The present disclosure relates to a boom, and in particular, to a carbon fiber boom designed with an integrated lighting system.
Agricultural equipment and work machines may include a boom mounted to a chassis or frame. The boom may be pivotally mounted at one end with one or more implements coupled thereto. Hydraulic lines, electrical wires, plumbing and other pipes, tubes, wires, and the like are routed to various locations along the boom. A self-propelled sprayer, for example, may include a boom with a plurality of nozzles disposed along the length of the boom for performing a spraying operation. In a conventional steel boom, the wires, pipes, hydraulic lines, and the like are routed externally along the boom and coupled thereto via fasteners or other coupling means.
During a spraying operation, and particularly at dusk or at night, it is often difficult to see the spray pattern being emitted from the plurality of nozzles. With carbon fiber and other composites used to manufacture booms, the overall weight of the boom is decreasing. However, with the decrease in weight, booms are being assembled at longer lengths. In one example, an overall boom length from end-to-end may be approximately 130 feet. In another example, it is possible for boom lengths to reach 150-170 feet. In view of this, the distance from the cab where the operator is controlling the machine to each end of the boom may be far and thus more difficult to see the spray pattern.
In one embodiment of the present disclosure, a spray boom includes a body having a length defined between a first end and a second end thereof, the body formed by a plurality of layers of composite material adapted to be molded together to form an inner surface and an outer surface; an internal cavity defined in the body internally of the inner surface; and a light-emitting system integrally formed in the body in an outer layer thereof or at a location between the inner surface and the outer surface, the light-emitting system having an on state and an off state in which it is adapted to emit a light when in the on state.
In one example of this embodiment, the body includes a top side, a bottom side, a first side, and a second side; and the light-emitting system is integrally formed in the bottom side of the body configured to emit light in a substantially downward direction onto an underlying ground or crop canopy. In a second example, a second light-emitting system may be integrally formed in the body, the second light-emitting system being spaced laterally or circumferentially from the first light-emitting system. In a third example, a second light-emitting system may be coupled externally to the outer surface of the body, the second light-emitting system being coupled via adhesive, welding, or a mechanical fastener.
In a fourth example, the spray boom may include a wire electrically coupled to the light-emitting system, the wire adapted to be coupled to a power source for providing electrical energy to the light-emitting system in the on state, wherein the wire is routed through the internal cavity. In a fifth example, a channel may be formed in the body between the inner surface and the outer surface, the channel extending along the length and defined between the first end and the second end; and a wire is electrically coupled to the light-emitting system, the wire adapted to be coupled to a power source for providing electrical energy to the light-emitting system in the on state, wherein the wire is routed through the channel. In a further example, the light-emitting system includes a plurality of individual lights independently operably controllable between the on state and off state.
In another embodiment of this disclosure, a method of manufacturing a carbon fiber boom includes providing a first boom mold and a second boom mold; placing at least a first layer of composite material in the first boom mold and the second boom mold; depositing at least a second layer of composite material in the first boom mold and the second boom mold; adding a light-emitting system in the first layer or between the at least first layer and the at least second layer of composite material in one of the first boom mold and the second boom mold; pressurizing the first and second molds to compress the at least first and second layers together; assembling the first and second molds together to form a single mold assembly; applying heat pressure to the single mold assembly to form the carbon fiber boom; and forming the carbon fiber boom to include an outer surface formed by the at least first layer, an inner surface spaced radially from the outer surface, and an internal cavity defined internally of the inner surface.
In one example of this embodiment, the method may include adding a second light-emitting system in between the at least first and second layers at a location spaced laterally or circumferentially from the first light-emitting system. In a second example, the method may include depositing additional layers of composite material on the at least second layer before the pressurizing step. In a third example, the method may include depositing a plurality of layers of composite material in the first and second booms; and adding at least one additional light-emitting system between any two of the plurality of layers. In a fourth example, the method may include compressing the layers together and dispersing resins during the pressurizing step.
In another example of this embodiment, the method may include adding layers to the first and second molds after the pressurizing step; and repeating the pressurizing step to compress the additional layers together. In a further example of this embodiment, the method may include electrically coupling a wire to the light-emitting system; and routing the wire through the internal cavity formed in the carbon fiber boom. In yet another example, the method may include coupling a second light-emitting system to the outer surface of the carbon fiber boom via an adhesive, welding, or a mechanical fastener.
In a further embodiment of the present disclosure, a spray boom assembly includes a first boom frame comprising a body having a length defined between a first end and a second end thereof, the body formed by a plurality of layers of composite material adapted to be molded together to form an inner surface, an outer surface, and an internal cavity defined internally of the inner surface; a second boom frame comprising a body having a length defined between a first end and a second end thereof, the body formed by a plurality of layers of composite material adapted to be molded together to form an inner surface, an outer surface, and an internal cavity defined internally of the inner surface; a control system including a controller adapted to control a function of the spray boom assembly; and a light-emitting system integrally formed in the body of the first boom frame, the light-emitting system being formed in an outer layer or at a location between the inner surface and the outer surface of the body of the first boom frame, the light-emitting system being electrically coupled to the controller; wherein, the light-emitting system comprises an on state and an off state, and the light-emitting system is operably controlled by the controller to emit a light when in the on state and to be disabled in the off state.
In one example of this embodiment, the assembly may include a second light-emitting system integrally formed in the body of the second boom frame, the second light-emitting system being formed in an outer layer or at a location between the inner surface and the outer surface of the body of the second boom frame, the second light-emitting system being electrically coupled to the controller; wherein, the second light-emitting system comprises an on state and an off state, and the second light-emitting system is operably controlled by the controller independently of the first light-emitting system to emit a light when in the on state and to be disabled in the off state. In a second example, an operator control may be electrically coupled to the light-emitting system and adapted to control the light-emitting system between its on and off states.
In another example of this embodiment, the control system may include a sensor coupled to the first or second boom frame and disposed in electrical communication with the controller, the sensor configured to detect dusk and dawn conditions and send a signal indicative of dusk or dawn to the controller; wherein, the controller operably controls the light-emitting system from its off state to its on state when dusk is detected by the sensor, and from its on state to its off state when dawn is detected by the sensor. In a further example, a second light-emitting system may be coupled externally to the outer surface of the body of the first or second boom frame, the second light-emitting system being coupled to the outer surface via adhesive, welding, or a mechanical fastener; wherein, the second light-emitting system comprises an on state and an off state, and the second light-emitting system is operably controlled by the controller independently of the first light-emitting system to emit a light when in the on state and to be disabled in the off state.
The above-mentioned aspects of the present disclosure and the manner of obtaining them will become more apparent and the disclosure itself will be better understood by reference to the following description of the embodiments of the disclosure, taken in conjunction with the accompanying drawings, wherein:
Corresponding reference numerals are used to indicate corresponding parts throughout the several views.
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments described herein and illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the present disclosure is thereby intended, such alterations and further modifications in the illustrated devices and methods, and such further applications of the principles of the present disclosure as illustrated therein being contemplated as would normally occur to one skilled in the art to which the present disclosure relates.
Referring to
A fixed or floating center frame 114 is coupled to a front or a rear of the main frame 102. In
A plurality of spray nozzles 116 can be mounted along a fluid distribution pipe or spray pipe (not shown) that is mounted to the spray boom assembly 112 and fluidly coupled to the tank 110. Each nozzle 116 can have multiple spray outlets, each of which conducts fluid to a same-type or different-type of spray tip. The nozzles 116 on the spray boom assembly 112 can be divided into boom frames or wing structures such as 124, 126, 128, 130, 132, 134, and 136 (or collectively “spray section(s)”). In
The spray boom assembly 112 may be further divided into a first or left boom 120 and a second or right boom 122. In
As shown in
In a conventional spray boom assembly, a tilt actuator may be provided for tilting each boom with respect to the center frame. In
Referring to
In
The first boom frame 202 may include a yoke or other means for coupling to a center frame or other structure of a boom system. Moreover, the first boom frame 202 is shown having an ear or protruding portion 214 for pivotally coupling to an ear or protruding portion 216 of the second boom frame 204. As shown, a fastener or other coupling means may pivotally couple the protruding portions to one another to permit pivotal movement therebetween. The same type of design or structure may be incorporated to allow pivotal movement between the second boom frame 204 and the third boom frame 206.
As shown in
If the cable is an electrical cable or wire, it may allow for electrically coupling a sensor or lighting assembly 226, 230 or other electrical component on the different boom frames to a controller or other electrical component. For example, there may be a position sensor or global positioning sensor located at the end of the third boom frame 206. This sensor may be in communication with a controller for controlling the position and movement of the boom 200. Since the carbon boom 200 in
As shown in the embodiment of
In addition to integrating the light assembly into the boom, it is also possible to attach a light assembly externally to the boom. For instance, a lighting assembly may be adhered, welded, mechanically fastened, or coupled in any other known manner to the external surface of the boom.
Although not shown in
The controller may further be programmed to turn on only those light assemblies coupled to those boom frames in which nozzles are being used to conduct a spraying operation. Thus, to save power consumption on the work machine (e.g., a sprayer), light assemblies coupled to those boom in which nozzles are not being used may be turned off. This mode of control may be automatic, and the operator may have the option of manually turning on or off each of the light assemblies. Other control features may be possible with one or more light assemblies on the boom assembly. For instance, a motion sensor (not shown) may be coupled to one of the boom frames for detecting an object. If an animal or object moves in a path of the machine and spray boom, the sensor may communicate the detection of the object to the controller which in turn may trigger the light assemblies to turn on.
Referring to
The boom frame 302 may further include a connector member 314 may be pivotally coupled to a frame connector 316, as shown in
In
Similar to
In any event, a control system may be provided on the work machine in which a controller is electrically coupled to one or more light assemblies on a boom similar to that shown in
The control system may also include an operator control for manual control of the one or more light assemblies. In addition, one or more sensors may be provided in the control system. One sensor may be in electrical communication with the controller to detect if the one or more light assemblies are triggered on or off. The sensor may communicate the status of each light assembly to the controller. A second sensor may be provided to detect an operation status of one or more nozzles on a respective boom frame. The second sensor may communicate whether the plurality of nozzles on a boom frame is operating or not. A third sensor may be used to detect a distance from the boom frame to the underlying ground or crop canopy. The third sensor may communicate this distance to the controller. Another sensor may detect environmental conditions such as darkness, and communicate this to the controller. Other sensors may form part of the control system and detect different parameters and communicate the same to the controller.
In turn, the controller may be programmed to receive these communications from the different sensors and operably control the one or more light assemblies between their on or off states. For instance, if the controller determines that it is dusk and the work machine is moving, it may automatically trigger the light assemblies on. Alternatively, the controller may receive the communication about the plurality of nozzles on one boom frame not being active, and in turn the controller may trigger the light assembly or light assemblies on that particular boom frame to their off state. The controller may be programmed in other manners to control the one or more light assemblies which are integrated in the carbon fiber boom.
In one example of a light assembly, the light assembly may include a plurality of lights similar to the ones shown in
In
In
As shown in
The boom frame 400 of
In this embodiment, each light assembly is shown being formed part of the fourth layer 414. In other embodiments, the light assembly may be formed in an outer layer of the boom frame. This may include the fifth and outermost layer 416 of
Turning to
In a first block 502 of
In a third block 506, a first outer layer or layers may be deposited or laid in one or both molds. While a hand-laying process is described herein, there may be other methods for placing the layers of material in the molds. Any known process may be used. Once the first outer layer or layers is placed in the mold(s), the method 500 may advance to block 508 where a light-emitting system is integrated or otherwise added to the outer layer or layers in one or both molds. Here, cavities or other indentations may be formed in the outer layer or layers of the mold and the light-emitting system may be added in the cavity or indentation. The light-emitting system may include a strand of lights, a strip of lights, a single light, or any known type or form of light-emitting device.
The light-emitting system may include a wire for electrically coupling to a circuit or controller. In this manner, the wire may be routed through the central cavity 406 similar to that shown in
Additional layers may be added to the molds in block 510 on top of first deposited layers. In one example, a first plurality of layers may be hand-laid during blocks 506 and 510. Once block 510 is completed, the method may advance to block 512 where the molds may be vacuum-pressurized in an enclosure. In one example, each mold may be placed in a bag and then vacuum-pressurized. During this process, the layers may be compressed together and resins dispersed between layers in block 514. The bag or enclosure may be removed after block 514 is executed. In block 516, additional layers may be added to each mold, and blocks 512 and 514 may be repeated as necessary. In block 516, a second plurality of layers of composite material may be added to each mold, and then both molds may be vacuum-pressurized in an enclosure (e.g., a bag) to compress the first and second plurality of layers and disperse resins. This may be repeated until the desired number of layers have been added to the first and second molds.
Once the first and second molds have the desired amount of layers, the method 500 advances to block 518 where the molds are assembled to one another to form a single mold assembly. The single mold assembly may be vacuum-pressurized in block 520. The entire mold may also be placed in an Autoclave in block 522 and heat pressure is applied to the single mold assembly. The heat pressure may further join the two molds together. After block 522 is completed, the method 500 may advance to block 524 where the molds are removed from the newly formed boom structure. The formed boom structure in block 524 may have a shape of the two molds, and further curing and final processing may be executed in block 526 to form the final carbon fiber boom.
It is noteworthy that in block 508, the manufacturing process may include strategically placing the light-emitting system in the mold (either the first or second mold) such that it is disposed in a desired location. This may include positioning the light-emitting system at a top end, bottom end, first side, or second side of the boom as shown in
The carbon fiber boom is now manufactured with the integrated light-emitting system formed in the outer layer or between two stacked layers of composite material. Although not shown in
In view of the above, a carbon fiber boom or boom frame may be manufactured with integrated light assemblies at any desirable location along the boom. The addition of cables, wires, or piping may be necessary to couple light assemblies to their own circuit or to adjacent boom frames. By integrally adding light-emitting systems to the carbon fiber boom during the boom manufacturing process, a source of light may be provided to an operator when performing a spraying or other work operation at dusk or night.
While exemplary embodiments incorporating the principles of the present disclosure have been described herein, the present disclosure is not limited to such embodiments. Instead, this application is intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains.