36b need not be located on the same printed circuit board as the microcontroller and the oscillator. In the case of the board shown in
Although described in the context of particular embodiments, it will be apparent to those skilled in the art that a number of modifications and various changes to these teachings may occur. Thus, while the invention has been particularly shown and described with respect to one or more preferred embodiments thereof, it will be understood by those skilled in the art that certain modifications or changes, in form and shape, may be made therein without departing from the scope and spirit of the invention as set forth above.
Number | Name | Date | Kind |
---|---|---|---|
4382382 | Wang | May 1983 | A |
5017909 | Goekler | May 1991 | A |
5083470 | Davis et al. | Jan 1992 | A |
5097703 | Peter | Mar 1992 | A |
5145323 | Farr | Sep 1992 | A |
5153572 | Caldwell et al. | Oct 1992 | A |
5245873 | Fathauer et al. | Sep 1993 | A |
5287086 | Gibb | Feb 1994 | A |
5315884 | Kronberg | May 1994 | A |
5376948 | Roberts | Dec 1994 | A |
5508719 | Gervais | Apr 1996 | A |
5532527 | Zatler et al. | Jul 1996 | A |
5562498 | Brandenburg et al. | Oct 1996 | A |
5600997 | Kemp et al. | Feb 1997 | A |
5613399 | Hannan | Mar 1997 | A |
5765434 | Harbaugh | Jun 1998 | A |
5796183 | Hourmand | Aug 1998 | A |
5844506 | Binstead | Dec 1998 | A |
5854625 | Frisch et al. | Dec 1998 | A |
5943044 | Martinelli et al. | Aug 1999 | A |
5973415 | Brenner et al. | Oct 1999 | A |
5995084 | Chan et al. | Nov 1999 | A |
6138508 | Hannan et al. | Oct 2000 | A |
6310611 | Caldwell | Oct 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6713897 | Caldwell | Mar 2004 | B2 |
6897390 | Caldwell et al. | May 2005 | B2 |
6933800 | Wallace, Jr. et al. | Aug 2005 | B2 |
6944018 | Caldwell | Sep 2005 | B2 |
7017409 | Zielinski et al. | Mar 2006 | B2 |
7023215 | Steenwyk | Apr 2006 | B2 |
7026861 | Steenwyk | Apr 2006 | B2 |
7030513 | Caldwell | Apr 2006 | B2 |
7098414 | Caldwell | Aug 2006 | B2 |
7150190 | Krufka et al. | Dec 2006 | B2 |
7175304 | Wadia et al. | Feb 2007 | B2 |
7218498 | Caldwell | May 2007 | B2 |
7242393 | Caldwell | Jul 2007 | B2 |
7258005 | Nyce | Aug 2007 | B2 |
7260438 | Caldwell et al. | Aug 2007 | B2 |
7291939 | Hoekstra | Nov 2007 | B2 |
7361860 | Caldwell | Apr 2008 | B2 |
7364322 | Oppor et al. | Apr 2008 | B2 |
7373817 | Burdi et al. | May 2008 | B2 |
7602384 | Rosenberg et al. | Oct 2009 | B2 |
7633301 | Steenwyk et al. | Dec 2009 | B2 |
7692933 | Mueller et al. | Apr 2010 | B1 |
7733332 | Steenwyk et al. | Jun 2010 | B2 |
7733333 | Kaliher | Jun 2010 | B2 |
7840286 | Caldwell et al. | Nov 2010 | B2 |
7850339 | Wadia et al. | Dec 2010 | B2 |
7851719 | Dzioba | Dec 2010 | B2 |
20030028346 | Sinclair et al. | Feb 2003 | A1 |
20060146036 | Prados et al. | Jul 2006 | A1 |
20070205995 | Woolley | Sep 2007 | A1 |
20090080139 | Yu | Mar 2009 | A1 |
20090158841 | Winkens | Jun 2009 | A1 |
20100045612 | Molne | Feb 2010 | A1 |
20100123686 | Klinghult et al. | May 2010 | A1 |
20100268490 | Chang | Oct 2010 | A1 |
20100302177 | Kim et al. | Dec 2010 | A1 |
20110050591 | Kim et al. | Mar 2011 | A1 |
20110050618 | Murphy et al. | Mar 2011 | A1 |
20110063248 | Yoon | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
101435836 | May 2009 | CN |
1256902 | Nov 2002 | EP |
1744132 | Jan 2007 | EP |
2133777 | Dec 2009 | EP |
2321707 | May 1998 | GB |
9306572 | Apr 1993 | WO |
9638833 | Dec 1996 | WO |
2011025845 | Mar 2011 | WO |
Entry |
---|
1 page EP 1256902 Abstract—English Language Translation, Nov. 13, 2002. |
CN101435836 English Abstract (2 pages). |
Number | Date | Country | |
---|---|---|---|
20120290227 A1 | Nov 2012 | US |