The invention generally relates to electronic devices providing differential signaling outputs, and more particularly to an integrated topology for a Low Voltage Differential Signaling (LVDS) driver and High-speed current steering Logic (HCSL) driver.
Various I/O signaling methods are known in the art for use within an individual device or in a communication channel between two or more devices. Two well-known signaling methods commonly used in systems requiring high speed signaling include, Low Voltage Differential Signaling (LVDS) and High-Speed Current Steering Logic (HCSL) signaling. LVDS differential outputs are characterized by low voltage swings and low power consumption. HCSL drivers have higher voltage swings and provide faster switching speeds than LVDS drivers, but they also consume more power. In order to take advantage of both signaling technologies, LVDS and HCSL signaling methods are often incorporated onto a single integrated circuit device using dedicated LVDS driver circuits and HCSL driver circuits. Typically, the dedicated LVDS and HCSL driver circuits are connected in parallel, and a designer may choose to enable one of the drivers to implement either the LVDS driver circuitry or the HCSL driver circuitry, to meet the requirement of a particular design. However, a device employing dedicated LVDS and HCSL driver circuits requires an unnecessary duplication of circuitry, resulting in a number of disadvantages, including larger area requirements, higher cost and reduced flexibility in the design.
Accordingly, there is a need in the art for a circuit topology that utilizes common circuitry to implement two different signaling schemes on a single integrated circuit device, so as to provide flexibility in design and to reduce the size and cost of the device.
The present invention describes an output structure that utilizes common circuitry to implement two differently signaling methods, LVDS and HCSL, on one integrated circuit device. This integrated topology reduces the required die area for the circuit and also reduces the use of redundant components, thereby reducing the overall cost of the device. This integrated topology also provides circuit designers with design flexibility.
In one embodiment, the present invention provides an integrated circuit comprising, a low voltage differential signaling (LVDS) output circuit, a high-speed current steering logic (HCSL) output circuit, a bias control circuit, a programmable voltage reference circuit coupled to the bias control circuit and an output stage circuit coupled to the HCSL output circuit. The integrated circuit further includes, a first plurality of switches to switchably couple the bias control circuit to the LVDS output circuit and a second plurality of switches to switchably couple the bias control circuit to the output stage circuit and the HCSL output circuit. In order to select either a LVDS output signaling mode or an HCSL output signaling mode, the integrated circuit further includes, a logic control circuit coupled to the programmable voltage reference circuit, the first plurality of switches and the second plurality of switches, the logic control circuit to activate either the LVDS output circuit or the HCSL output circuit.
In an additional embodiment, a method for selectively providing a low voltage differential signaling (LVDS) output signaling mode or a high-speed current steering logic (HCSL) output signaling mode includes, providing a voltage reference signal from a programmable voltage reference circuit to a bias control circuit based upon a desired output signaling mode, wherein the desired output signaling mode is either a low voltage differential signaling (LVDS) output signaling mode or a high-speed current steering logic (HCSL) output signaling method. The method further includes, coupling the bias control circuit to a low voltage differential signaling (LVDS) output circuit if the desired output signaling mode is an LVDS output signaling mode or coupling the bias control circuit to a high-speed current steering logic (HCSL) output circuit if the desired output signaling mode is an HCSL output signaling method and coupling the bias control to an output stage circuit coupled to the HCSL output circuit if the desired output signaling mode is an HCSL output signaling mode.
In accordance with the present invention, an integrated circuit and associated method for selectively providing a low voltage differential signaling (LVDS) output signaling mode or a high-speed current steering logic (HCSL) output signaling mode is provided, including a circuit topology that utilizes common circuitry to implement the two different signaling schemes on a single integrated circuit device, so as to provide flexibility in design and to reduce the size and cost of the device.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention, and together with the description, serve to explain the principles of the invention.
Representative embodiments of the present invention are described below with reference to various examples wherein like reference numerals are used throughout the description and several view of the drawings to indicate like or corresponding parts and further wherein the various elements are not necessarily drawn to scale.
With reference to
In the present invention a user of the integrated circuit can choose to implement either an LVDS output signaling mode or an HCSL output signaling mode, depending upon the desired application of the integrated circuit device. Based upon the desired application, an output signal from the logic control circuit 135 is used to activate the appropriate circuitry to provide implementation of either an LVDS output signaling mode or an HCSL output signal mode. The logic control circuit 135 provides a control signal to the programmable voltage reference circuit 125, instructing the programmable voltage reference circuit 125 to provide a reference voltage to the bias control circuit 120 that is appropriate for either an LVDS output signaling mode or an HCSL output signaling mode. If an LVDS output signaling mode has been selected, the logic control circuit 135 provides a control signal to close the first plurality of switches 130, thereby coupling the bias control circuit 120 to the LVDS output circuit 105. Alternatively, if an HCSL output signaling mode has been selected, the logic control circuit 135 provides a control signal to close the second plurality of switches 131, thereby coupling the bias control circuit 120 to the output stage 110 and the HCSL output circuit 115. The logic control circuit 135 may also provide a control signal to open the second plurality of switches 131, when the first plurality of switches 130 are closed and to open the first plurality of switches 130, when the second plurality of switches 131 are closed.
In contrast with the prior art, in the present invention, the bias control circuit 120 is shared between the LVDS output circuit 105 and to the HCSL output circuit 115. When an LVDS output signaling mode is selected by the logic control circuit 135, the first plurality of switches 130 are closed and the bias control circuit 120 provides an appropriate common mode voltage input to the LVDS output circuit 105 that defines the output signal levels of the LVDS output circuit 105, based upon the reference voltage signal from the programmable voltage reference circuit 125. A feedback loop is also established between the bias control circuit 120 and the LVDS output circuit 105 when the first plurality of switches 130 are closed. Additionally, when an HCSL output signaling mode is selected by the logic control circuit 135, the second plurality of switches are closed 131 and the bias control circuit 120 provides an appropriate common mode voltage input to the output stage circuit 110 and the output stage circuit implements the output signal levels of the HCSL output circuit 115. A feedback loop is also established between the bias control circuit 120 and the HCSL output circuit 115 when the second plurality of switches 131 are closed.
With reference to
After it has been determined if the integrated circuit will be operating in a LVDS output signal mode or in a HCSL output signaling mode, an appropriate voltage reference signal is provided by the programmable voltage reference circuit 225 at the positive input terminal of the bias control circuit 220. In one embodiment, the bias control circuit 220 is a common mode feedback amplifier powered by a supply voltage 290 range between 3.3V and 1.8V. The differential output of the bias control circuit 220 is provided to either the LVDS output circuit 205 or the output stage circuit 210 and the HCSL output circuit 215, depending upon which output signaling mode has been selected by the user. As such, in the present invention, the bias control circuit 220 is shared between the LVDS output circuit 205 and the HCSL output circuit 215, thereby eliminating the need for two separate bias control circuits, which reduces the required die area and cost of the integrated circuit device.
When the integrated circuit 200 is operating in an LVDS output signaling mode, logic control circuit 235 asserts a control signal instructing the programmable voltage reference circuit 225 to provide an appropriate voltage reference signal for the LVDS output signaling mode to the bias control circuit 220. The control signal also instructs the switches 232, 234, 236 of the first plurality of switches 230 to close and the switches 238, 240, 242 of the second plurality of switches 231 to open. Closing the switches 232, 234 of the first plurality of switches 230, couples the differential output signals 305, 310 of the bias control circuit 220 to the LVDS output circuit 205 and closing switch 236 of the first plurality of switches 230, establishes a feedback loop 315 between the LVDS output circuit 205 and a negative input of the bias control circuit 220.
Opening the switches 238, 240, 242 of the second plurality of switches 231, disconnects the HCSL output circuit from the bias control circuit 220. In this configuration, a desired LVDS output signaling mode is achieved from the integrated circuit device.
Alternatively, when the integrated circuit 200 is operating in an HCSL output signaling mode, logic control circuit 235 asserts a control signal instructing the programmable voltage reference circuit 225 to provide an appropriate voltage reference signal for the HCSL output signaling mode to the bias control circuit 220. The control signal also instructs the switches 238, 240, 242 of the second plurality of switches 231 to close and switches 232, 234, 236 of the first plurality of switches 230 to open. Closing the switches 238, 240 of the second plurality of switches 231, couples the differential output signal of the bias control circuit 220 to the output stage circuit 210 and closing switch 242 of the second plurality of switches 231, establishes a feedback loop between the HCSL output circuit 215 and a negative input of the bias control circuit 220. The output stage circuit 210 adjusts the differential output signals from the bias control circuit 220 and provides the adjust signals to the HCSL output circuit 215 to define the output signal levels for the selected HCSL output signaling mode. In one embodiment, the HCSL output circuit 215 comprises a differential pair amplifier with current mirroring to define the output signaling level for the HCSL output circuit 215. In a specific embodiment, the output stage circuit 210 comprises a first p-channel metal oxide semiconductor (PMOS) transistor 268 and a second PMOS device 270 have a common gate node coupled to a drain of the first PMOS device 268. The source nodes of the first PMOS device 268 and the second PMOS device 270 are coupled to a supply voltage 290. The output stage circuit 210 further includes a first n-channel metal oxide semiconductor (NMOS) transistor 272 having a drain connected to the gates of the first PMOS device 268 and the second PMOS device 270, a gate coupled to a first output of the bias control circuit 220 and a source coupled to a ground node 295. The output stage circuit 210 further includes a second NMOS device 274 having a drain coupled to the drain of the second PMOS device 270, a gate coupled to a second output of the bias control circuit 220 and a source coupled to a ground node 295. The output signal from the output stage circuit 210 is provided to the HCSL output circuit 215 at the common drain node of the second PMOS device 270 and the second NMOS device 274. Opening the switches 232, 234, 236 of the first plurality of switches 230, disconnects the LVDS output circuit from the bias control circuit 220. In this configuration, a desired HCSL output signaling mode is achieved from the integrated circuit device.
Low voltage differential signaling (LVDS) circuits are well known in the art and various configurations for LVDS circuits are considered within the scope of the present invention.
As shown with reference to
High-speed current steering logic (HCSL) circuits are well known in the art and various configurations for HCSL circuits are considered within the scope of the present invention.
As shown with reference to
With reference to
After the voltage reference signal has been provided to the bias control circuit, the method continues by coupling the bias control circuit to a low voltage differential signaling (LVDS) output circuit if the desired output signaling mode is an LVDS output signaling mode or coupling the bias control circuit to a high-speed current steering logic (HCSL) output circuit if the desired output signaling mode is an HCSL output signaling mode 510. With reference to
After the bias circuit has been coupled to either the LVDS output circuit or to establish the feedback loop with the HCSL output circuit, the method continues by coupling the bias control circuit to an output stage circuit coupled to the HCSL output circuit if the desired output signaling mode is an HCSL output signaling mode 515. With reference to
In accordance with the present invention, an integrated circuit and associated method for selectively providing a low voltage differential signaling (LVDS) output signaling mode or a high-speed current steering logic (HCSL) output signaling mode is provided, including a circuit topology that utilizes common circuitry to implement the two different signaling schemes on a single integrated circuit device, so as to provide flexibility in design and to reduce the size and cost of the device
Exemplary embodiments of the invention have been described using CMOS technology. As would be appreciated by a person of ordinary skill in the art, a particular transistor can be replaced by various kinds of transistors with appropriate inversions of signals, orientations and/or voltages, as is necessary for the particular technology, without departing from the scope of the present invention.
In one embodiment, the LVDS driver circuit and the HCSL driver circuit may be implemented in an integrated circuit as a single semiconductor die. Alternatively, the integrated circuit may include multiple semiconductor dies that are electrically coupled together such as, for example, a multi-chip module that is packaged in a single integrated circuit package.
In various embodiments, the system of the present invention may be implemented in a Field Programmable Gate Array (FPGA) or Application Specific Integrated Circuit (ASIC). As would be appreciated by one skilled in the art, various functions of circuit elements may also be implemented as processing steps in a software program. Such software may be employed in, for example, a digital signal processor, microcontroller or general-purpose computer.
For purposes of this description, it is understood that all circuit elements are powered from a voltage power domain and ground unless illustrated otherwise. Accordingly, all digital signals generally have voltages that range from approximately ground potential to that of the power domain.
Although the invention has been described with reference to particular embodiments thereof, it will be apparent to one of ordinary skill in the art that modifications to the described embodiment may be made without departing from the spirit of the invention. Accordingly, the scope of the invention will be defined by the attached claims not by the above detailed description.
Number | Name | Date | Kind |
---|---|---|---|
4684941 | Smith et al. | Aug 1987 | A |
4862485 | Guinea et al. | Aug 1989 | A |
5663105 | Sua et al. | Sep 1997 | A |
5748949 | Johnston et al. | May 1998 | A |
5757240 | Boerstler et al. | May 1998 | A |
5848355 | Rasor et al. | Dec 1998 | A |
5903195 | Lukes et al. | May 1999 | A |
6219797 | Liu et al. | Apr 2001 | B1 |
6259327 | Balistreri et al. | Jul 2001 | B1 |
6640311 | Knowles | Oct 2003 | B1 |
6643787 | Zerbe et al. | Nov 2003 | B1 |
6650193 | Endo et al. | Nov 2003 | B2 |
6683506 | Ye et al. | Jan 2004 | B2 |
6727767 | Takada | Apr 2004 | B2 |
6768387 | Masuda et al. | Jul 2004 | B1 |
6870411 | Shibahara et al. | Mar 2005 | B2 |
6959066 | Wang et al. | Oct 2005 | B2 |
7012476 | Ogiso | Mar 2006 | B2 |
7323916 | Sidiropoulos et al. | Jan 2008 | B1 |
7405594 | Xu | Jul 2008 | B1 |
7434083 | Wilson | Oct 2008 | B1 |
7541848 | Masuda | Jun 2009 | B1 |
7545188 | Xu et al. | Jun 2009 | B1 |
7573303 | Chi et al. | Aug 2009 | B1 |
7586347 | Ren et al. | Sep 2009 | B1 |
7590163 | Miller et al. | Sep 2009 | B1 |
7671635 | Fan et al. | Mar 2010 | B2 |
7737739 | Bi | Jun 2010 | B1 |
7741981 | Wan et al. | Jun 2010 | B1 |
7750618 | Fang et al. | Jul 2010 | B1 |
7786763 | Bal et al. | Aug 2010 | B1 |
7800422 | Lee et al. | Sep 2010 | B2 |
7816959 | Isik | Oct 2010 | B1 |
7907625 | MacAdam | Mar 2011 | B1 |
7928880 | Tsukamoto | Apr 2011 | B2 |
7941723 | Lien et al. | May 2011 | B1 |
8010072 | Nathawad | Aug 2011 | B1 |
8018289 | Hu et al. | Sep 2011 | B1 |
8164367 | Bal et al. | Apr 2012 | B1 |
8179952 | Thurston et al. | May 2012 | B2 |
8188796 | Zhu et al. | May 2012 | B2 |
8259888 | Hua et al. | Sep 2012 | B2 |
8284816 | Clementi | Oct 2012 | B1 |
8305154 | Kubena et al. | Nov 2012 | B1 |
8416107 | Wan et al. | Apr 2013 | B1 |
8432231 | Nelson et al. | Apr 2013 | B2 |
8436677 | Kull et al. | May 2013 | B2 |
8456155 | Tamura et al. | Jun 2013 | B2 |
8471751 | Wang | Jun 2013 | B2 |
8537952 | Arora | Sep 2013 | B1 |
8693557 | Zhang et al. | Apr 2014 | B1 |
8704564 | Hasegawa et al. | Apr 2014 | B2 |
8723573 | Wang et al. | May 2014 | B1 |
8791763 | Taghivand | Jul 2014 | B2 |
8896476 | Harpe | Nov 2014 | B2 |
8933830 | Jeon | Jan 2015 | B1 |
8981858 | Grivna et al. | Mar 2015 | B1 |
9077386 | Holden et al. | Jul 2015 | B1 |
9100232 | Hormati et al. | Aug 2015 | B1 |
9455854 | Gao | Sep 2016 | B2 |
20020079937 | Xanthopoulos | Jun 2002 | A1 |
20020191727 | Staszewski et al. | Dec 2002 | A1 |
20030042985 | Shibahara et al. | Mar 2003 | A1 |
20030184350 | Wang et al. | Oct 2003 | A1 |
20040136440 | Miyata et al. | Jul 2004 | A1 |
20040165691 | Rana | Aug 2004 | A1 |
20050170787 | Yamamoto et al. | Aug 2005 | A1 |
20060103436 | Saitou et al. | May 2006 | A1 |
20060119402 | Thomsen et al. | Jun 2006 | A1 |
20060197614 | Roubadia et al. | Sep 2006 | A1 |
20060290391 | Leung et al. | Dec 2006 | A1 |
20070149144 | Beyer et al. | Jun 2007 | A1 |
20070247248 | Kobayashi et al. | Oct 2007 | A1 |
20080043893 | Nagaraj et al. | Feb 2008 | A1 |
20080104435 | Pernia et al. | May 2008 | A1 |
20080129351 | Chawla | Jun 2008 | A1 |
20080246546 | Ha et al. | Oct 2008 | A1 |
20090083567 | Kim et al. | Mar 2009 | A1 |
20090140896 | Adduci et al. | Jun 2009 | A1 |
20090153252 | Chen et al. | Jun 2009 | A1 |
20090184857 | Furuta et al. | Jul 2009 | A1 |
20090231901 | Kim | Sep 2009 | A1 |
20090256601 | Zhang et al. | Oct 2009 | A1 |
20090262567 | Shin et al. | Oct 2009 | A1 |
20100007427 | Tomita et al. | Jan 2010 | A1 |
20100052798 | Hirai | Mar 2010 | A1 |
20100090731 | Casagrande | Apr 2010 | A1 |
20100109714 | Lindfors et al. | May 2010 | A1 |
20100164761 | Wan et al. | Jul 2010 | A1 |
20100194483 | Storaska et al. | Aug 2010 | A1 |
20100240323 | Qiao et al. | Sep 2010 | A1 |
20100323643 | Ridgers | Dec 2010 | A1 |
20110006936 | Lin et al. | Jan 2011 | A1 |
20110032013 | Nelson et al. | Feb 2011 | A1 |
20110095784 | Behel et al. | Apr 2011 | A1 |
20110234204 | Tamura et al. | Sep 2011 | A1 |
20110234433 | Aruga et al. | Sep 2011 | A1 |
20110285575 | Landez et al. | Nov 2011 | A1 |
20110304490 | Janakiraman | Dec 2011 | A1 |
20120013406 | Zhu et al. | Jan 2012 | A1 |
20120161829 | Fernald | Jun 2012 | A1 |
20120200330 | Kawagoe et al. | Aug 2012 | A1 |
20120249207 | Natsume et al. | Oct 2012 | A1 |
20120262315 | Kapusta et al. | Oct 2012 | A1 |
20120293221 | Ma et al. | Nov 2012 | A1 |
20120297231 | Qawami et al. | Nov 2012 | A1 |
20120317365 | Elhamias | Dec 2012 | A1 |
20120328052 | Etemadi et al. | Dec 2012 | A1 |
20130002467 | Wang | Jan 2013 | A1 |
20130162454 | Lin | Jun 2013 | A1 |
20130194115 | Wu et al. | Aug 2013 | A1 |
20130211758 | Prathapan et al. | Aug 2013 | A1 |
20130300455 | Thirugnanam | Nov 2013 | A1 |
20140021990 | Na et al. | Jan 2014 | A1 |
20140029646 | Foxcroft et al. | Jan 2014 | A1 |
20140210532 | Jenkins | Jul 2014 | A1 |
20140327478 | Horng et al. | Nov 2014 | A1 |
20140347941 | Jose et al. | Nov 2014 | A1 |
20150028960 | Yorita | Jan 2015 | A1 |
20150162921 | Chen et al. | Jun 2015 | A1 |
20150180594 | Chakraborty et al. | Jun 2015 | A1 |
20150200649 | Trager et al. | Jul 2015 | A1 |
20150213873 | Ihm et al. | Jul 2015 | A1 |
20160013796 | Choi | Jan 2016 | A1 |
20160084895 | Imhof | Mar 2016 | A1 |
20160119118 | Shokrollahi | Apr 2016 | A1 |
20160162426 | Benjamin et al. | Jun 2016 | A1 |
20160211929 | Holden et al. | Jul 2016 | A1 |
Entry |
---|
Texas Instruments “CDCEx913 Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs”, Apr. 2015, pp. 1-36, pp. 11, 20-22. |
“19-Output PCIE GEN 3 Buffer”, Si53019-A01A, Silicon Laboratories Inc., Rev. 1.1 May 2015, 34 Pages. |
“NB3W1200L: 3.3 V 100/133 MHz Differential 1:12 Push-Pull Clock ZDB/Fanout Buffer for PCIe”, On Semiconductor, http://onsemi.com, Aug. 2013, Rev. 0, 26 Pages. |
Avramov, et al., “1.5-GHz Voltage Controlled Oscillator with 3% Tuning Bandwidth Using a Two-Pole DSBAR Filter”, Ultrasonics, Ferroelectrics and Frequency Control. IEEE Transactions on. vol. 58., May 2011, pp. 916-923. |
Hwang, et al., “A Digitally Controlled Phase-Locked Loop with a Digital Ohase—Frequency Detector for Fast Acquisition”, IEEE Journal of Solid State Circuits, vol. 36, No. 10, Oct. 2001, pp. 1574-1581. |
Kratyuk, et al., “Frequency Detector for Fast Frequency Lock of Digital PLLs”, Electronic Letters, vol. 43, No. 1, Jan. 4, 2007, pp. 1-2. |
Mansuri, “Fast Frequency Acquisition Phase-Frequency Detectors for GSamples/s Phase-Locked Loops”, IEEE Journal of Solid-State Circuits, vol. 37 No. 10, Oct. 2002, pp. 1331-1334. |
Nagaraju, “A Low Noise 1.5GHz VCO with a 3.75% Tuning Range Using Coupled FBAR's”, IEEE International Ultrasonics Symposium (IUS), Oct. 2012, pp. 1-4. |
Watanabe, “An All-Digital PLL for Frequency Multilication by 4 to 1022 with Seven-Cycle Lock Time”, IEEE Journal of Solid-State Circuits, vol. 39 No. 2, Feb. 2003, pp. 198-204. |