Similar numerals are indicative of similar elements.
Referring now to the drawings and in particular
The discharge or offgas exiting outlet 16 is transferred into a waste heat recovery power generation circuit, globally denoted by numeral 20. The circuit includes a boiler or reboiler 22, turbine generator 24 which turbine generator is in electrical communication with an electrical storage means 26. A condenser 28 is provided to condense any excess steam and recirculate the steam as water back into boiler 22.
In greater detail, the boiler 22 receives the discharge gas or offgas from outlet 16 at an extremely high temperature, namely at a temperature between 400° F. and 2000° F. The discharge is streamed from the boiler 22 exiting the boiler, and denoted by numeral 30 is reduced to a temperature of between 300° F. and 400° F. and more particularly between 350° F. and 400° F. In this manner, the boiler 22 effectively recovers waste heat from the kiln and reduces the temperature of the stream to be scrubbed exiting at 30 a temperature which is essentially ideal for the maximum efficiency of the dry scrubber globally, denoted by the numeral 32.
The boiler functions, in effect, as a heat exchanger and exchanges the waste heat from the kiln to the water circulating within the boiler. This results in the generation of steam which is particularly useful to act as a drive means for turbine 24 for the generation of electricity.
Conventionally, boiler systems which are known to be particularly susceptible to corrosion unless operated under strict parameters, cannot be incorporated into such unit operations as set forth in
It has been found that not only does the incorporation of the waste heat recovery circuit alleviate the problem with having to lower the temperature exiting the kiln 16, but also that the result is the production of electricity. In this arrangement, one skilled in the art would then be led to the conclusion that the particular fuel used to fire the kiln 12 and more particularly, the offgas 16 content would be critical for consideration in view of the fact that the boiler 22 is incorporated, which boiler 22 obviously incorporates tube networks. Normally, this would present significant difficulties in that the optimum temperature for the scrubber 32 is approximately 350° F. and this temperature requires the tube surface to be below the acid dew temperature of the sulfur compounds originating from the fuel.
By practicing the methodology as set forth herein, the LKD or CKD provided by the kiln creates a lime coating on the tubes in the boiler 22. This is an effective coating to prevent corrosion by the sulfur compounds when operating within the temperature range as noted herein and therefore permits the use of high sulfur bearing materials as a suitable fuel for firing the kiln.
As a particularly convenient feature, the LKD or CKD provides the scrubbing medium required to scrub the sulfur oxide and sulfur dioxide compounds from the stream. Referring now to
In respect of
It will be appreciated by those skilled in the art that compound makeup will be added where needed during the process operation of the circuits noted herein.
The embodiments of the invention described above are intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.