The present invention relates generally to systems and methods monitoring glucose in a host. More particularly, the present invention relates to an integrated medicament delivery device and continuous glucose sensor.
Diabetes mellitus is a disorder in which the pancreas cannot create sufficient insulin (Type I or insulin dependent) and/or in which insulin is not effective (Type 2 or non-insulin dependent). In the diabetic state, the victim suffers from high blood sugar, which can cause an array of physiological derangements (for example, kidney failure, skin ulcers, or bleeding into the vitreous of the eye) associated with the deterioration of small blood vessels. A hypoglycemic reaction (low blood sugar) can be induced by an inadvertent overdose of insulin, or after a normal dose of insulin or glucose-lowering agent accompanied by extraordinary exercise or insufficient food intake.
Conventionally, a diabetic person carries a self-monitoring blood glucose (SMBG) monitor, which typically comprises uncomfortable finger pricking methods. Due to the lack of comfort and convenience, a diabetic will normally only measures his or her glucose level two to four times per day. Unfortunately, these time intervals are so far spread apart that the diabetic will likely find out too late, sometimes incurring dangerous side effects, of a hyper- or hypo-glycemic condition. In fact, it is not only unlikely that a diabetic will take a timely SMBG value, but the diabetic will not know if their blood glucose value is going up (higher) or down (lower) based on conventional methods, inhibiting their ability to make educated insulin therapy decisions.
Home diabetes therapy requires personal discipline of the user, appropriate education from a doctor, proactive behavior under sometimes-adverse situations, patient calculations to determine appropriate therapy decisions, including types and amounts of administration of insulin and glucose into his or her system, and is subject to human error. Technologies are needed that ease the burdens faced by diabetic patients, simplify the processes involved in treating the disease, and minimize user error which can cause unnecessarily dangerous situations in some circumstances.
Systems and methods for monitoring glucose are provided that offer one or more benefits and/or advantages, for example, easing the burdens faced by diabetic patients, simplifying the processes involved in treating diabetes, and minimizing user error which can cause unnecessarily dangerous situations in some circumstances.
Accordingly, in a first aspect, an integrated system for monitoring and treating diabetes is provided, the system comprising: a medicament injection pen configured and arranged for injecting an amount of a medicament into a host; and an integrated receiver configured and arranged to receive sensor data from a continuous glucose sensor, wherein the sensor data is indicative of a glucose concentration of the host in vivo, wherein the integrated receiver comprises electronics configured and arranged to process the sensor data.
In an embodiment of the first aspect, the electronics are further configured to calculate at least one of time of medicament therapy and amount of medicament therapy.
In an embodiment of the first aspect, the integrated receiver comprises a housing, wherein the medicament injection pen is integrally formed with the housing.
In an embodiment of the first aspect, the integrated receiver comprises a housing, and wherein the medicament injection pen is detachably connectable to the housing.
In an embodiment of the first aspect, communication between the medicament injection pen and the receiver is initiated based at least in part on detachable connection of the medicament injection pen and the housing.
In an embodiment of the first aspect, the integrated system further comprises a user interface configured and arranged for at least one of input of host information, output of sensor data, and medicament therapy.
In an embodiment of the first aspect, the user interface is further configured to display a graphical representation of at least one of sensor data and medicament delivery data, wherein a solid line represents at least one of a target glucose concentration and a range.
In an embodiment of the first aspect, the integrated electronics are configured and arranged to require validation prior to injecting an amount of medicament into the host.
In an embodiment of the first aspect, the receiver is configured to communicate in at least one of wiredly with a single-point glucose monitor and wirelessly with a single-point glucose monitor.
In an embodiment of the first aspect, the medicament injection pen comprises a motor.
In an embodiment of the first aspect, the motor is configured to set the amount of medicament.
In an embodiment of the first aspect, the motor is configured to control a rate of medicament injection into a host.
In an embodiment of the first aspect, the receiver is configured to remotely control the motor.
In an embodiment of the first aspect, the medicament injection pen and the receiver each comprise mutually engaging electrical contacts, and wherein the mutually engaging electrical contacts are configured to allow communication between the medicament injection pen and the receiver.
In an embodiment of the first aspect, the system is configured to initiate communication between the medicament injection pen and the receiver in response to engagement of the electrical contacts.
In an embodiment of the first aspect, the system is configured to communicate medicament delivery data between the medicament injection pen and the receiver in response to engagement of the electrical contacts.
In an embodiment of the first aspect, the integrated system further comprises a receptacle configured and arranged to receive at least one of parts associated with the medicament injection pen and accessories associated with the medicament injection pen.
In an embodiment of the first aspect, at least one of the parts associated with the medicament injection pen and accessories associated with the medicament injection pen comprise a medicament cartridge.
In an embodiment of the first aspect, the integrated system further comprises a medicament injection pen kit, wherein the medicament injection pen kit is configured to receive the medicament injection pen, and wherein the medicament injection pen kit comprises a housing comprising a user interface, and wherein the integrated receiver is located within the housing and operably connected to the user interface.
In a second aspect an integrated system for monitoring and treating diabetes is provided, the system comprising: a receiver configured and arranged to receive sensor data from an operably connected continuous glucose sensor, wherein the continuous glucose sensor is configured and arranged to generate sensor data associated with a glucose concentration of a host; integrated electronics configured to process the sensor data and to generate a medicament therapy; and a medicament injection pen configured to inject an amount of medicament into the host.
In an embodiment of the second aspect, the medicament therapy comprises at least one of an amount of medicament therapy and a time of medicament therapy delivery.
In an embodiment of the second aspect, the receiver and the medicament injection pen are integrally formed.
In an embodiment of the second aspect, the integrated system further comprises a receptacle configured and arranged to receive at least one of parts associated with the medicament injection pen and accessories associated with the medicament injection pen.
In an embodiment of the second aspect, the medicament injection pen is detachably connectable to the receiver.
In an embodiment of the second aspect, the medicament injection pen and receiver each comprise mutually engaging electrical contacts, and wherein the mutually engaging electrical contacts are configured to allow communication between the medicament injection pen and the receiver.
In an embodiment of the second aspect, the system is configured to initiate communication between the medicament injection pen and the receiver in response to engagement of the mutually engaging electrical contacts.
In an embodiment of the second aspect, the system is configured to communicate the medicament therapy between the receiver and the medicament injection pen in response to engagement of the mutually engaging electrical contacts.
In an embodiment of the second aspect, the integrated system further comprises a housing integrally formed with the receiver, wherein the integrated electronics are located with the housing.
In an embodiment of the second aspect, the medicament injection pen is detachably connectable with the housing.
In an embodiment of the second aspect, the receiver further comprises a user interface, wherein the integrated electronics are configured to display at least one of sensor data and the medicament therapy thereon.
In an embodiment of the second aspect, the receiver comprises a housing, and wherein the user interface is located on the receiver housing.
In an embodiment of the second aspect, the integrated system further comprises a user interface configured to display at least one of the sensor data and the medicament therapy.
In an embodiment of the second aspect, the integrated electronics are further configured to display a representation of medicament delivery on the user interface, and wherein the representation of medicament delivery is substantially adjacent to substantially time-corresponding sensor data.
In an embodiment of the second aspect, the integrated electronics are further configured to display a representation of sensor data on the user interface, wherein the representation comprises at least one of a target glucose concentration and a range.
In an embodiment of the second aspect, the user interface comprises a flexible LED screen operably connected to at least one of the receiver and the medicament injection pen, and wherein the integrated electronics are configured to display continuous glucose sensor data on the flexible LED screen.
In an embodiment of the second aspect, the user interface comprises an image projection system configured to project continuous glucose sensor data onto a surface.
In an embodiment of the second aspect, the medicament injection pen comprises a motor.
In an embodiment of the second aspect, the motor is configured to automatically set the amount of medicament.
In an embodiment of the second aspect, the motor is configured to control a rate of medicament injection into the host.
In an embodiment of the second aspect, the receiver is configured to remotely control the motor.
In an embodiment of the second aspect, the integrated system further comprises a medicament injection pen kit comprising the receiver and the integrated electronics, wherein the medicament injection pen kit is configured to receive the medicament injection pen.
In an embodiment of the second aspect, the integrated system further comprises a user interface, wherein the integrated electronics are configured to display at least one of sensor data and the medicament therapy thereon.
In an embodiment of the second aspect, the medicament injection pen kit further comprises a receptacle configured and arranged to receive at least one of a medicament cartridge and a medicament injection pen needle.
In a third aspect, a method for monitoring and treating diabetes using an integrated diabetes monitoring and treatment device is provided, the method comprising: receiving sensor data from a continuous glucose sensor, wherein the sensor data is associated with a glucose concentration of a host; processing the sensor data; generating a medicament therapy; and injecting an amount of medicament into the host based at least in part on the generated medicament therapy.
In an embodiment of the third aspect, the step of generating a medicament therapy comprises determining at least one of an amount of medicament to be delivered and a time of medicament delivery.
In an embodiment of the third aspect, the step of injecting comprises setting the amount of medicament.
In an embodiment of the third aspect, the step of setting the amount of medicament comprises setting a medicament injection rate.
In an embodiment of the third aspect, the step of setting the amount of medicament comprises remotely setting the amount of medicament.
In a fourth aspect, an integrated system for monitoring and treating diabetes is provided, the system comprising: a sensor, the sensor comprising a continuous glucose sensor configured to continuously detect a signal associated with a glucose concentration of a host, a processor module configured and arranged to process the signal to generate a therapy, and a communication module configured and arranged to communicate the therapy instruction to a medicament delivery device; and at least one medicament delivery device configured and arranged to deliver a medicament therapy to the host based at least in part on the communicated therapy instruction.
In an embodiment of the fourth aspect, the medicament therapy comprises at least one of a medicament type, a medicament amount, and a delivery time.
In an embodiment of the fourth aspect, the sensor further comprises an input module configured to receive host information, and wherein the processor module is further configured to process the host information.
In an embodiment of the fourth aspect, the input module is configured to receive information from at least one of a user interface, a medicament delivery device, an infusion pump, a patient monitor, and a single-point glucose monitor.
In an embodiment of the fourth aspect, the integrated system further comprises a display module configured and arranged to display of host information, sensor data, the therapy instruction, an alert and/or an alarm.
In an embodiment of the fourth aspect, the communication module is configured to communication wirelessly with the medicament delivery device.
In an embodiment of the fourth aspect, the communication module is further configured to communicate the therapy instruction responsive to interrogation by the medicament delivery device.
In an embodiment of the fourth aspect, the medicament delivery device is configured for communication with a plurality of sensors.
In an embodiment of the fourth aspect, the medicament delivery device is configured for medicament delivery to a plurality of different hosts, based at least in part on a therapy instruction from a sensor.
In an embodiment of the fourth aspect, the medicament delivery device is a hand-held injector pen.
In an embodiment of the fourth aspect, the medicament delivery device is configured and arranged for aseptic medicament delivery to a plurality of hosts.
In an embodiment of the fourth aspect, at least one of the sensor and delivery device is configured transmit data to a data repository.
In a fifth aspect, a method for monitoring and treating diabetes using an integrated diabetes monitoring and treatment system is provided, the method comprising: continuously detecting a signal associated with a glucose concentration of a host; processing the signal; generating a therapy instruction; communicating the therapy instruction to at least one medicament delivery device; and delivering a medicament therapy to the host based at least in part on the communicated therapy instruction.
In an embodiment of the fifth aspect, the method further comprises receiving and processing host information.
In an embodiment of the fifth aspect, the method further comprises remotely programming the system.
In an embodiment of the fifth aspect, the step of generating the therapy instruction comprises determining at least one of a type of medicament, a medicament amount, and a delivery time.
In an embodiment of the fifth aspect, the method further comprises receiving information from at least one of a user interface, a medicament delivery device, an infusion pump, a patient monitor, and a single-point glucose monitor.
In an embodiment of the fifth aspect, the method further comprises displaying at least one of host information, sensor data, the therapy instruction, an alert, and an alarm.
In an embodiment of the fifth aspect, the step of communicating further comprises communicating wirelessly.
In an embodiment of the fifth aspect, the step of communicating further comprises communicating the therapy instruction based at least in part on interrogation by the medicament delivery device.
In an embodiment of the fifth aspect, the step of communicating further comprises communicating to a medicament delivery device configured for medicament delivery to a plurality of hosts, based at least in part on a therapy instruction communicated by an integrated system worn by each host.
In an embodiment of the fifth aspect, the step of communicating further comprises communicating to a hand-held injector pen.
In an embodiment of the fifth aspect, the step of communicating further comprises communicating to a medicament delivery device configured and arranged for aseptic medicament delivery to a plurality of hosts.
In an embodiment of the fifth aspect, the step of communicating further comprises transmitting data to a data repository.
In a sixth aspect, a medicament delivery device for monitoring and treating at least one of a plurality of hosts is provided, the medicament delivery device comprising: a communication module configured to interrogate a continuous glucose sensor and to receive sensor data therefrom, wherein the sensor data comprises a signal associated with an analyte concentration of a host; a processor module configured to process the sensor data and calculate a medicament therapy, wherein the processor module comprises programming for calculating the medicament therapy based at least in part on the sensor data; and a hand-held injector pen configured and arranged to deliver a medicament to the host, based at least in part on the medicament therapy.
In an embodiment of the sixth aspect, the medicament delivery device further comprises a user interface configured and arranged for at least one of input of at least some medical information and display of at least some medical information, wherein medical information comprises at least one of host information, received sensor data, processed sensor data, the calculated medicament therapy, a delivered medicament therapy, an instruction, an alert, an alarm, and a failsafe.
In an embodiment of the sixth aspect, the user interface is detachably connected to the hand-held injector pen.
In an embodiment of the sixth aspect, host information comprises at least one of a host information, type of medicament to be delivered, a glucose target, predicted hypoglycemia, predicted hypoglycemia, a therapy protocol, an alert, and an alarm.
In an embodiment of the sixth aspect, the processor module is further configured for validation of the medicament therapy.
In an embodiment of the sixth aspect, the medicament therapy comprises at least one of a type of medicament to be delivered, an amount of medicament to be delivered and a time of delivery.
In an embodiment of the sixth aspect, the communication module is further configured to communicate treatment information to a central monitor, wherein the treatment information comprises at least one of host information, sensor data, the medicament therapy, and delivered medicament information.
In an embodiment of the sixth aspect, the communication module is configured for wireless communication.
In an embodiment of the sixth aspect, the wireless communication is selected from the group consisting of RF communication, IR communication, Bluetooth communication, and inductive coupling.
In an embodiment of the sixth aspect, the communication module and the medicament delivery device are integrally formed.
In an embodiment of the sixth aspect, the communication module and the medicament delivery device are detachably connected.
In an embodiment of the sixth aspect, the injector pen is configured for aseptic medicament delivery to a plurality of hosts.
In an embodiment of the sixth aspect, the injector pen is configured and arranged for pneumatic aseptic medicament delivery.
In an embodiment of the sixth aspect, the injector pen comprises a cartridge comprising a plurality of single-use needles.
In an embodiment of the sixth aspect, the cartridge is configured and arranged for automatic installation of a clean needle after a medicament delivery.
In a seventh aspect, a method for monitoring and treating diabetes in one of a plurality of hosts is provided, the method comprising: interrogating a continuous glucose sensor; receiving sensor data from the continuous glucose sensor, wherein the sensor data comprises a signal associated with an analyte concentration of a first host; processing the sensor data; calculating a medicament therapy based at least in part on the sensor data; and delivering an amount of a medicament to the first host, based at least in part on the calculated medicament therapy.
In an embodiment of the seventh aspect, the steps of interrogating, receiving, processing, calculating and delivering are repeated with a second host.
In an embodiment of the seventh aspect, the method further comprises a step of at least one of inputting at least some medical information and displaying at least some medical information, wherein medical information comprises at least one of host information, received sensor data, processed sensor data, the calculated medicament therapy, a delivered medicament therapy, an instruction, an alert, an alarm, and a failsafe.
In an embodiment of the seventh aspect, the method further comprises detachably connecting a user interface.
In an embodiment of the seventh aspect, the method further comprises validating the medicament therapy.
In an embodiment of the seventh aspect, the method further comprises communicating treatment information to a central monitor, wherein the treatment information comprises at least one of host information, sensor data, the medicament therapy, and delivered medicament information.
In an embodiment of the seventh aspect, the step of communicating comprises communicating wirelessly.
In an embodiment of the seventh aspect, the steps of interrogating and receiving comprise communicating wirelessly.
In an embodiment of the seventh aspect, the step of delivering comprises aseptically delivering the medicament to a plurality of hosts.
In an embodiment of the seventh aspect, the step of delivering comprises pneumatically aseptically delivering the medicament.
In an embodiment of the seventh aspect, the step of delivering comprises automatically installing a clean needle after medicament delivery.
In an eighth aspect, an integrated system for monitoring and treating diabetes is provided, the system comprising: a receiver configured and arranged to receive continuous glucose sensor data from a continuous glucose sensor; a processor module configured to process the continuous glucose sensor data and to provide first and second medicament dosing information based at least in part on the continuous glucose sensor data; and a communication module configured and arranged to communicate the medicament dosing information with a first integrated medicament delivery device and a second integrated medicament delivery device.
In an embodiment of the eighth aspect, the first medicament dosing information comprises a basal medicament dose and the first integrated medicament delivery device comprises a basal medicament delivery device.
In an embodiment of the eighth aspect, the basal medicament delivery device comprises a medicament pump configured to infuse a first medicament.
In an embodiment of the eighth aspect, the processor module comprises programming to calculate a basal dose based at least in part on the continuous glucose sensor data.
In an embodiment of the eighth aspect, the second medicament dosing information comprises a bolus medicament dose and the second integrated medicament delivery device comprises a bolus medicament delivery device.
In an embodiment of the eighth aspect, the processor module comprises programming to calculate a bolus dose based at least in part on the continuous glucose sensor data.
In an embodiment of the eighth aspect, the bolus medicament delivery device comprises a hand-held medicament injection pen configured to infuse a second medicament.
In an embodiment of the eighth aspect, the bolus medicament delivery device comprises a motor configured to automatically set the amount of medicament and the medicament dosing information comprises an instruction for the medicament delivery device to automatically portion out the bolus dose, whereby the portioned out bolus dose can be manually delivered by the host.
In an embodiment of the eighth aspect, the bolus medicament delivery device comprises a motor to control a rate of medicament injection into the host.
In an embodiment of the eighth aspect, the integrated system further comprises a user interface configured and arranged to display at least one of continuous glucose sensor data and medicament dosing information.
In an embodiment of the eighth aspect, the user interface is further configured for input of at least one of host information and medicament delivery device information.
In an embodiment of the eighth aspect, the host information comprises at least one of host identity, host physical state, target glucose concentration and type of medicament to be delivered.
In an embodiment of the eighth aspect, the medicament delivery information comprises at least one of host identity, identification of a functionally connected medicament delivery device, a type of medicament to be delivered, a medicament delivery profile, a medicament delivery protocol, and a failsafe.
In an embodiment of the eighth aspect, the communication module comprises a communication module configured and arranged to interrogate and/or provide medicament dosing information to the first medicament delivery device and the second medicament delivery device.
In an embodiment of the eighth aspect, the receiver comprises the communication module and the processor module, and wherein the receiver wirelessly communicates with the first and second medicament delivery devices.
In an embodiment of the eighth aspect, the receiver comprises the communication module and the processor module, and wherein the receiver is physically connected to at least one of the first medicament delivery device and the second medicament delivery device.
In a ninth aspect, a method of self-monitoring and self-treating diabetes is provided, the method comprising: receiving continuous glucose sensor data from an operably connected continuous glucose sensor; processing the continuous glucose sensor data; calculating medicament dosing information for at least two integrated medicament delivery devices based at least in part on the continuous glucose sensor data; and communicating the medicament dosing information with the integrated medicament delivery devices.
In an embodiment of the ninth aspect, the step of calculating medicament dosing information comprises calculating a basal dose based at least in part on the continuous glucose sensor data.
In an embodiment of the ninth aspect, the step of communicating comprises communicating the basal medicament dose to a medicament pump.
In an embodiment of the ninth aspect, the method further comprises infusing the basal medicament dose.
In an embodiment of the ninth aspect, the step of providing medicament dosing information comprises calculating a bolus dose based at least in part on the continuous glucose sensor data.
In an embodiment of the ninth aspect, the step of communicating comprises communicating the bolus medicament dose to a hand-held injector pen.
In an embodiment of the ninth aspect, the step of delivering comprises injecting the bolus medicament dose.
In an embodiment of the ninth aspect, the step of communicating the bolus dose further comprises providing an instruction to automatically set at least one of the amount of medicament and rate of delivery based at least in part on the medicament dosing information.
In an embodiment of the ninth aspect, the step of delivering the bolus dose further comprises automatically setting the amount of medicament based at least in part on the provided instruction.
In an embodiment of the ninth aspect, the step of delivering the bolus dose further comprises automatically setting the rate of delivery based at least in part on the provided instruction.
In an embodiment of the ninth aspect, the method further comprises displaying at least one of continuous glucose sensor data and medicament dosing information.
In an embodiment of the ninth aspect, the method further comprises inputting at least one of host information and medicament delivery device information.
In an embodiment of the ninth aspect, the step of communicating comprises wirelessly communicating.
In an embodiment of the ninth aspect, the step of wirelessly communicating comprises interrogating and/or providing medicament dosing information.
The following description and examples illustrate some exemplary embodiments of the disclosed invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a certain exemplary embodiment should not be deemed to limit the scope of the present invention.
Definitions
In order to facilitate an understanding of the preferred embodiments, a number of terms are defined below.
The term “algorithm” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a computational process (for example, programs) involved in transforming information from one state to another, for example, by using computer processing.
The term “basal,” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the minimum required rate or other value for something to function. For example, in the case of medicament therapy, the term “basal rate” can refer to a regular (e.g., in accordance with fixed order or procedure, such as regularly scheduled for/at a fixed time), periodic or continuous delivery of low levels of medicament, such as but not limited to throughout a 24-hour period.
The term “basal profile,” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a medicament delivery schedule that includes one or more blocks of time (e.g., time blocks), wherein each block is associated with a maximum medicament delivery rate.
The term “biological sample” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to sample of a host body, for example blood, interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like.
The term “bolus,” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a single dose of medicament, usually given over a short, defined period of time. In one exemplary embodiment, a bolus of medicament is calculated and/or estimated to be sufficient to cover an expected rise in blood glucose, such as the rise that generally occurs during/after a meal.
The term “continuous (or continual) analyte sensing” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the period in which monitoring of analyte concentration is continuously, continually, and or intermittently (regularly or irregularly) performed, for example, about every 5 to 10 minutes.
The phrase “continuous glucose sensing” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the period in which monitoring of plasma glucose concentration is continuously or continually performed, for example, at time intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes, or longer.
The term “count” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a unit of measurement of a digital signal. For example, a raw data stream or raw data signal measured in counts is directly related to a voltage (for example, converted by an A/D converter), which is directly related to current from the working electrode.
The term “electrochemically reactive surface” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the surface of an electrode where an electrochemical reaction takes place. For example, a working electrode measures hydrogen peroxide produced by the enzyme-catalyzed reaction of the analyte detected, which reacts to create an electric current. Glucose analyte can be detected utilizing glucose oxidase, which produces H2O2 as a byproduct. H2O2 reacts with the surface of the working electrode, producing two protons (2H+), two electrons (2e−) and one molecule of oxygen (O2), which produces the electronic current being detected.
The term “electronic connection” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to any electronic connection known to those in the art. In one exemplary embodiment, a connection is between the sensing region electrodes and the electronic circuitry of a device that provides electrical communication, such as mechanical (for example, pin and socket) or soldered electronic connections.
The term “host” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to mammals, particularly humans.
The term “host information” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to information related to the host, such as a patient using an integrated system of the preferred embodiments, such as but not limited to a continuous glucose sensor, a medicament delivery device, and/or receiving medicament therapy. In some embodiments, the medicament is insulin or another injectable diabetes medicament, such as but not limited to pramlintide, exenatide, amylin, glucagon, and the like. In some embodiments, host information includes but is not limited to information relating to the host and his/her therapy, such as but not limited to information used to identify the host (e.g., in a clinical setting), such as a host identification number and/or code, host physical characteristics, host health information (e.g., medical conditions, diseases, illnesses), host exercise information, a therapy protocol, such as but not limited to a medicament therapy protocol assigned to the host, including but not limited to one or more types of medicament the host is to receive and/or target glucose concentration(s), an alarm, an alert and/or an instruction.
The term “integrated,” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to united, bringing together processes or functions.
The term “interrogate,” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to give or send out a signal to (e.g., as a transponder) for triggering an appropriate response to obtain data or information from (a device, database, etc.).
The term “medicament therapy,” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to an identity, an amount and/or schedule of a medicament to be delivered to the host. In some embodiments, the medicament is a diabetes-treating medicament formulated for injection, such as but not limited to insulin, pramlintide, exenatide, amylin, glucagon, derivatives thereof, and the like. In other embodiments, the medicament is one for treating another disease and is formulated for injection.
The terms “operatively connected,” “operatively linked,” “operably connected,” and “operably linked” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to one or more components linked to one or more other components. The terms can refer to a mechanical connection, an electrical connection, or a connection that allows transmission of signals between the components (e.g., including a wireless connection). For example, one or more electrodes can be used to detect the amount of analyte in a sample and to convert that information into a signal; the signal can then be transmitted to a circuit. In such an example, the electrode is “operably linked” to the electronic circuitry.
The terms “processor module” and “processor” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to a computer system, state machine, processor, or the like designed to perform arithmetic or logic operations using logic circuitry that responds to and processes the basic instructions that drive a computer. In some embodiments, the term processor includes storage, e.g., ROM and RAM.
The term “range,” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a sequence, series, or scale between limits (e.g., maximum and minimum values). For example, a range of glucose concentrations can include glucose concentrations from 60 mg/dl to 200 mg/dl. In another example, a range of medicament delivery rates can include rates from about 0.01 U/hr to about 40 U/hr. In some embodiments, a range is a single value.
The terms “sensor,” “sensing region” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to the component or region of a device by which an analyte can be quantified.
The terms “smoothing” and “filtering” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to modification of a set of data to make it smoother and more continuous or to remove or diminish outlying points, for example, by performing a moving average.
The term “single point glucose monitor” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a device that can be used to measure a glucose concentration within a host at a single point in time, for example, a finger stick blood glucose meter. It should be understood that single point glucose monitors can measure multiple samples (for example, blood or interstitial fluid); however only one sample is measured at a time and typically requires some user initiation and/or interaction.
The term “target range,” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a range of glucose concentrations within which a host is to try to maintain his blood sugar. In general, a target range is a range of glucose concentrations considered to be euglycemic. Euglycemic glucose concentrations are discussed in detail in the section entitled “Programming and Processing.”
The term “therapy instruction,” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to an instruction to a medicament delivery device, such as a medicament injection pen or and medicament pump, to deliver a medicament therapy to a host, including but not limited to an amount of medicament to be delivered and/or a time of medicament delivery.
The terms “substantial” and “substantially” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to a sufficient amount that provides a desired function. In some embodiments, the term “substantially” includes an amount greater than 50 percent, an amount greater than 60 percent, an amount greater than 70 percent, an amount greater than 80 percent, and/or an amount greater than 90 percent. In some embodiments, the integrated electronics are configured to display a representation of medicament delivery on the user interface substantially adjacent to substantially time-corresponding sensor data, wherein “substantially adjacent” refers to a location sufficiently near by or close to the relevant data to create an association, for example.
Overview
A receiver 14 is provided that receives and processes the raw data stream, including calibrating, validating, and displaying meaningful glucose values to a host, such as described in more detail below. Although the receiver is shown as wirelessly communicating with the sensor, the receiver can be physically connected to the sensor and/or sensor electronics and/or housed within the medicament delivery device and/or single point monitor, thereby removing the wireless connection. A medicament delivery device 16 is further provided as a part of the integrated system 10. In some preferred embodiments, the medicament delivery device 16 is a medicament injection pen or jet-type injector for injecting a medicament (e.g., insulin). In some preferred embodiments, the medicament delivery device 16 is a medicament delivery pump, also referred to as an infusion pump, for medicament infusion (e.g., insulin). In some embodiments, both a hand-held medicament injection pen and an infusion pump are used to deliver one or more types of medicament to the host, as described elsewhere herein in greater detail. In some embodiments, an optional single point glucose monitor 18 is further provided as a part of the integrated system 10, for example a self-monitoring blood glucose meter (SMBG), non-invasive glucose meter, or the like, integrated into a receiver housing and/or a medicament delivery device housing.
Conventionally, each of these devices separately provides valuable information and/or services to diabetic patients. Thus, a typical diabetic patient has numerous individual devices, which they track and consider separately. In some cases, the amount of information provided by these individual devices may require complex understanding of the nuances and implications of each device, for example types and amounts of medicament (e.g., insulin) to deliver. Typically, each individual device is a silo of information that functions as well as the data provided therein, therefore when the devices are able to communicate with each other, enhanced functionality and safety can be realized. For example, when a continuous glucose monitor functions alone (for example, without data other than that which was gathered by the device), sudden changes in glucose level are tracked, but may not be fully understood, predicted, preempted, or otherwise considered in the processing of the sensor data; however, when the continuous glucose sensor is provided with information about time, amount, and type of medicament injections, calories consumed, time or day, meal time, or like, more meaningful, accurate and useful glucose estimation, prediction, and other such processing can be provided, such as described in more detail herein. By integrating these devices, the information from each component can be leveraged to increase the intelligence, benefit provided, convenience, safety, and functionality of the continuous glucose sensor and the other integrated components. Therefore, it would be advantageous to provide a device that aids the diabetic patient in integrating these individual devices in the treatment of his/her disease.
Sensor
The preferred embodiments relate to the use of an analyte sensor 12 that measures a concentration of analyte of interest or a substance indicative of the concentration or presence of the analyte. In some embodiments, the sensor is a continuous device, for example a subcutaneous, transdermal (e.g., transcutaneous), or intravascular device. The analyte sensor can use any method of analyte-sensing, including enzymatic, chemical, physical, electrochemical, spectrophotometric, polarimetric, calorimetric, radiometric, or the like.
The analyte sensor uses any method, including invasive, minimally invasive, and non-invasive sensing techniques, to provide an output signal indicative of the concentration of the analyte of interest. The output signal, which is associated with the analyte concentration of the host, is typically a raw signal that is used to provide a useful value of the analyte of interest to a user, such as a patient or physician, who can be using the device. Accordingly, appropriate smoothing, calibration, and/or evaluation methods can be applied to the signal and/or system as a whole to provide relevant and acceptable estimated analyte data to the user.
Glucose+O2→Gluconate+H2O2
The change in H2O2 can be monitored to determine glucose concentration because for each glucose molecule metabolized, there is a proportional change in the product H2O2. Oxidation of H2O2 by the working electrode is balanced by reduction of ambient oxygen, enzyme generated H2O2, or other reducible species at the counter electrode. The H2O2 produced from the glucose oxidase reaction further reacts at the surface of working electrode and produces two protons (2H+), two electrons (2e−), and one oxygen molecule (O2). In an alternative embodiment, the continuous glucose sensor comprises a continuous glucose sensor such as described with reference to U.S. Pat. No. 6,579,690 to Bonnecaze et al. or U.S. Pat. No. 6,484,046 to Say et al. In another alternative embodiment, the continuous glucose sensor comprises a refillable subcutaneous sensor such as described with reference to U.S. Pat. No. 6,512,939 to Colvin et al. All of the above patents and/or patent applications are incorporated in their entirety herein by reference.
The methods and devices of preferred embodiments can be employed in a continuous glucose sensor that measures a concentration of glucose or a substance indicative of a concentration or a presence of glucose. However, certain methods and devices of preferred embodiments are also suitable for use in connection with non-continuous (e.g., single point measurement or finger stick) monitors, such as the OneTouch® system manufactured by LifeScan, Inc., or monitors as disclosed in U.S. Pat. Nos. 5,418,142; 5,515,170; 5,526,120; 5,922,530; 5,968,836; and 6,335,203. In some embodiments, the device can analyze a plurality of intermittent biological samples, such as blood, interstitial fluid, or the like. The glucose sensor can use any method of glucose-measurement, including colorimetric, enzymatic, chemical, physical, electrochemical, spectrophotometric, polarimetric, calorimetric, radiometric, or the like. In alternative embodiments, the sensor can be any sensor capable of determining the level of an analyte in the body, for example oxygen, lactase, hormones, cholesterol, medicaments, viruses, or the like.
Although a few exemplary embodiments of continuous glucose sensors are illustrated and described herein, it should be understood that the disclosed embodiments are applicable to any device capable of single analyte, substantially continual or continuous measurement of a concentration of analyte of interest and providing an output signal that represents the concentration of that analyte.
Medicament Delivery Device
Some preferred embodiments provide an integrated system 10, which includes a medicament delivery device 16 for administering a medicament to a host 8. An integrated medicament delivery device can be designed for bolus injection, continuous injection, inhalation, transdermal absorption, other method for administering medicament, or any combinations thereof. The term medicament includes any substance used in therapy for a host 8 using the system 10, for example, insulin, pramlintide, exenatide, amylin, glucagon, derivatives thereof, and the like. PCT International Publication No. WO02/43566 describes glucose, glucagon, and vitamins A, C, or D that can be used with the preferred embodiments. U.S. Pat. Nos. 6,051,551 and 6,024,090 describe types of insulin suitable for inhalation that can be used with the preferred embodiments. U.S. Pat. Nos. 5,234,906, 6,319,893, and European Pat. No. 760677 describe various derivatives of glucagon that can be used with the preferred embodiments. U.S. Pat. No. 6,653,332 describes a combination therapy that can be used with the preferred embodiments. U.S. Pat. No. 6,471,689 and PCT International Publication No. WO81/01794 describe insulins useful for delivery pumps that can be used with the preferred embodiments. U.S. Pat. No. 5,226,895 describes a method of providing more than one type of insulin that can be used with the preferred embodiments. All of the above patents and publications are incorporated herein by reference in their entirety and can be useful as the medicament(s) in the preferred embodiments.
In some embodiments, the medicament delivery device is configured for injection and/or infusion of the medicament. For example, in some embodiments, a medicament delivery device is an infusion pump, such as but not limited to a bedside or a portable infusion pump. In one embodiment, the infusion is a portable medicament pump, as described elsewhere herein. In one preferred embodiment, the medicament delivery device 16 is a medicament pump designed for basal and/or bolus infusion of medicament. The medicament pump of the preferred embodiments includes any portable or bedside (e.g., non-portable) infusion devices, such as is appreciated by one skilled in the art. A few examples of medicament infusion devices (e.g., pumps) that can be used with the preferred embodiments include U.S. Pat. Nos. 5,389,078, 6,471,689, 6,656,148, 6,749,587, 6,999,854, 7,060,059, 7,109,878, 7,267,665, 7,291,133, 7,311,691, 7,374,556, 7,303,549, PCT International Publication No. WO 81/01794, European Patent No. 1281351 and co-pending U.S. patent application Ser. No. 12/055,114, filed Mar. 25, 3008 and entitled “Analyte Sensor,” all of which are incorporated herein by reference in their entirety.
In some embodiments, a medicament delivery device 16 is a hand-held medicament injection pen, such as but not limited to a syringe, medicament injection pen or a pneumatic injection device. In some embodiments, the hand-held medicament injection pen is configured for single-use (e.g., disposed of after use). In other embodiments, the hand-held medicament injection pen is a multi-use injection device having single-use, disposable parts. For example, a medicament injection pen can be configured to use single-use, disposable needles that are thrown away after one use. In one exemplary embodiment, the medicament injection pen is configured for use with a cartridge of a plurality of single-use, disposable needles, such that each used needle can be changed and/or removed, such as but not limited to by ejecting a used needle and installing an unused (e.g., sterile) needle. In still other embodiments, the hand-held medicament injection pen is a multi-use device configured to sequentially deliver (e.g., aseptically) medicament doses to each of a plurality of hosts. For example, in one embodiment, the hand-held medicament injection pen is a pneumatic injection device.
In one preferred embodiment, the integrated medicament delivery device 16 is a hand-held medicament injection pen (e.g., insulin pen) designed for bolus injection. The hand-held medicament injection pen of the preferred embodiments includes any pen-type injector, such as is appreciated by one skilled in the art. A few examples of a hand-held medicament injection pens that can be used with the preferred embodiments include U.S. Pat. Nos. 4,865,591, 5,104,380, 5,226,895, 5,308,340, 5,383,865, 5,536,249, 6,192,891, 7,169,132, 7,195,616, 7,291,132, U.S. Patent Publication No. US-2001-0051792-A1, U.S. Patent Publication No. US-2007-0061674-A1 and U.S. Patent Publication No. US-2008-0015511-A1, each of which is incorporated herein by reference in their entirety.
In some embodiments, a medicament delivery device (e.g., hand-held medicament injection pen) is provided, which includes a processor and a wired or wireless connection to a receiver, which are described in more detail elsewhere herein. In some embodiments, the device includes programming that receives instructions from the receiver 14 regarding type and amount of medicament to administer. In some embodiments, wherein the medicament delivery device is an injection device (e.g., a pen) that includes more than one type of medicament, the receiver provides the necessary instructions to determine which type or types of medicament to administer, and can provide instructions necessary for mixing the one or more medicaments. In some embodiments, the receiver provides the glucose trend information (for example, concentration, rate-of-change, acceleration, or other user input information) and the injection device includes programming necessary to determine appropriate medicament delivery. In some embodiments, the receiver, user interface, and/or integrated electronics are incorporated into and/or integral with the pen. However, any of the electronics (including hardware, firmware and/or software/programming) associated with the receiver, medicament delivery device and/or optional single point monitor can be located in any one or a combination of the receiver, medicament delivery device and/or optional single point monitor.
In some embodiments, the receiver and/or hand-held medicament injection pen is configured to calculate medicament usage and/or a remaining on-board medicament amount. In some embodiments, the integrated electronics (e.g., in the receiver and/or medicament delivery device) are configured to receive sensor data and calculate an amount of time remaining with the current medicament on-board the delivery device (e.g., the amount of medicament within the medicament device's reservoir/cartridge) based on historic, current, estimated, and/or predicted glucose data. In some embodiments, integrated electronics include electronics associated with a receiver and a pen, which can be configured for two-way communication there between, such as described in more detail elsewhere herein.
In some embodiments, the pen includes programming to send information regarding the amount, type, and time of medicament delivery administered to the receiver 14 for processing. The receiver 14 can use this information received from the pen, in combination with the continuous glucose data obtained from the sensor, to monitor and determine the host's glucose patterns, such as to measure his response to each medicament delivery. Knowing the host's individual response to each type and amount of medicament delivery can be useful in adjusting or optimizing the host's therapy. It is noted that individual metabolic profiles (for example, medicament sensitivity) are variable from host to host and time to time. While not wishing to be bound by theory, it is believed that once the receiver has learned (or as the receiver continuously learns) the individual's metabolic patterns, including glucose trends and associated medicament deliveries, the receiver can be programmed to adjust and optimize the therapy recommendations for the host's individual physiology to maintain their glucose levels within a desired target range. In some embodiments, the receiver (including user interface and integrated electronics) is integral with and/or incorporated into the pen.
In some embodiments, the receiver includes algorithms that use parameters provided by the continuous glucose sensor, such as glucose concentration, rate-of-change of the glucose concentration, and acceleration of the glucose concentration to more particularly determine the type, amount, and time of medicament administration, can be applied to the integrated system 10, such as described herein. However, the integrated system additionally provides convenience by automation (for example, data transfer through operable connection) and reduced opportunity for human error than may be experienced with the conventional therapy.
In some embodiments, integrated electronics, which are described in more detail elsewhere herein, include programming that requires at least one of the receiver 14, the single point glucose monitor 18, and the hand-held medicament injection pen 16 to be validated or confirmed by another of the components to provide a fail safe accuracy check; in these embodiments, the validation includes algorithms programmed into any one or more of the components. In some embodiments, the integrated electronics include programming that requires at least one of the receiver 14 and the hand-held medicament injection pen 16 (e.g., hand-held medicament injection pen such as a pen) to be validated or confirmed by a human (for example, to confirm the amount and/or type of medicament). In these embodiments, validation provides a means by which the receiver can be used adjunctively, when the host or doctor would like to have more control over the host's therapy decisions, for example. See
In some embodiments, the hand-held medicament injection pen 16 includes a motor configured for electronic control of at least a portion of the hand-held medicament injection pen. In some embodiments, a motor is configured to automatically set an amount of medicament to be delivered to the host, such as but not limited to a medicament bolus amount, for example, using a step motor. In some embodiments, a motor is configured to control a rate of medicament injection into the host. In some embodiments, the integrated electronics (e.g., the receiver), described in more detail elsewhere herein, are configured to remotely control at least one motor, such as those described above. In some embodiments, the integrated electronics are configured to provide a recommended therapy amount (e.g., medicament bolus amount), which can be communicated to the hand-held medicament injection pen (or which can be integral with the pen); in some such embodiments, the integrated electronics and/or hand-held medicament injection pen electronics are configured to automatically set the bolus amount using the motor (e.g., a step motor), however, in some embodiments, a validation step can be required. In some embodiments, the integrated electronics and/or the hand-held medicament injection pen electronics are configured to automatically inject the medicament at a controlled speed and/or rate. Preferably, the system is configured to inject the medicament at an optimum rate to reduce tissue damage and optimize the medicament absorption, which are believed to enable the effectiveness of the medicament to be more consistent over time. In some embodiments, actuation (or control) of setting a bolus amount(s) and/or injection of the medicament is controlled by a receiver operably connected to the hand-held medicament injection pen, for example by actuation (or selection) of a button, a user selectable menu item, or on a touch screen. In alternative embodiments, actuation (or control) of setting a bolus amount(s) and/or injection of the medicament is controlled by the hand-held medicament injection pen, for example by actuation (or selection) of a button, a user selectable menu item, or on a touch screen.
Although much of this description and the exemplary embodiments are drawn to an integrated hand-held medicament injection pen, the integration concepts described herein are applicable to a variety of other medicament devices, including inhalation devices, transdermal patches, and the like.
Receiver
The preferred embodiments provide an integrated system 10, which includes a receiver 14 that receives and processes the raw data stream from the continuous glucose sensor 12. The receiver can perform all or some of the following operations: a calibration, converting sensor data, updating the calibration, evaluating received reference and sensor data, evaluating the calibration for the analyte sensor, validating received reference and sensor data, displaying a meaningful glucose value to a user, calculating therapy recommendations, validating recommended therapy, adaptive programming for learning individual metabolic patterns, and prediction of glucose values, for example. Some complementary systems and methods associated with the receiver are described in more detail with reference to co-pending U.S. Patent Publication No. US-2005-0027463-A1, which is incorporated herein by reference in its entirety.
In some embodiments, the receiver 14 is a PDA- or pager-sized housing, for example, and comprises a user interface 96 that has a plurality of buttons 108 and a liquid crystal display (LCD) screen, which can include a backlight. In some embodiments, the receiver can take other forms, for example a hand-held medicament injection pen case, a hand-held medicament injection pen kit, a hand-held medicament injection pen housing, a medicament delivery device housing and/or receiver, a computer, a server, a cell phone, a personal digital assistant (PDA), or other such device capable of receiving and processing the data such as described herein. Additionally or alternatively, the user interface can include a keyboard, a speaker, a scroll wheel, and/or a vibrator such as described with reference to
In some embodiments, the receiver is integral with (physically connected to) the sensor. In some embodiments, the receiver 14 is integrally formed with a medicament delivery device 16 and/or a single point glucose monitor 18. In some embodiments, the receiver 14, the medicament delivery device 16 and/or a single point glucose monitor 18 are detachably connected, so that one or more of the components can be individually detached and attached at the user's convenience. In some embodiments, the receiver 14, the medicament delivery device 16, and/or a single point glucose monitor 18 are separate from, detachably connectable to, or integral with each other; and one or more of the components are operably connected through a wired or wireless connection, allowing data transfer and thus integration between the components. In some embodiments, the receiver 14 and the medicament delivery device 16 (e.g., a hand-held medicament injection pen) each comprise mutually engaging electrical contacts, which are configured to allow communication between the hand-held medicament injection pen and the receiver. In a further embodiment, the integrated system is configured to initiate communication between the receiver and the hand-held medicament injection pen, in response to engagement of the electrical contacts. Upon engagement of the electrical contacts, the system is configured to communicate medicament delivery data between the receiver and the hand-held medicament injection pen.
In some embodiments, the receiver 14 includes a housing and a user interface 196 located on the receiver housing. In some embodiments, a hand-held medicament injection pen is provided and includes a housing, wherein the user interface 196 is located on the hand-held medicament injection pen housing. In some embodiments, a housing is provided, wherein the housing is configured to receive a hand-held medicament injection pen and wherein the housing includes a user interface 196. In some embodiments, a hand-held medicament injection pen kit is provided, wherein the hand-held medicament injection pen kit is configured to receive the hand-held medicament injection pen (and can be configured to receive other accessories, such as medicament cartridges, needles, and the like), wherein the user interface 196 is located on the hand-held medicament injection pen kit. In some embodiments, a receiver, integrated electronics, and a hand-held medicament injection pen are integrally formed into one housing.
In some alternative embodiments, a flexible LED screen is provided as a user interface (or a component thereof), wherein the flexible LED screen is physically located on at least one of the receiver and the hand-held medicament injection pen and/or operably connected to at least one of the receiver and the hand-held medicament injection pen, and wherein the integrated electronics are configured to display sensor data on the flexible LED screen.
In some alternative embodiments, an image projection system is provided, wherein the integrated electronics are configured to project data onto a surface (e.g., wall, skin, and the like) as a user interface (or a component thereof). For example, the image projection system can be provided on the receiver, hand-held medicament injection pen, and/or any housing associated therewith, wherein the image projection system is configured to project an image such as alphanumeric data, icons, pictures, and the like, similar to that conventionally seen on an LCD screen, for example. In use, the image can be projected automatically or in response to actuation by a user, wherein the image includes data such as glucose concentration and/or glucose trend, therapy recommendations, event markers, and the like.
Single Point Glucose Monitor
In some embodiments, the integrated system is configured and arrange for operable communication with a single point glucose monitor 18, such as but not limited to a meter for measuring glucose within a biological sample, including a sensing region that has a sensing membrane impregnated with an enzyme, similar to the sensing membrane described with reference to U.S. Pat. Nos. 4,994,167 and 4,757,022, which are incorporated herein in their entirety by reference. In some embodiments, the single point glucose monitor includes a conventional finger stick device. However, in alternative embodiments, the single point glucose monitor can use other measurement techniques including enzymatic, chemical, physical, electrochemical, spectrophotometric, polarimetric, calorimetric, radiometric, and the like. In some embodiments, the single point glucose monitor is configured for wired or wireless communication with a component of the integrated system (e.g., automatic and/or semi-automatic communication), such as but not limited to the receiver. However, in other embodiments, the single point glucose monitor is not configured for operable communication with the integrated system, such that the host must manually input the single point glucose monitor data (e.g., into the receiver). It is noted that the meter is optional in that a separate meter can be used and the glucose data downloaded or input by a user into the receiver.
Integrated System Design
In preferred embodiments, an integrated system 10 includes a receiver 14 (e.g., including user interface and integrated electronics), a medicament delivery device 16, and optionally a single point glucose meter 18, wherein the integrated electronics are configured to process and display continuous glucose data from a continuous glucose sensor 12, including trend graphs, glucose concentration, rate of change information (e.g., directional arrow(s)), high and low glucose alarms, and/or the like, on the user interface. In some embodiments, the integrated electronics are configured to process and display information from the medicament delivery device (e.g., hand-held medicament injection pen). The user interface and integrated electronics can be included in and/or on the hand-held medicament injection pen, a hand-held medicament injection pen kit, the receiver, housings associated therewith, and/or combinations thereof.
In some embodiments, an integrated hand-held medicament injection pen kit is provided, including for example, a case configured to hold a hand-held medicament injection pen, one or more medicament cartridges, one or more needles, etc., as is appreciated by one skilled in the art. In some embodiments, the integrated hand-held medicament injection pen kit additionally includes a user interface (e.g., an LCD screen), for example on an outside (or an inside) of the case, configured to display continuous glucose data such as described elsewhere herein. In these embodiments, the kit includes electronics, operatively connected to the user interface, including programming configured to perform all or some of the following operations: calibrating and displaying the continuous glucose sensor data, calculating therapy recommendations (e.g., using a bolus-type calculator), validating (e.g., by a user) recommended therapy, and adaptive algorithms configured for learning individual metabolic patterns (e.g., response to therapies administered by the pen), for example.
In one exemplary embodiment the integrated system 10 is configured and arranged for monitoring and treating diabetes, and includes a medicament delivery device 16 configured and arranged for injecting an amount of medicament into a host 8 and an integrated receiver 14 configured and arranged to receive sensor data from a continuous glucose sensor 12, wherein the sensor data is indicative of a glucose concentration of the host in vivo, wherein the integrated receiver comprises electronics configured and arranged to process the sensor data. In some embodiments, the electronics are further configured to calculate an amount of medicament therapy (e.g., a deliverable medicament dose, such as but not limited to a bolus dose to be delivered to the host) and/or a time of medicament therapy delivery. As is appreciated by one skilled in the art, the integrated electronics can be located entirely within the receiver 14, or one or more portions of the electronics can be located with the continuous glucose sensor 12 and/or the medicament delivery device 16 or combinations thereof. Similarly, in some embodiments, the receiver 14 (including integrated electronics) is a separate unit from the sensor 12 and/or hand-held medicament injection pen 16, while in other embodiments, the receiver (in part or in whole) can be integrated with sensor and/or hand-held medicament injection pen, as is described in greater detail herein. For example, in some embodiments, the integrated receiver includes a housing and the hand-held medicament injection pen is integrally formed with the housing.
In another exemplary embodiment, an integrated system 10 for monitoring and treating diabetes is provided, the system comprising a receiver 14 configured and arranged to receive sensor data from an operably connected continuous glucose sensor 12, wherein the continuous glucose sensor is configured and arranged to generate sensor data associated with a glucose concentration of a host; integrated electronics configured to process the sensor data and to generate a medicament therapy (e.g., insulin therapy, pramlintide therapy, exenatide therapy, combinations thereof), and an integrated hand-held medicament injection pen 16 for injecting an amount of the corresponding medicament into the host based at least in part on the medicament therapy. The medicament therapy includes but is not limited to a medicament identity, an amount of medicament therapy and/or a time of medicament therapy delivery. In some further embodiments, the receiver and the hand-held medicament injection pen are integrally formed. However, in some other further embodiments, the receiver and hand-held medicament injection pen are detachably connectable, as described elsewhere herein.
In a further embodiment of a detachably connectable hand-held medicament injection pen 16 (e.g., an insulin, pramlintide or exenatide pen) and receiver 14 housing, the system 10 is configured to initiate communication between the hand-held medicament injection pen and the receiver in response to (detachable) connection of the hand-held medicament injection pen and the housing. For example, in some embodiments, the hand-held medicament injection pen and the housing can include mutually engaging contacts (e.g., electrical contacts) that mate (e.g., make an electrical connection) when the hand-held medicament injection pen is connected to the housing and initiate communication between the receiver and the hand-held medicament injection pen. Upon initiation of communication, the receiver and the hand-held medicament injection pen can transmit data. For example, an amount of medicament therapy (e.g., calculated by the integrated electronics), such as but not limited to a bolus medicament dose (e.g., an amount and type of medicament to be delivered), and a time of medicament therapy can be communicated to the hand-held medicament injection pen, such that the medicament therapy can be delivered to (e.g., injected into) the host. Similarly, the hand-held medicament injection pen can communicate information to the receiver, such as but not limited the amount of medicament delivered to the host, the time the medicament was delivered, the amount of medicament remaining in the hand-held medicament injection pen to be used, the type of medicament contained in the hand-held medicament injection pen, and the like. In some embodiments, wireless communication between the hand-held medicament injection pen and the receiver can be initiated by engagement of the contacts or by host actuation of a switch, button, or the like. In some embodiments, communication between the hand-held medicament injection pen and the receiver is initiated after connection by actuation of a switch, button or the like, such as by the host or by attachment of the two devices. For example, in one embodiment, when the hand-held medicament injection pen is inserted into the receiver housing, an external surface of the hand-held medicament injection pen comes into an adjacent parallel orientation with respect to an internal surface of the receiver housing, which results in depression of a communication actuation button on the interior of the receiver housing. One skilled in the art can appreciate alternative configurations.
In a further embodiment, the integrated system includes a user interface 196, which is configured an arranged for input of host information and/or output of sensor data and/or medicament delivery data, such as, for example, the LCD screens 106 illustrated in
In preferred embodiments, the integrated system is configured and arranged to require validation prior to injection an amount of medicament into the host. For example, in some embodiments, the integrated system can prompt the user (e.g., a caretaker, such as a nurse or doctor, or the host himself) to validate (e.g., verify) via the user interface (e.g., via the speaker 100, vibrator 102 or screen) the host ID, the host's assigned medicament therapy protocol and/or they type of medicament on board the hand-held medicament injection pen. Additionally, the integrated system can display information to the nurse, such as the host ID, sensor data received from the continuous glucose sensor, processed sensor data, medicament delivery data (e.g., data related to a medicament therapy to be delivered to the host), and the like.
In some embodiments, such as the embodiment illustrated in
In the illustrated embodiment (
In some embodiments, such as the illustrated embodiment
Integrated Electronics
In some embodiments, the receiver includes a housing with integrated electronics located within the receiver housing. In some embodiments, a hand-held medicament injection pen comprises a housing, and wherein the integrated electronics are located within the hand-held medicament injection pen housing. In some embodiments, a housing is configured to receive a hand-held medicament injection pen, wherein the housing includes integrated electronics therein. In some embodiments, a hand-held medicament injection pen kit is provided, wherein the hand-held medicament injection pen kit is configured to receive the hand-held medicament injection pen (and can be configured to receive other accessories, such as medicament cartridges, needles, and the like), wherein the integrated electronics are located within the hand-held medicament injection pen kit. In some embodiments, a receiver, integrated electronics and hand-held medicament injection pen are integrally formed into one housing.
A quartz crystal 176 is operably connected to an RF transceiver 178 that together function to receive and synchronize data streams via an antenna 180 (for example, transmission 140). Once received, a processor module 182 processes the signals, such as described below. However other methods of wired or wireless communication can be substituted for the RF communication described herein.
The processor (or processor module) 182 is the central control unit that performs the processing, such as storing data, analyzing a continuous glucose sensor data stream, analyzing single point glucose values, accuracy checking, checking clinical acceptability, calibrating sensor data, downloading data, recommending therapy instructions, calculating medicament delivery amount, type and time, learning individual metabolic patterns, and controlling the user interface, by providing prompts, messages, warnings and alarms, and the like. The processor (or processor module) can include hardware and software that performs the processing described herein, including for example, read only memory (ROM), such as flash memory, provides permanent or semi-permanent storage of data, storing data such as sensor ID, receiver ID, and programming to process data streams (for example, programming for performing estimation and other algorithms described elsewhere herein), and random access memory (RAM) stores the system's cache memory and is helpful in data processing.
In some embodiments, the processor 182 monitors the continuous glucose sensor data stream 140 to determine a preferable time for capturing glucose concentration values, using the single point glucose monitor electronics 116 for calibration of the continuous sensor data stream. For example, when sensor glucose data (for example, observed from the data stream) changes too rapidly, a single point glucose monitor reading may not be sufficiently reliable for calibration during unstable glucose changes in the host; in contrast, when sensor glucose data are relatively stable (for example, relatively low rate of change), a single point glucose monitor reading can be taken for a reliable calibration. In some additional embodiments, the processor can prompt the user via the user interface to obtain a single point glucose value for calibration at predetermined intervals. In some additional embodiments, the user interface can prompt the user to obtain a single point glucose monitor value for calibration based upon certain events, such as meals, exercise, large excursions in glucose levels, faulty or interrupted data readings, and the like. In some embodiments, certain acceptability parameters can be set for reference values received from the single point glucose monitor. For example, in one embodiment, the receiver only accepts reference glucose data between about 40 and about 400 mg/dL.
In some embodiments, the processor 182 monitors the continuous glucose sensor data to determine a preferable time for medicament delivery, including type, amount, and time. In some embodiments, the processor is programmed to detect impending clinical risk and can request data input, a reference glucose value from the single point glucose monitor, and the like, in order to confirm a therapy recommendation. In some embodiments, the processor is programmed to process continuous glucose data and medicament therapies, to adaptively adjust to an individual's metabolic patterns. In some embodiments, the processor is programmed to project glucose trends based on data from the integrated system (for example, medicament delivery information, user input, and the like). In some embodiments, the processor is programmed to calibrate the continuous glucose sensor based on the integrated single point glucose monitor 18. Numerous other programming can be incorporated into the processor, as is appreciated by one skilled in the art, as is described in cited patents and patent applications here, and as is described with reference to flowcharts of
A battery 192 is operably connected to the processor 182 and provides power for the receiver. In one embodiment, the battery is a standard AAA alkaline battery, however any appropriately sized and powered battery can be used. In some embodiments, a plurality of batteries can be used to power the system. In some embodiments, a power port (not shown) is provided permit recharging of rechargeable batteries. A quartz crystal 194 is operably connected to the processor 182 and maintains system time for the computer system as a whole.
A PC communication (com) port 190 can be provided to enable communication with systems, for example, a serial communications port, allows for communicating with another computer system (for example, PC, PDA, server, or the like). In one exemplary embodiment, the receiver is configured to download historical data to a physician's PC for retrospective analysis by the physician. The PC communication port 190 can also be used to interface with other medical devices, for example pacemakers, implanted analyte sensor patches, infusion devices, telemetry devices, and the like.
A user interface 196 includes a keyboard 198, a speaker 100, a vibrator 102, a backlight 104, a liquid crystal display (LCD) 106, one or more buttons 108, and/or a scroll wheel 44 (shown in
The user interface 196, which is operably connected to the processor 182, serves to provide data input and output for both the continuous glucose sensor, the hand-held medicament injection pen, and/or for the single point glucose monitor. Data output includes a numeric estimated analyte value, an indication of directional trend of analyte concentration, a graphical representation of the measured analyte data over a period of time, alarms/alerts, therapy recommendations, actual therapy administered, event markers, and the like. In some embodiments, the integrated electronics are configured to display a representation of a target glucose value or target glucose range on the user interface. Some additional data representations are disclosed in Published U.S. Patent Application No. 2005-0203360, which is incorporated herein by reference in its entirety
In some embodiments, the integrated electronics are configured to display a representation of medicament delivery on the user interface adjacent to substantially time-corresponding sensor data, which is illustrated as “10U” and “7U” in
In some embodiments, the integrated electronics are configured to display glucose data on the user interface for 1 hour, 3 hours, 6 hours, 9 hours, 1 day, 3 days, 5 days, 7 days, 1 month, 3 months, year-to-date, 1 year, 2 years, 5 years, and the like for example, which provides the user with actual, averaged or estimated glucose values over that time period. In some embodiments, the integrated electronics are configured to display glucose trend data (e.g., charts or graphs) on the user interface, including a graphical representation of glucose values as they change over time. In some embodiments, the integrated electronics are configured to display comparison data for two periods (e.g., charts or graphs) on the user interface, including a trend-related finding between two specific periods of time. In some embodiments, the integrated electronics are configured to display modal day data (e.g., charts or graphs) on the user interface, including glucose summary data based on mealtimes. In some embodiments, the integrated electronics are configured to display modal week data (e.g., charts or graphs) on the user interface, including glucose summary data based on days of the week. In some embodiments, the integrated electronics are configured to display medicament dosage and effects data (e.g., charts or graphs) on the user interface, including medicament regimen information and changes in base medicament pattern. In some embodiments, the integrated electronics are configured to display hypoglycemia and hyperglycemia episode data (e.g., charts or graphs) on the user interface, including information regarding very low and very high glucose readings and/or glucose readings outside of a target range (which can be defined by the user in some embodiments). In some embodiments, the integrated electronics are configured to display rapid swings data (e.g., charts or graphs) on the user interface, including incidents of rapid swings between low and high blood glucose levels, which levels can be pre-programmed or settable by a user, for example.
In some embodiments, prompts or messages can be displayed on the user interface to convey information to the user, such as malfunction, outlier values, missed data transmissions, or the like, for the continuous glucose sensor. Additionally, prompts can be displayed to guide the user through calibration of the continuous glucose sensor. Even more, calibrated sensor glucose data can be displayed, which is described in more detail with reference to co-pending U.S. Patent Publication No. US-2005-0027463-A1 and U.S. Patent Publication No. US-2005-0203360-A1, each of which is incorporated herein by reference in their entirety.
In some embodiments, prompts or messages about the hand-held medicament injection pen can be displayed on the user interface to inform or confirm to the user type, amount, and time of medicament delivery. In some embodiments, the user interface provides historical data and analytes pattern information about the medicament delivery, and the host's metabolic response to that delivery, which may be useful to a patient or doctor in determining the level of effect of various medicaments.
Referring again to
In some embodiments, the processor module 112 comprises programming for processing the delivery information in combination with the continuous sensor information. In some alternative embodiments, the processor 182 comprises programming for processing the delivery information in combination with the continuous sensor information. In some embodiments, both processors 182 and 112 mutually process information related to each component.
In some embodiments, the hand-held medicament injection pen 16 further includes a user interface (not shown), which can include a display and/or buttons, for example. U.S. Pat. Nos. 6,192,891, 5,536,249, and 6,471,689 describe some examples of incorporation of a user interface into a hand-held medicament injection pen, as is appreciated by one skilled in the art.
Electronics 116 associated with the optional single point glucose monitor 18 are operably connected to the processor module 120 and include a potentiostat 118, in one embodiment, that measures a current flow produced at the working electrode when a biological sample is placed on the sensing membrane, such as described above.
Algorithms
In some embodiments, the therapy recommendations are displayed on a user interface (e.g., of an integrated housing) by representative icons, such as a syringe, a medicament pen, a medicament pump, an apple, orange juice, candy bar, or any icon representative of eating, drinking, or administering therapy, for example. Additionally or alternatively, the therapy recommendations can be preset alphanumeric messages, for example, “3.0 Units,” “consume carbohydrates,” “inject medicament” or “no therapy required”, and can include brand names, amounts, times, acronyms, codes and the like. In response to the recommendation of therapy displayed on the user interface, the user can confirm, modify, and/or cancel the recommended therapy, after which, the integrated hand-held medicament injection pen is configured to administer the appropriate therapy.
Although computing and processing of data is increasingly complex and reliable, there are circumstances in which the therapy recommendations necessitate human intervention. Some examples include when a user is about to alter his/her metabolic state, for example due to a behavior such as exercise, meal, pending manual medicament delivery, and the like. In such examples, the therapy recommendations determined by the programming may not have considered present or upcoming behavior, which can change the recommended therapy. Numerous such circumstances can occur, such that a validation can be advantageous in order to ensure that therapy recommendations are appropriately administered.
At block 232, a sensor data receiving module, also referred to as the sensor data module, receives sensor data (e.g., a data stream), including one or more time-spaced sensor data points, from a sensor via the receiver, which can be in wired or wireless communication with the sensor. The sensor data point(s) can be raw or smoothed, such as described in U.S. Patent Publication No. US-2005-0043598-A1, which is incorporated herein by reference in its entirety.
At block 234, a medicament calculation module, which is a part of a processor module, calculates a recommended medicament therapy based on the received sensor data. A variety of algorithms can be used to calculate a recommended therapy as is appreciated by one skilled in the art.
At block 236, a validation module, which is a part of the processor module, optionally validates the recommended therapy. The validation can include a request, from the user or another component of the integrated system 10, for additional data to ensure safe and accurate medicament recommendation or delivery. In some embodiments, the validation module requests and/or considers additional input, such as time of day, meals, sleep, calories, exercise, sickness, or the like. In some embodiments, the validation module is configured to request this information from the user. In some embodiments, the validation module is responsive to a user inputting such information.
In some embodiments, when the integrated system 10 is in a fully automated mode, the validation module is triggered when a potential risk is evaluated. For example, when a clinically risky discrepancy is evaluated, when the acceleration of the glucose value is changing or is low (indicative of a significant change in glucose trend), when it is near a normal meal, exercise or sleep time, when a medicament delivery is expected based on an individual's dosing patterns, and/or a variety of other such situations, wherein outside influences (meal time, exercise, regular medicament delivery, or the like) may require additional consideration in the therapy instructions. These conditions for triggering the validation module can be pre-programmed and/or can be learned over time, for example, as the processor module monitors and patterns an individual's behavior patterns.
In some embodiments, the system can be programmed to request additional information from the user regarding outside influences unknown to the integrated system prior to validation. For example, exercise, food or medicament intake, rest, and the like can be input into the receiver for incorporation into a parameter of the programming (algorithms) that processes the therapy recommendations.
At block 238, the receiver confirms and sends (for example, displays, transmits and/or delivers) the therapy recommendations. In some embodiments, the receiver can simply confirm and display the recommended therapy, for example. In some embodiments, the receiver can confirm, transmit, and optionally deliver instructions, to the delivery device, regarding the recommended therapy, for example. In some embodiments, the receiver can confirm and ensure the delivery of the recommended therapy, for example. In some embodiments, a glucose value measured by the single point glucose monitor is used to validate the therapy recommendation. It is noted that these examples are not meant to be limiting and there are a variety of methods by which the receiver can confirm, display, transmit, and/or deliver the recommended therapy, within the scope of the preferred embodiments.
In some embodiments, the system is configured with programming that provides therapy recommendations based on at least one of the following: glucose concentration, glucose trend information (e.g., rate of change, acceleration, etc), predicted glucose values, food intake (e.g., carbohydrates), exercise, illness, sleep, time of day, and the like. In one such example, the system is configured to request carbohydrate and exercise information, from the user, which is used in combination with data from the continuous glucose sensor to calculate a recommended dose of medicament for injection (e.g., with a hand-held medicament injection pen). In some embodiments, when the user's glucose concentration falls outside of a target range (or is predicted to fall outside of a target range), a recommended therapy is displayed on the user interface (e.g., of an integrated pen as described above), wherein the user has an opportunity to validate the therapy recommendation prior to injection of medicament. After the user has injected the medicament, the amount (and type, etc) of medicament, which is stored in the integrated system, is analyzed, in combination with the user's metabolic response (i.e., continuous glucose data) over a predetermine time period (e.g., minutes to hours after injection), to determine whether the amount (and/or type) of medicament administered affected a desired change (e.g., glucose concentration within a target range). Preferably, the system's programming is configured to process the medicament delivery information and the continuous glucose sensor information, to adaptively adjust therapy recommendations to an individual's metabolic patterns. Namely, with each medicament injection and/or over multiple medicament injections, the system is configured to adaptively learn how a user responds to various therapies and to adaptively adjust the calculation of therapy recommendations accordingly.
At block 242, a medicament data receiving module, which can be programmed within the receiver 14 and/or medicament delivery device 16, receives medicament delivery data, including time, amount, and/or type. In some embodiments, the user is prompted to input medicament delivery information into the user interface. In some embodiments, the medicament delivery device 16 sends the medicament delivery data to the medicament data-receiving module.
At block 244, a sensor data receiving module, also referred to as the sensor data module, receives sensor data (e.g., a data stream), including one or more time-spaced sensor data points, from a sensor via the receiver, which can be in wired or wireless communication with the sensor.
At block 246, the processor module, which can be programmed into the receiver 14 and/or the delivery device 16, is programmed to monitor the sensor data from the sensor data module 242 and medicament delivery data from the medicament delivery module 244 to determine an individual's metabolic profile, including their response to various times, amounts, and/or types of medicaments. The processor module can use any pattern recognition-type algorithm, as is appreciated by one skilled in the art, to quantify the individual's metabolic profile.
At block 248, a medicament calculation module, which is a part of a processor module, calculates the recommended medicament based on the sensor glucose data, medicament delivery data, and/or the host's individual's metabolic profile. In some embodiments, the recommended therapy is validated such as described with reference to
At block 250, the process of monitoring and evaluation a host's metabolic profile is repeated with each receipt of new medicament delivery data, wherein the processor monitors the sensor data and the associated medicament delivery data to determine the individual's metabolic response, in order to adaptively adjust to newly determined metabolic profile or patterns, if necessary. This process can be continuous throughout the life of the integrated system, can be initiated based on conditions met by the continuous glucose sensor, can be triggered by a patient or doctor, and/or can be provided during a start-up or learning phase.
While not wishing to be bound by theory, it is believed that by adaptively adjusting the medicament delivery based on an individual's metabolic profile, including response to medicaments, improved long-term patient care and overall health can be achieved.
Integrated Systems for Clinical Settings
After receiving the medicament therapy instruction, the caretaker can deliver the medicament dose to the patient, simply by actuating the medicament injection pen. As shown in
In preferred embodiments, the processor module 182 includes an input module configured for the input of host information and/or a therapy instruction. Preferably, the device is configured and arranged to be programmed (e.g., operated) by an external programmer, such as a caretaker. Such information can be input into the device when the continuous glucose sensor 12 is implanted in the host. For example, in some embodiments, the input module is configured to receive information from a user interface, a hand-held medicament injection pen, an infusion pump, a patient monitor, a single-point glucose monitor, a receiver, and the like. In some embodiments, the information can be input via a user interface incorporated into the continuous glucose sensor or via the hand-held medicament injection pen, which can include a user interface. In other embodiments, the information can be input via a tertiary device having a user interface and configured for communication with the communication module, such as but not limited to a computer, patient monitor, PDA and the like.
In preferred embodiments, host information that can be input via an input module associated with the continuous glucose sensor and/or the hand-held medicament injection pen, wherein the host information includes but is not limited to a host ID, such as a unique identifying code assigned to a patient, host physical characteristics, a type of medicament to be delivered to the host, a therapy protocol assigned to the host, and the like. A therapy instruction includes but is not limited to selection of a therapy protocol and/or portions thereof, including but not limited to a target host blood glucose concentration and/or range of concentrations, selection of an alert to be sounded if the host meets a predetermined criterion, and the like. In preferred embodiments, the therapy instruction comprises at least one of a type of medicament, a medicament dose, and a delivery time. The integrated electronics are further configured and arranged to process host information and/or a therapy instruction. For example, the integrated electronics can process the continuous glucose sensor data in the context of a selected protocol, such that medicament therapies are calculated to maintain the host within a target blood glucose concentration range (e.g., 100-140 mg/dl blood glucose), for example. In preferred embodiments, the device includes a display module configured and arranged for display of the host information, sensor data, the therapy instruction, the deliverable medicament dose, an alert and/or an alarm.
In some embodiments, the system is configured for communication with a data repository system and/or device (e.g., portable and/or remotely located) configured to receive host information, sensor data, the therapy instruction, the deliverable medicament dose, an alert, an alarm, a predictive alarm, and the like. For example, in some embodiments, the communication module is configured to transmit information related to the host and his/her treatment to a data repository that records and tracks the host's condition and/or enters the data into the host's patient chart. For example, the data can be electronically entered into the host's patient chart remotely, such as in medical records. In another embodiment, the information can be monitored remotely by the patient's physician using a data repository device integrated into a display device, such as a personal computer, cell phone, PDA and the like, which enables the physician to receive predictive alarms of upcoming problems/events or alarms/alerts related to the host's current physical state. Similarly, when the physician visits the host, he can use a portable data repository to collect pertinent data from the continuous glucose sensor. In one exemplary embodiment, the continuous glucose sensor is configured to communicate data and information related to the medicament therapy to a separate and/or remote data repository, for example, wherein the sensor is configured to transmit this information to a remote monitor carried by the physician or at the nurse's station, or to a remote location (e.g., medical records) for storage and/or monitoring. In another exemplary embodiment, the hand-held medicament injection pen (e.g., insulin pen) is configured to communicate data received from the continuous glucose sensor (e.g., via the communication module) and information related to medicament therapy delivered to the host to the separate and/or remote data repository, for example, by transmitting this information to a remote monitor carried by the physician or at the nurse's station, or to a remote location (e.g., medical records) for storage and/or monitoring.
As shown in
In one embodiment, the communication module 1700, which can be integrally formed with the hand-held medicament injection pen or in wired or wireless communication therewith or detachably connected to the hand-held medicament injection pen, is configured to receive information from an operably connected continuous glucose sensor when the hand-held medicament injection pen interrogates it. The hand-held medicament injection pen and the continuous glucose sensor can be operably connected using any method known in the art, such as but not limited to by wired and/or wireless communication. In one embodiment, the caretaker can simply hold the hand-held medicament injection pen within a predetermined communication range, such that the hand-held medicament injection pen and continuous glucose sensor can communicate with each other by wireless communication, such as RF, IR, Bluetooth, and the like. In another embodiment, the system is configured such that the hand-held medicament injection pen can communicate with the sensor via inductive coupling communication when the caretaker holds the pen adjacent to the sensor or touches the pen to the sensor. A variety of alternative useful communication methodologies are appreciated by one skilled in the art.
In some embodiments, the hand-held medicament injection pen 16 includes a processor module 182 that includes programming for calculating the medicament therapy based at least in part on the sensor data, as described elsewhere herein. For example, the programming directs use of algorithms for calculating an amount of medicament to be delivered to the host, based at least in part on the sensor data received from the host's continuous glucose sensor. In preferred embodiments, the processor module calculates dosing information (e.g., a type of medicament to be delivered, an amount of medicament to be delivered and a time of delivery, and/or the like) using one or more algorithms described elsewhere herein. While the embodiment shown in
In some embodiments, the processor module 182 is configured for validation of the dosing information. For example, the processor module can request validation of a calculated medicament dose and/or identification of the host prior to injection of the dose into the host. In some embodiments, the system is configured to disallow/prevent injection unless at least the dose (e.g., medicament identity, amount of medicament to be delivered and/or time of delivery) and/or host information has been validated. For example, the hand-held medicament injection pen can interrogate a first continuous glucose sensor, calculate a medicament dose and request validation prior to allowing the caretaker to inject the calculated dose into the host. The caretaker can move on to a second host and repeat the process. Accordingly, accidental injection (e.g., of one host's medicament dose into another host) can be avoided.
Preferably, the hand-held medicament injection pen includes a user interface, such as that described with reference to
In some embodiments, the hand-held medicament injection pen includes a communication module 1700 configured to communicate treatment information (e.g., host information, continuous glucose information, the therapy protocol, dosing information, medicament type, medicament delivered and time of medicament delivery) to a central monitor. A central monitor can be a device configured to receive information communicated from one or more hand-held medicament injection pens, such as a computerized device including a user interface for display of received information and optionally for communicating commands/instructions back to one or more hand-held medicament injection pens. In some embodiments, a central monitor can include one or more intermediate receiving devices, located about the hospital ward or at the nurses' station, and configured to receive the communicated information wirelessly, and then to relay the communicated information to the central monitor via a wired and/or wireless connection. In some embodiments, the system can be configured such that when a caretaker moves within a range of the intermediate receiving device and/or the central monitor itself, the receiving device/central monitor recognizes the hand-held medicament injection pen and triggers the pen to download information related to treatment of the host(s). Alternatively, recognition of the receiving device/central monitor by the hand-held medicament injection pen triggers the information download. The central monitor can be located in a centralized location, such as at the nurses' station or in medical records, or in a more private remote location, such as in the physician's office or in a nurse supervisor's office. Location of the central monitor at a location remote from the glucose sensor(s) and/or hand-held medicament injection pen enables remote monitoring of hand-held medicament injection pen use (e.g., how, when & where it is used) and/or function (e.g., if it is functioning properly).
In some embodiments, at least a portion of the system is configured provide adaptive metabolic control of the host's glucose, as described with reference to
Integrated Systems for Ambulatory Use
In some embodiments, the basal medicament delivery device 16a is a medicament pump 16a, and the medicament dosing information comprises a basal dose of medicament. Accordingly, the processor module comprises programming to calculate the basal dose based at least in part on the continuous glucose sensor data. The receiver is configured to communicate the basal dose to the medicament pump, which, in turn, is configured to infuse the basal medicament dose into the host. Since the glucose sensor is a continuous glucose sensor, the system can be configured to continually recalculate the basal medicament dose and readjust the dose according to the host's needs, as indicated by the sensor data generated by the continuous glucose sensor. This enables adaptive metabolic control 240, as described with reference to
In some preferred embodiments, the bolus medicament delivery device 16b is a hand-held medicament injection pen 16b and the medicament dosing information comprises a bolus medicament dose. Accordingly, the processor module comprises programming to calculate a bolus dose of medicament based at least in part on the continuous glucose sensor data. In some embodiments, the hand-held medicament injection pen is configured to infuse the same medicament as the medicament pump, while in other embodiments, the hand-held medicament injection pen is configured to infuse a medicament other than the medicament infused by the medicament pump, as is described in greater detail below. In some embodiments, the hand-held medicament injection pen includes a motor. The motor can be configured to automatically set the amount of medicament based at least in part on the medicament dosing information. For example the medicament dosing information can include an instruction for the hand-held medicament injection pen to automatically portion out a bolus medicament dose, which can be manually delivered by the host. In a further embodiment, the medicament is not delivered manually (e.g., by the host actuating a plunger to inject the medicament), rather the medicament is delivered semi-automatically, such that the host can hold the pen against the injection site (e.g., as if to inject the medicament) and actuate the pen to inject the medicament automatically. In this embodiment, the motor of the hand-held medicament injection pen can be configured to control a rate of medicament injection into the host and the medicament dosing information comprises an instruction for the hand-held medicament injection pen to deliver the bolus dose at a programmed rate. For example, it is known that the activity of injected medicament is dependent, in part, on the rate of injection. The hand-held medicament injection pen can be configured to inject the medicament at a rate selected to optimize the medicament's activity. Accordingly, the host's management of his blood sugar can be optimized and more consistent.
In some embodiments, the integrated system is configured for use with at least two hand-held medicament injection pens, such as both a medicament pump 16a and a hand-held medicament injection pen 16b. While the host may choose to use a single type of medicament in both devices, the convenient use of multiple modes of medicament delivery is enabled by this embodiment. For example, a first medicament delivery pump can be configured to deliver a first type of medicament, a second hand-held medicament injection pen can be configured to deliver a second type of medicament, and so on. In one exemplary embodiment, a medicament pump 16a is configured to deliver a long-acting medicament while a hand-held medicament injection pen 16b is configured to deliver a short-acting medicament. In a second exemplary embodiment, a medicament pump 16a is configured to deliver the short-acting medicament while a hand-held medicament injection pen 16b is configured to deliver the long-acting medicament. In a third exemplary embodiment, the two medicament delivery devices are configured to deliver the same type of medicament. For example, a basal medicament delivery device 16a can be configured to frequently deliver small doses (e.g., basal doses) of a short-acting insulin while a bolus medicament delivery device 16b can be configured to deliver a large dose (e.g., a bolus) of the short-acting insulin. Additional configurations are contemplated in the preferred embodiments. Regardless, of the type of medicament delivered and the delivery device used, the processor module includes programming to calculate the dose of that particular medicament in response to the continuous glucose sensor data, such that the host can be maintained within a target blood glucose range.
In preferred embodiments, the communication module is configured and arranged for wireless communication with the integrated hand-held medicament injection pen(s) 16a/16b, as described elsewhere herein. In some embodiments, the communication module comprises a transceiver configured and arranged to interrogate and/or provide medicament dosing information to the integrated hand-held medicament injection pen, however, other modes of wireless communication can be used. Preferably, the communication module is configured and arranged to enable communicate between the at least two integrated medicament delivery devices, such as but not limited to a medicament pump and a hand-held medicament injection pen. However, the use of additional hand-held medicament injection pens (e.g., a pump and two pens) is contemplated in the preferred embodiments. Preferably, in preferred embodiments, the communication module is configured and arranged to communicate with the at least two integrated medicament delivery devices simultaneously, for example, within substantially the same time period. Accordingly, the processor module calculates both the basal and bolus therapy recommendations for the devices, respectively, considering both the basal and bolus therapies together, and wherein the communication module is configured to communicate with the basal and bolus medicament delivery devices(s), such as to optimize control of the host's blood glucose level, such as maintaining the host's glucose level within a target range. In some embodiments, the communication module is configured to provide notification to the user, relating to injection of the medicament. For example, in some embodiments, the communication module can alert the host (e.g., via the receiver or one of the hand-held medicament injection pens) that a medicament dose is recommended, is being injected and/or has been injected, and optionally require validation of the medicament dose, as described elsewhere herein. For example, in one embodiment, the receiver and/or hand-held medicament injection pen is configured to emit an auditory alert (e.g., beep or buzz) when a bolus medicament dose have been calculated and is ready to be delivered.
In preferred embodiments, the integrated system includes a user interface configured and arranged to display continuous glucose sensor data and/or medicament dosing information. In some embodiments, the user interface is further configured for input of host information and/or medicament delivery device information, wherein the medicament delivery device information is associated with a medicament pump and a hand-held medicament injection pen. As described elsewhere herein, the host information can include at least one of host identity, host physical state, target glucose concentration and type of medicament to be delivered, and the like. Also described elsewhere herein, the medicament delivery information can include at least one of host identity, identification of a functionally connected hand-held medicament injection pen, a type of medicament to be delivered, a medicament delivery profile and/or protocols and a failsafe, and the like.
In one example, the host can use an integrated system including a continuous glucose sensor 12 (e.g., a sensor as described with reference to
Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in U.S. Pat. Nos. 4,994,167; 4,757,022; 6,001,067; 6,741,877; 6,702,857; 6,558,321; 6,931,327; 6,862,465; 7,074,307; 7,081,195; 7,108,778; 7,110,803; 7,192,450; 7,226,978; 7,310,544; 7,364,592; and 7,366,556.
Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in U.S. Patent Publication No. US-2005-0143635-A1; U.S. Patent Publication No. US-2005-0181012-A1; U.S. Patent Publication No. US-2005-0177036-A1; U.S. Patent Publication No. US-2005-0124873-A1; U.S. Patent Publication No. US-2005-0115832-A1; U.S. Patent Publication No. US-2005-0245799-A1; U.S. Patent Publication No. US-2005-0245795-A1; U.S. Patent Publication No. US-2005-0242479-A1; U.S. Patent Publication No. US-2005-0182451-A1; U.S. Patent Publication No. US-2005-0056552-A1; U.S. Patent Publication No. US-2005-0192557-A1; U.S. Patent Publication No. US-2005-0154271-A1; U.S. Patent Publication No. US-2004-0199059-A1; U.S. Patent Publication No. US-2005-0054909-A1; U.S. Patent Publication No. US-2005-0051427-A1; U.S. Patent Publication No. US-2003-0032874-A1; U.S. Patent Publication No. US-2005-0103625-A1; U.S. Patent Publication No. US-2005-0203360-A1; U.S. Patent Publication No. US-2005-0090607-A1; U.S. Patent Publication No. US-2005-0187720-A1; U.S. Patent Publication No. US-2005-0161346-A1; U.S. Patent Publication No. US-2006-0015020-A1; U.S. Patent Publication No. US-2005-0043598-A1; U.S. Patent Publication No. US-2005-0033132-A1; U.S. Patent Publication No. US-2005-0031689-A1; U.S. Patent Publication No. US-2004-0186362-A1; U.S. Patent Publication No. US-2005-0027463-A1; U.S. Patent Publication No. US-2005-0027181-A1; U.S. Patent Publication No. US-2005-0027180-A1; U.S. Patent Publication No. US-2006-0020187-A1; U.S. Patent Publication No. US-2006-0036142-A1; U.S. Patent Publication No. US-2006-0020192-A1; U.S. Patent Publication No. US-2006-0036143-A1; U.S. Patent Publication No. US-2006-0036140-A1; U.S. Patent Publication No. US-2006-0019327-A1; U.S. Patent Publication No. US-2006-0020186-A1; U.S. Patent Publication No. US-2006-0036139-A1; U.S. Patent Publication No. US-2006-0020191-A1; U.S. Patent Publication No. US-2006-0020188-A1; U.S. Patent Publication No. US-2006-0036141-A1; U.S. Patent Publication No. US-2006-0020190-A1; U.S. Patent Publication No. US-2006-0036145-A1; U.S. Patent Publication No. US-2006-0036144-A1; U.S. Patent Publication No. US-2006-0016700-A1; U.S. Patent Publication No. US-2006-0142651-A1; U.S. Patent Publication No. US-2006-0086624-A1; U.S. Patent Publication No. US-2006-0068208-A1; U.S. Patent Publication No. US-2006-0040402-A1; U.S. Patent Publication No. US-2006-0036142-A1; U.S. Patent Publication No. US-2006-0036141-A1; U.S. Patent Publication No. US-2006-0036143-A1; U.S. Patent Publication No. US-2006-0036140-A1; U.S. Patent Publication No. US-2006-0036139-A1; U.S. Patent Publication No. US-2006-0142651-A1; U.S. Patent Publication No. US-2006-0036145-A1; U.S. Patent Publication No. US-2006-0036144-A1; U.S. Patent Publication No. US-2006-0200022-A1; U.S. Patent Publication No. US-2006-0198864-A1; U.S. Patent Publication No. US-2006-0200019-A1; U.S. Patent Publication No. US-2006-0189856-A1; U.S. Patent Publication No. US-2006-0200020-A1; U.S. Patent Publication No. US-2006-0200970-A1; U.S. Patent Publication No. US-2006-0183984-A1; U.S. Patent Publication No. US-2006-0183985-A1; U.S. Patent Publication No. US-2006-0195029-A1; U.S. Patent Publication No. US-2006-0229512-A1; U.S. Patent Publication No. US-2006-0222566-A1; U.S. Patent Publication No. US-2007-0032706-A1; U.S. Patent Publication No. US-2007-0016381-A1; U.S. Patent Publication No. US-2007-0027370-A1; U.S. Patent Publication No. US-2007-0027384-A1; U.S. Patent Publication No. US-2007-0032718-A1; U.S. Patent Publication No. US-2007-0059196-A1; U.S. Patent Publication No. US-2007-0066873-A1; U.S. Patent Publication No. US-2007-0093704-A1; U.S. Patent Publication No. US-2007-0197890-A1; U.S. Patent Publication No. US-2007-0173710-A1; U.S. Patent Publication No. US-2007-0163880-A1; U.S. Patent Publication No. US-2007-0203966-A1; U.S. Patent Publication No. US-2007-0213611-A1; U.S. Patent Publication No. US-2007-0232879-A1; U.S. Patent Publication No. US-2007-0235331-A1; U.S. Patent Publication No. US-2008-0021666-A1; U.S. Patent Publication No. US-2008-0033254-A1; U.S. Patent Publication No. US-2008-0045824-A1; U.S. Patent Publication No. US-2008-0071156-A1; U.S. Patent Publication No. US-2008-0086042-A1; U.S. Patent Publication No. US-2008-0086044-A1; U.S. Patent Publication No. US-2008-0086273-A1; U.S. Patent Publication No. US-2008-0083617-A1; U.S. Patent Publication No. US-2008-0119703-A1; and U.S. Patent Publication No. US-2008-0119706-A1.
Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in U.S. patent application Ser. No. 09/447,227 filed Nov. 22, 1999 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. patent application Ser. No. 11/654,135 filed Jan. 17, 2007 and entitled “POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES”; U.S. patent application Ser. No. 11/654,140 filed Jan. 17, 2007 and entitled “MEMBRANES FOR AN ANALYTE SENSOR”; U.S. patent application Ser. No. 11/543,490 filed Oct. 4, 2006 and entitled “ANALYTE SENSOR”; U.S. patent application Ser. No. 11/691,426 filed Mar. 26, 2007 and entitled “ANALYTE SENSOR”; U.S. patent application Ser. No. 12/037,830 filed Feb. 26, 2008 and entitled “ANALYTE MEASURING DEVICE”; U.S. patent application Ser. No. 12/037,812 filed Feb. 26, 2008 and entitled “ANALYTE MEASURING DEVICE”; U.S. patent application Ser. No. 12/102,654 filed Apr. 14, 2008 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. patent application Ser. No. 12/102,729 filed Apr. 14, 2008 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. patent application Ser. No. 12/102,745 filed Apr. 14, 2008 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. patent application Ser. No. 12/098,359 filed Apr. 4, 2008 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. patent application Ser. No. 12/098,353 filed Apr. 4, 2008 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. patent application Ser. No. 12/098,627 filed Apr. 7, 2008 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. patent application Ser. No. 12/103,594 filed Apr. 15, 2008 and entitled “BIOINTERFACE WITH MACRO- AND MICRO-ARCHITECTURE”; U.S. patent application Ser. No. 12/111,062 filed Apr. 28, 2008 and entitled “DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR”; U.S. patent application Ser. No. 12/105,227 filed Apr. 17, 2008 and entitled “TRANSCUTANEOUS MEDICAL DEVICE WITH VARIABLE STIFFNESS”; U.S. patent application Ser. No. 12/101,810 filed Apr. 11, 2008 and entitled “TRANSCUTANEOUS ANALYTE SENSOR”; U.S. patent application Ser. No. 12/101,790 filed Apr. 11, 2008 and entitled “TRANSCUTANEOUS ANALYTE SENSOR”; U.S. patent application Ser. No. 12/101,806 filed Apr. 11, 2008 and entitled “TRANSCUTANEOUS ANALYTE SENSOR”; U.S. patent application Ser. No. 12/113,724 filed May 1, 2008 and entitled “LOW OXYGEN IN VIVO ANALYTE SENSOR”; U.S. patent application Ser. No. 12/113,508 filed May 1, 2008 and entitled “LOW OXYGEN IN VIVO ANALYTE SENSOR”; U.S. patent application Ser. No. 12/055,098 filed Mar. 25, 2008 and entitled “ANALYTE SENSOR”; U.S. patent application Ser. No. 12/054,953 filed Mar. 25, 2008 and entitled “ANALYTE SENSOR”; U.S. patent application Ser. No. 12/055,114 filed Mar. 25, 2008 and entitled “ANALYTE SENSOR”; U.S. patent application Ser. No. 12/055,078 filed Mar. 25, 2008 and entitled “ANALYTE SENSOR”; U.S. patent application Ser. No. 12/055,149 filed Mar. 25, 2008 and entitled “ANALYTE SENSOR”; U.S. patent application Ser. No. 12/055,203 filed Mar. 25, 2008 and entitled “ANALYTE SENSOR”; and U.S. patent application Ser. No. 12/055,227 filed Mar. 25, 2008 and entitled “ANALYTE SENSOR”.
All references cited herein, including but not limited to published and unpublished applications, patents, and literature references, are incorporated herein by reference in their entirety and are hereby made a part of this specification. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
The term “comprising” as used herein is synonymous with “including,” “containing,” or “characterized by,” and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth herein are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of any claims in any application claiming priority to the present application, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
The above description discloses several methods and materials of the present invention. This invention is susceptible to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment. Such modifications will become apparent to those skilled in the art from a consideration of this disclosure or practice of the invention disclosed herein. Consequently, it is not intended that this invention be limited to the specific embodiments disclosed herein, but that it cover all modifications and alternatives coming within the true scope and spirit of the invention.
Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57. This application is a divisional of U.S. application Ser. No. 13/963,416, filed Aug. 9, 2013, which is a continuation of U.S. application Ser. No. 12/133,786, filed Jun. 5, 2008, now U.S. Pat. No. 8,562,558, which claims the benefit of U.S. Provisional Application No. 60/942,787, filed Jun. 8, 2007, the disclosures of which are hereby expressly incorporated by reference in their entirety and are hereby expressly made a portion of this application.
Number | Name | Date | Kind |
---|---|---|---|
2719797 | Rosenblatt et al. | Oct 1955 | A |
3210578 | Sherer | Oct 1965 | A |
3219533 | Mullins | Nov 1965 | A |
3381371 | Russell | May 1968 | A |
3506032 | Eveleigh et al. | Apr 1970 | A |
3556950 | Dahms | Jan 1971 | A |
3610226 | Albisser | Oct 1971 | A |
3780727 | King | Dec 1973 | A |
3826244 | Salcman et al. | Jul 1974 | A |
3837339 | Aisenberg | Sep 1974 | A |
3838682 | Clark et al. | Oct 1974 | A |
3874850 | Sorensen et al. | Apr 1975 | A |
3898984 | Mandel et al. | Aug 1975 | A |
3910256 | Clark et al. | Oct 1975 | A |
3929971 | Roy | Dec 1975 | A |
3933593 | Sternberg | Jan 1976 | A |
3943918 | Lewis | Mar 1976 | A |
3957613 | Macur | May 1976 | A |
3979274 | Newman | Sep 1976 | A |
4008717 | Kowarski | Feb 1977 | A |
4016866 | Lawton | Apr 1977 | A |
4052754 | Homsy | Oct 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4076656 | White et al. | Feb 1978 | A |
4109505 | Clark et al. | Aug 1978 | A |
4119406 | Clemens | Oct 1978 | A |
4136250 | Mueller et al. | Jan 1979 | A |
4151845 | Clemens | May 1979 | A |
4176659 | Rolfe | Dec 1979 | A |
4197852 | Schindler et al. | Apr 1980 | A |
4206755 | Klein | Jun 1980 | A |
4240438 | Updike et al. | Dec 1980 | A |
4240889 | Yoda et al. | Dec 1980 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4253469 | Aslan | Mar 1981 | A |
4265249 | Schindler et al. | May 1981 | A |
4327725 | Cortese et al. | May 1982 | A |
4366040 | Marsoner et al. | Dec 1982 | A |
4369785 | Rehkopf et al. | Jan 1983 | A |
4374013 | Enfors | Feb 1983 | A |
4403984 | Ash et al. | Sep 1983 | A |
4415666 | D'Orazio et al. | Nov 1983 | A |
4431004 | Bessman et al. | Feb 1984 | A |
4432366 | Margules | Feb 1984 | A |
4436094 | Cerami | Mar 1984 | A |
4442841 | Uehara et al. | Apr 1984 | A |
4454295 | Wittmann et al. | Jun 1984 | A |
4457339 | Juan et al. | Jul 1984 | A |
4477314 | Richter et al. | Oct 1984 | A |
4478222 | Konig et al. | Oct 1984 | A |
4486290 | Cahalan et al. | Dec 1984 | A |
4492575 | Mabille | Jan 1985 | A |
4494950 | Fischell | Jan 1985 | A |
4506680 | Stokes | Mar 1985 | A |
4519973 | Cahalan et al. | May 1985 | A |
RE31916 | Oswin et al. | Jun 1985 | E |
4526569 | Bernardi | Jul 1985 | A |
4534825 | Koning et al. | Aug 1985 | A |
4535786 | Kater | Aug 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4545382 | Higgins et al. | Oct 1985 | A |
4554927 | Fussell | Nov 1985 | A |
4565665 | Fogt | Jan 1986 | A |
4565666 | Cahalan et al. | Jan 1986 | A |
4568444 | Nakamura et al. | Feb 1986 | A |
4571292 | Liu et al. | Feb 1986 | A |
4573968 | Parker | Mar 1986 | A |
4577642 | Stokes | Mar 1986 | A |
4583976 | Ferguson | Apr 1986 | A |
4592824 | Smith et al. | Jun 1986 | A |
4600495 | Fogt | Jul 1986 | A |
4614514 | Carr et al. | Sep 1986 | A |
4619793 | Lee | Oct 1986 | A |
4625730 | Fountain et al. | Dec 1986 | A |
4626104 | Pointon et al. | Dec 1986 | A |
4632968 | Yokota et al. | Dec 1986 | A |
RE32361 | Duggan | Feb 1987 | E |
4655880 | Liu | Apr 1987 | A |
4671288 | Gough | Jun 1987 | A |
4672970 | Uchida et al. | Jun 1987 | A |
4680268 | Clark, Jr. | Jul 1987 | A |
4685463 | Williams | Aug 1987 | A |
4694861 | Goodale et al. | Sep 1987 | A |
4702732 | Powers et al. | Oct 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4705503 | Dorman et al. | Nov 1987 | A |
4711245 | Higgins | Dec 1987 | A |
4711251 | Stokes | Dec 1987 | A |
4721677 | Clark, Jr. | Jan 1988 | A |
4726381 | Jones | Feb 1988 | A |
4731726 | Allen | Mar 1988 | A |
4736748 | Nakamura et al. | Apr 1988 | A |
4747822 | Peabody | May 1988 | A |
4750496 | Reinhart et al. | Jun 1988 | A |
4755168 | Romanelli et al. | Jul 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4759828 | Young et al. | Jul 1988 | A |
4763648 | Wyatt | Aug 1988 | A |
4763658 | Jones | Aug 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4781798 | Gough | Nov 1988 | A |
4784157 | Halls et al. | Nov 1988 | A |
4786394 | Enzer et al. | Nov 1988 | A |
4787398 | Garcia et al. | Nov 1988 | A |
4789467 | Lindsay et al. | Dec 1988 | A |
4791932 | Margules | Dec 1988 | A |
4803243 | Fujimoto et al. | Feb 1989 | A |
4805624 | Yao et al. | Feb 1989 | A |
4805625 | Wyler | Feb 1989 | A |
4808089 | Buchholtz et al. | Feb 1989 | A |
4808292 | Kessler et al. | Feb 1989 | A |
4809704 | Sogawa et al. | Mar 1989 | A |
4810243 | Howson | Mar 1989 | A |
4815471 | Stobie | Mar 1989 | A |
4820281 | Lawler | Apr 1989 | A |
4822336 | DiTraglia | Apr 1989 | A |
4823808 | Clegg et al. | Apr 1989 | A |
4828544 | Lane et al. | May 1989 | A |
4830013 | Maxwell | May 1989 | A |
4831070 | McInally et al. | May 1989 | A |
4832005 | Takamiya et al. | May 1989 | A |
4832034 | Pizziconi | May 1989 | A |
4834101 | Collison et al. | May 1989 | A |
4838281 | Rogers et al. | Jun 1989 | A |
4841974 | Gumbrecht et al. | Jun 1989 | A |
4849458 | Reed et al. | Jul 1989 | A |
4852573 | Kennedy | Aug 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4858615 | Meinema | Aug 1989 | A |
4867741 | Portnoy | Sep 1989 | A |
4874363 | Abell | Oct 1989 | A |
4883057 | Broderick | Nov 1989 | A |
4883467 | Franetzki et al. | Nov 1989 | A |
4889528 | Nadai et al. | Dec 1989 | A |
4890620 | Gough | Jan 1990 | A |
4890621 | Hakky | Jan 1990 | A |
4900305 | Smith et al. | Feb 1990 | A |
4907857 | Giuliani et al. | Mar 1990 | A |
4908208 | Lee et al. | Mar 1990 | A |
4909786 | Gijselhart et al. | Mar 1990 | A |
4919141 | Zier et al. | Apr 1990 | A |
4919649 | Timothy et al. | Apr 1990 | A |
4921477 | Davis | May 1990 | A |
4921480 | Sealfon | May 1990 | A |
4925444 | Orkin et al. | May 1990 | A |
4927407 | Dorman | May 1990 | A |
4927516 | Yamaguchi et al. | May 1990 | A |
4928694 | Maxwell | May 1990 | A |
4934369 | Maxwell | Jun 1990 | A |
4934375 | Cole et al. | Jun 1990 | A |
4944299 | Silvian | Jul 1990 | A |
4946439 | Eggers | Aug 1990 | A |
4951657 | Pfister et al. | Aug 1990 | A |
4951669 | Maxwell et al. | Aug 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4957483 | Gonser et al. | Sep 1990 | A |
4963595 | Ward et al. | Oct 1990 | A |
4966579 | Polaschegg | Oct 1990 | A |
4967940 | Blette | Nov 1990 | A |
4970145 | Bennetto et al. | Nov 1990 | A |
4973320 | Brenner et al. | Nov 1990 | A |
4974592 | Branco | Dec 1990 | A |
4974929 | Curry | Dec 1990 | A |
4975636 | Desautels | Dec 1990 | A |
4976687 | Martin | Dec 1990 | A |
4979509 | Hakky | Dec 1990 | A |
4986671 | Sun et al. | Jan 1991 | A |
4988341 | Columbus et al. | Jan 1991 | A |
4989607 | Keusch et al. | Feb 1991 | A |
4992794 | Brouwers | Feb 1991 | A |
4994026 | Fecondini | Feb 1991 | A |
4994167 | Shults et al. | Feb 1991 | A |
4997627 | Bergkuist et al. | Mar 1991 | A |
5002055 | Merki et al. | Mar 1991 | A |
5002572 | Picha | Mar 1991 | A |
5006050 | Cooke et al. | Apr 1991 | A |
5006111 | Inokuchi et al. | Apr 1991 | A |
5009251 | Pike et al. | Apr 1991 | A |
5026348 | Venegas | Jun 1991 | A |
5030199 | Barwick et al. | Jul 1991 | A |
5030333 | Clark, Jr. | Jul 1991 | A |
5034112 | Murase et al. | Jul 1991 | A |
5035711 | Aoki et al. | Jul 1991 | A |
5041092 | Barwick | Aug 1991 | A |
5045057 | Van et al. | Sep 1991 | A |
5046496 | Betts et al. | Sep 1991 | A |
5048525 | Maxwell | Sep 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5055198 | Shettigar | Oct 1991 | A |
5068536 | Rosenthal | Nov 1991 | A |
5070169 | Robertson et al. | Dec 1991 | A |
5077476 | Rosenthal | Dec 1991 | A |
5088981 | Howson et al. | Feb 1992 | A |
5089421 | Dieffenbach | Feb 1992 | A |
5096669 | Lauks et al. | Mar 1992 | A |
5097834 | Skrabal | Mar 1992 | A |
5098377 | Borsanyi et al. | Mar 1992 | A |
5101814 | Palti | Apr 1992 | A |
5108819 | Heller et al. | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5112301 | Fenton et al. | May 1992 | A |
5116313 | McGregor | May 1992 | A |
5127405 | Alcala et al. | Jul 1992 | A |
5137028 | Nishimura | Aug 1992 | A |
5140985 | Schroeder et al. | Aug 1992 | A |
5145565 | Kater et al. | Sep 1992 | A |
5152746 | Atkinson et al. | Oct 1992 | A |
5160418 | Mullen | Nov 1992 | A |
5161532 | Joseph | Nov 1992 | A |
5165406 | Wong et al. | Nov 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5174291 | Schoonen et al. | Dec 1992 | A |
5176632 | Bernardi | Jan 1993 | A |
5176658 | Ranford | Jan 1993 | A |
5182004 | Kohno | Jan 1993 | A |
5178142 | Harjunmaa et al. | Feb 1993 | A |
5188591 | Dorsey | Feb 1993 | A |
5190041 | Palti | Mar 1993 | A |
5195963 | Yafuso et al. | Mar 1993 | A |
5198771 | Fidler et al. | Mar 1993 | A |
5208147 | Kagenow et al. | May 1993 | A |
5208313 | Krishnan | May 1993 | A |
5220917 | Cammilli et al. | Jun 1993 | A |
5220920 | Gharib | Jun 1993 | A |
5224929 | Remiszewski | Jul 1993 | A |
5225063 | Gumbrecht et al. | Jul 1993 | A |
5232434 | Inagaki et al. | Aug 1993 | A |
5243982 | Mostl et al. | Sep 1993 | A |
5243983 | Tarr et al. | Sep 1993 | A |
5249576 | Goldberger et al. | Oct 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5254102 | Ogawa | Oct 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5265594 | Olsson et al. | Nov 1993 | A |
5266179 | Nankai et al. | Nov 1993 | A |
5269891 | Colin | Dec 1993 | A |
5271736 | Picha | Dec 1993 | A |
5271815 | Wong et al. | Dec 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5281319 | Kaneko et al. | Jan 1994 | A |
5282848 | Schmitt | Feb 1994 | A |
5284140 | Allen et al. | Feb 1994 | A |
5284570 | Savage et al. | Feb 1994 | A |
5287753 | Routh et al. | Feb 1994 | A |
5298022 | Bernardi | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5302093 | Owens et al. | Apr 1994 | A |
5304468 | Phillips et al. | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5310469 | Cunningham et al. | May 1994 | A |
5311908 | Barone et al. | May 1994 | A |
5312361 | Zadini et al. | May 1994 | A |
5316008 | Suga et al. | May 1994 | A |
5316452 | Bogen et al. | May 1994 | A |
5318511 | Riquier et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5324322 | Grill et al. | Jun 1994 | A |
5326449 | Cunningham | Jul 1994 | A |
5330634 | Wong et al. | Jul 1994 | A |
5331555 | Hashimoto et al. | Jul 1994 | A |
5335658 | Bedingham | Aug 1994 | A |
5337747 | Neftel | Aug 1994 | A |
5342409 | Mullett | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5345932 | Yafuso et al. | Sep 1994 | A |
5352348 | Young et al. | Oct 1994 | A |
5352351 | White | Oct 1994 | A |
5354272 | Swendson et al. | Oct 1994 | A |
5354449 | Band et al. | Oct 1994 | A |
5356375 | Higley | Oct 1994 | A |
5356378 | Doan | Oct 1994 | A |
5368028 | Palti | Nov 1994 | A |
5368224 | Richardson et al. | Nov 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5372133 | Hogen Esch | Dec 1994 | A |
5372135 | Mendelson et al. | Dec 1994 | A |
5372709 | Hood | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5378229 | Layer et al. | Jan 1995 | A |
5380268 | Wheeler | Jan 1995 | A |
5380491 | Carver et al. | Jan 1995 | A |
5380536 | Hubbell et al. | Jan 1995 | A |
5380665 | Cusack et al. | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5411052 | Murray | May 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5411866 | Luong | May 1995 | A |
5417206 | Kaneyoshi | May 1995 | A |
5421328 | Bedingham | Jun 1995 | A |
5423738 | Robinson et al. | Jun 1995 | A |
5423749 | Merte et al. | Jun 1995 | A |
5428123 | Ward et al. | Jun 1995 | A |
5429485 | Dodge | Jul 1995 | A |
5429602 | Hauser | Jul 1995 | A |
5429735 | Johnson et al. | Jul 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431174 | Knute | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5434412 | Sodickson et al. | Jul 1995 | A |
5437635 | Fields et al. | Aug 1995 | A |
5438984 | Schoendorfer | Aug 1995 | A |
5443508 | Giampapa | Aug 1995 | A |
5445610 | Evert | Aug 1995 | A |
5451260 | Versteeg et al. | Sep 1995 | A |
5458631 | Xavier et al. | Oct 1995 | A |
5462051 | Oka et al. | Oct 1995 | A |
5462064 | D'Angelo et al. | Oct 1995 | A |
5466356 | Schneider et al. | Nov 1995 | A |
5469846 | Khan | Nov 1995 | A |
5474552 | Palti | Dec 1995 | A |
5476776 | Wilkins | Dec 1995 | A |
5482008 | Stafford et al. | Jan 1996 | A |
5482446 | Williamson et al. | Jan 1996 | A |
5482473 | Lord et al. | Jan 1996 | A |
5484404 | Schulman et al. | Jan 1996 | A |
5494562 | Maley et al. | Feb 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5502396 | Desarzens et al. | Mar 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5509888 | Miller | Apr 1996 | A |
5512046 | Pusinelli et al. | Apr 1996 | A |
5512055 | Domb et al. | Apr 1996 | A |
5512248 | Van | Apr 1996 | A |
5513636 | Palti | May 1996 | A |
5514253 | Davis et al. | May 1996 | A |
5515851 | Goldstein | May 1996 | A |
5518601 | Foos et al. | May 1996 | A |
5527288 | Gross | Jun 1996 | A |
5531679 | Schulman et al. | Jul 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5538511 | Van Antwerp | Jul 1996 | A |
5540828 | Yacynych | Jul 1996 | A |
5545223 | Neuenfeldt et al. | Aug 1996 | A |
5549547 | Cohen et al. | Aug 1996 | A |
5549548 | Larsson | Aug 1996 | A |
5549569 | Lynn et al. | Aug 1996 | A |
5549651 | Lynn | Aug 1996 | A |
5551850 | Williamson et al. | Sep 1996 | A |
5553616 | Ham et al. | Sep 1996 | A |
5554339 | Cozzette | Sep 1996 | A |
5561615 | Nassif | Oct 1996 | A |
5562614 | O'Donnell | Oct 1996 | A |
5564439 | Picha | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5569188 | Mackool | Oct 1996 | A |
5569219 | Hakki et al. | Oct 1996 | A |
5569462 | Martinson et al. | Oct 1996 | A |
5577499 | Teves | Nov 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5584813 | Livingston et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5589133 | Suzuki | Dec 1996 | A |
5590651 | Shaffer et al. | Jan 1997 | A |
5609572 | Lang | Mar 1997 | A |
5611900 | Worden | Mar 1997 | A |
5624409 | Seale | Apr 1997 | A |
5624537 | Turner et al. | Apr 1997 | A |
5626563 | Dodge et al. | May 1997 | A |
5628619 | Wilson | May 1997 | A |
5628890 | Carter et al. | May 1997 | A |
5637083 | Bertrand et al. | Jun 1997 | A |
5640470 | Iyer et al. | Jun 1997 | A |
5643195 | Drevet et al. | Jul 1997 | A |
5651767 | Schulman et al. | Jul 1997 | A |
5653863 | Genshaw et al. | Aug 1997 | A |
5658250 | Blomquist et al. | Aug 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5665061 | Antwiler | Sep 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5667504 | Baumann et al. | Sep 1997 | A |
5673694 | Rivers | Oct 1997 | A |
5676651 | Larson et al. | Oct 1997 | A |
5676820 | Wang et al. | Oct 1997 | A |
5681572 | Seare | Oct 1997 | A |
5682884 | Hill | Nov 1997 | A |
5683562 | Schaffar et al. | Nov 1997 | A |
5688239 | Walker | Nov 1997 | A |
5688244 | Lang | Nov 1997 | A |
5695623 | Michel et al. | Dec 1997 | A |
5696314 | McCaffrey et al. | Dec 1997 | A |
5697366 | Kimball et al. | Dec 1997 | A |
5697899 | Hillman et al. | Dec 1997 | A |
5704354 | Preidel et al. | Jan 1998 | A |
5706807 | Picha | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5713888 | Neuenfeldt et al. | Feb 1998 | A |
5730654 | Brown | Mar 1998 | A |
5733336 | Neuenfeldt et al. | Mar 1998 | A |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5749832 | Vadgama et al. | May 1998 | A |
5749907 | Mann | May 1998 | A |
5755692 | Manicom | May 1998 | A |
5756632 | Ward et al. | May 1998 | A |
5758643 | Wong et al. | Jun 1998 | A |
5763760 | Gumbrecht et al. | Jun 1998 | A |
5773286 | Dionne et al. | Jun 1998 | A |
5776324 | Usala | Jul 1998 | A |
5779665 | Mastrototaro et al. | Jul 1998 | A |
5782880 | Lahtinen et al. | Jul 1998 | A |
5787900 | Butler et al. | Aug 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5791880 | Wilson | Aug 1998 | A |
5795453 | Gilmartin | Aug 1998 | A |
5795774 | Matsumoto et al. | Aug 1998 | A |
5798065 | Picha | Aug 1998 | A |
5800383 | Chandler et al. | Sep 1998 | A |
5800420 | Gross | Sep 1998 | A |
5806517 | Gerhardt et al. | Sep 1998 | A |
5807274 | Henning et al. | Sep 1998 | A |
5807312 | Dzwonkiewicz | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5810770 | Chin et al. | Sep 1998 | A |
5811487 | Schulz, Jr. et al. | Sep 1998 | A |
5814599 | Mitragotri et al. | Sep 1998 | A |
5820589 | Torgerson et al. | Oct 1998 | A |
5820622 | Gross et al. | Oct 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5836887 | Oka et al. | Nov 1998 | A |
5836989 | Shelton | Nov 1998 | A |
5837454 | Cozzette et al. | Nov 1998 | A |
5837728 | Purcell | Nov 1998 | A |
5840026 | Uber et al. | Nov 1998 | A |
5840148 | Campbell et al. | Nov 1998 | A |
5848991 | Gross | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5851229 | Lentz et al. | Dec 1998 | A |
5858365 | Feller | Jan 1999 | A |
5858747 | Schinstine et al. | Jan 1999 | A |
5861019 | Sun et al. | Jan 1999 | A |
5871514 | Wiklund et al. | Feb 1999 | A |
5873862 | Lopez | Feb 1999 | A |
5879713 | Roth et al. | Mar 1999 | A |
5882494 | Van Antwerp | Mar 1999 | A |
5895235 | Droz | Apr 1999 | A |
5897525 | Dey et al. | Apr 1999 | A |
5897578 | Wiklund et al. | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5904666 | Dedecker et al. | May 1999 | A |
5904708 | Goedeke | May 1999 | A |
5911219 | Aylsworth et al. | Jun 1999 | A |
5913998 | Butler et al. | Jun 1999 | A |
5914026 | Blubaugh, Jr. et al. | Jun 1999 | A |
5919215 | Wiklund et al. | Jul 1999 | A |
5921951 | Morris | Jul 1999 | A |
5928155 | Eggers et al. | Jul 1999 | A |
5928182 | Kraus et al. | Jul 1999 | A |
5928189 | Phillips et al. | Jul 1999 | A |
5928195 | Malamud et al. | Jul 1999 | A |
5931814 | Alex et al. | Aug 1999 | A |
5932175 | Knute et al. | Aug 1999 | A |
5933136 | Brown | Aug 1999 | A |
5935785 | Reber et al. | Aug 1999 | A |
5938636 | Kramer et al. | Aug 1999 | A |
5944661 | Swette et al. | Aug 1999 | A |
5947911 | Wong et al. | Sep 1999 | A |
5954643 | Van Antwerp et al. | Sep 1999 | A |
5954954 | Houck et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5963132 | Yoakum | Oct 1999 | A |
5964745 | Lyles et al. | Oct 1999 | A |
5964993 | Blubaugh et al. | Oct 1999 | A |
5965125 | Mineau-Hanschke | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5972369 | Roorda et al. | Oct 1999 | A |
5976085 | Kimball et al. | Nov 1999 | A |
5987352 | Klein et al. | Nov 1999 | A |
5995208 | Sarge et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
5997501 | Gross | Dec 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6002954 | Van Antwerp et al. | Dec 1999 | A |
6007845 | Domb | Dec 1999 | A |
6011984 | Van Antwerp et al. | Jan 2000 | A |
6014577 | Henning et al. | Jan 2000 | A |
6016448 | Busacker et al. | Jan 2000 | A |
6017435 | Hassard et al. | Jan 2000 | A |
6024720 | Chandler et al. | Feb 2000 | A |
6027445 | Von Bahr | Feb 2000 | A |
6027479 | Alei et al. | Feb 2000 | A |
6032059 | Henning et al. | Feb 2000 | A |
6032667 | Heinonen | Mar 2000 | A |
6036924 | Simons et al. | Mar 2000 | A |
6043328 | Domschke et al. | Mar 2000 | A |
6045671 | Wu et al. | Apr 2000 | A |
6048691 | Maracas | Apr 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6059946 | Yukawa et al. | May 2000 | A |
6063637 | Arnold et al. | May 2000 | A |
6066088 | Davis | May 2000 | A |
6066448 | Wohlstadter et al. | May 2000 | A |
6071391 | Gotoh et al. | Jun 2000 | A |
6077299 | Adelberg et al. | Jun 2000 | A |
6080583 | Von Bahr | Jun 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6081736 | Colvin et al. | Jun 2000 | A |
6083523 | Dionne et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6090087 | Tsukada et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6099511 | Devos et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6107083 | Collins et al. | Aug 2000 | A |
6117290 | Say | Sep 2000 | A |
6122536 | Sun et al. | Sep 2000 | A |
6123827 | Wong et al. | Sep 2000 | A |
6127154 | Mosbach et al. | Oct 2000 | A |
6128519 | Say | Oct 2000 | A |
6135978 | Houben et al. | Oct 2000 | A |
6144869 | Berner et al. | Nov 2000 | A |
6159186 | Wickham et al. | Dec 2000 | A |
6162201 | Cohen et al. | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6164921 | Moubayed et al. | Dec 2000 | A |
6165154 | Gray et al. | Dec 2000 | A |
6168568 | Gavriely | Jan 2001 | B1 |
6169155 | Alvarez et al. | Jan 2001 | B1 |
6171276 | Lippe et al. | Jan 2001 | B1 |
6175752 | Say et al. | Jan 2001 | B1 |
6180416 | Kurnik et al. | Jan 2001 | B1 |
6183437 | Walker | Feb 2001 | B1 |
6189536 | Martinez et al. | Feb 2001 | B1 |
6191860 | Klinger et al. | Feb 2001 | B1 |
6192891 | Gravel | Feb 2001 | B1 |
6201980 | Darrow et al. | Mar 2001 | B1 |
6201993 | Kruse et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6212424 | Robinson | Apr 2001 | B1 |
6213739 | Phallen et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6223080 | Thompson | Apr 2001 | B1 |
6223083 | Rosar | Apr 2001 | B1 |
6230059 | Duffin | May 2001 | B1 |
6231879 | Li et al. | May 2001 | B1 |
6232783 | Merrill | May 2001 | B1 |
6233080 | Brenner et al. | May 2001 | B1 |
6233471 | Berner et al. | May 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6248077 | Elson et al. | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6256522 | Schultz | Jul 2001 | B1 |
6259937 | Schulman et al. | Jul 2001 | B1 |
6263222 | Diab et al. | Jul 2001 | B1 |
6264825 | Blackburn et al. | Jul 2001 | B1 |
6270478 | Mern et al. | Aug 2001 | B1 |
6271332 | Lohmann et al. | Aug 2001 | B1 |
6272364 | Kurnik | Aug 2001 | B1 |
6272382 | Faltys et al. | Aug 2001 | B1 |
6272480 | Tresp et al. | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6280408 | Sipin | Aug 2001 | B1 |
6281015 | Mooney et al. | Aug 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6299578 | Kurnik et al. | Oct 2001 | B1 |
6299583 | Eggers et al. | Oct 2001 | B1 |
6302855 | Lav et al. | Oct 2001 | B1 |
6309351 | Kurnik et al. | Oct 2001 | B1 |
6309384 | Harrington et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6315738 | Nishikawa et al. | Nov 2001 | B1 |
6325978 | Labuda et al. | Dec 2001 | B1 |
6326160 | Dunn et al. | Dec 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6329929 | Weijand et al. | Dec 2001 | B1 |
6330464 | Colvin, Jr. et al. | Dec 2001 | B1 |
6343225 | Clark, Jr. | Jan 2002 | B1 |
6485449 | Ito | Jan 2002 | B2 |
6356776 | Berner et al. | Mar 2002 | B1 |
6358225 | Butterfield | Mar 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6368274 | Van Antwerp et al. | Apr 2002 | B1 |
6370941 | Nakamura | Apr 2002 | B2 |
6372244 | Antanavich et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6383478 | Prokop et al. | May 2002 | B1 |
6391019 | Ito | May 2002 | B1 |
6400974 | Lesho | Jun 2002 | B1 |
6402703 | Kensey et al. | Jun 2002 | B1 |
6403944 | Mackenzie et al. | Jun 2002 | B1 |
6406066 | Uegane | Jun 2002 | B1 |
6407195 | Sherman et al. | Jun 2002 | B2 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6416651 | Miller | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6430437 | Marro | Aug 2002 | B1 |
6447448 | Ishikawa et al. | Sep 2002 | B1 |
6459917 | Gowda et al. | Oct 2002 | B1 |
6461496 | Feldman et al. | Oct 2002 | B1 |
6464849 | Say et al. | Oct 2002 | B1 |
6466810 | Ward et al. | Oct 2002 | B1 |
6467480 | Meier et al. | Oct 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6474360 | Ito | Nov 2002 | B1 |
6475750 | Han et al. | Nov 2002 | B1 |
6477392 | Honigs et al. | Nov 2002 | B1 |
6477395 | Schulman et al. | Nov 2002 | B2 |
6481440 | Gielen et al. | Nov 2002 | B2 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6488652 | Weijand et al. | Dec 2002 | B1 |
6494879 | Lennox et al. | Dec 2002 | B2 |
6497729 | Moussy et al. | Dec 2002 | B1 |
6498941 | Jackson | Dec 2002 | B1 |
6501976 | Sohrab | Dec 2002 | B1 |
6510329 | Heckel | Jan 2003 | B2 |
6512939 | Colvin et al. | Jan 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6517508 | Utterberg et al. | Feb 2003 | B1 |
6520326 | McIvor et al. | Feb 2003 | B2 |
6520477 | Trimmer | Feb 2003 | B2 |
6520937 | Hart et al. | Feb 2003 | B2 |
6520997 | Pekkarinen et al. | Feb 2003 | B1 |
6526298 | Khalil et al. | Feb 2003 | B1 |
6527729 | Turcott | Mar 2003 | B1 |
6534711 | Pollack | Mar 2003 | B1 |
6536433 | Cewers | Mar 2003 | B1 |
6542765 | Guy et al. | Apr 2003 | B1 |
6544212 | Galley et al. | Apr 2003 | B2 |
6545085 | Kilgour et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6546269 | Kurnik | Apr 2003 | B1 |
6551496 | Moles et al. | Apr 2003 | B1 |
6553241 | Mannheimer et al. | Apr 2003 | B2 |
6553244 | Lesho et al. | Apr 2003 | B2 |
6554805 | Hiejima | Apr 2003 | B2 |
6554822 | Holschneider et al. | Apr 2003 | B1 |
6558320 | Causey | May 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558347 | Jhuboo et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6565535 | Zaias et al. | May 2003 | B2 |
6565807 | Patterson et al. | May 2003 | B1 |
6569195 | Yang et al. | May 2003 | B2 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6572579 | Raghavan et al. | Jun 2003 | B1 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6575905 | Knobbe et al. | Jun 2003 | B2 |
6579257 | Elgas et al. | Jun 2003 | B1 |
6579498 | Eglise | Jun 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6585675 | O'Mahony et al. | Jul 2003 | B1 |
6585763 | Keilman et al. | Jul 2003 | B1 |
6587705 | Kim et al. | Jul 2003 | B1 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6591125 | Buse et al. | Jul 2003 | B1 |
6594514 | Berner et al. | Jul 2003 | B2 |
6595756 | Gray et al. | Jul 2003 | B2 |
6595919 | Berner et al. | Jul 2003 | B2 |
6602221 | Saravia et al. | Aug 2003 | B1 |
6605072 | Struys et al. | Aug 2003 | B2 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6609071 | Shapiro et al. | Aug 2003 | B2 |
6612984 | Kerr | Sep 2003 | B1 |
6613379 | Ward et al. | Sep 2003 | B2 |
6615061 | Khalil et al. | Sep 2003 | B1 |
6615078 | Burson et al. | Sep 2003 | B1 |
6618603 | Varalli et al. | Sep 2003 | B2 |
6618934 | Feldman et al. | Sep 2003 | B1 |
6633772 | Ford et al. | Oct 2003 | B2 |
6641533 | Causey et al. | Nov 2003 | B2 |
6645181 | Lavi et al. | Nov 2003 | B1 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6653091 | Dunn et al. | Nov 2003 | B1 |
6654625 | Say et al. | Nov 2003 | B1 |
6656157 | Duchon et al. | Dec 2003 | B1 |
6663615 | Madou et al. | Dec 2003 | B1 |
6673022 | Bobo et al. | Jan 2004 | B1 |
6673596 | Sayler et al. | Jan 2004 | B1 |
6679865 | Shekalim | Jan 2004 | B2 |
6684904 | Ito | Feb 2004 | B2 |
6685668 | Cho et al. | Feb 2004 | B1 |
6689089 | Tiedtke et al. | Feb 2004 | B1 |
6689265 | Heller et al. | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6699188 | Wessel | Mar 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6699383 | Lemire et al. | Mar 2004 | B2 |
6702249 | Ito | Mar 2004 | B2 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6702972 | Markle | Mar 2004 | B1 |
6711424 | Fine et al. | Mar 2004 | B1 |
6712796 | Fentis et al. | Mar 2004 | B2 |
6721587 | Gough | Apr 2004 | B2 |
6723086 | Bassuk et al. | Apr 2004 | B2 |
6731976 | Penn et al. | May 2004 | B2 |
6736783 | Blake et al. | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6741877 | Shults et al. | May 2004 | B1 |
6679872 | Turovskiy et al. | Jun 2004 | B2 |
6743635 | Neel et al. | Jun 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6770067 | Lorenzen et al. | Aug 2004 | B2 |
6773565 | Kunimoto et al. | Aug 2004 | B2 |
6780297 | Matsumoto et al. | Aug 2004 | B2 |
6793632 | Sohrab | Sep 2004 | B2 |
6801041 | Karinka et al. | Oct 2004 | B2 |
6802957 | Jung et al. | Oct 2004 | B2 |
6804002 | Fine et al. | Oct 2004 | B2 |
6805693 | Gray et al. | Oct 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811548 | Jeffrey | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6850790 | Berner et al. | Feb 2005 | B2 |
6858020 | Rusnak | Feb 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6869413 | Langley et al. | Mar 2005 | B2 |
6887228 | McKay | May 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893552 | Wang et al. | May 2005 | B1 |
6895263 | Shin et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6902544 | Ludin et al. | Jun 2005 | B2 |
6925393 | Kalatz et al. | Aug 2005 | B1 |
6926691 | Miethke | Aug 2005 | B2 |
6931327 | Goode et al. | Aug 2005 | B2 |
6932584 | Gray et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6945965 | Whiting | Sep 2005 | B2 |
6948492 | Wermeling et al. | Sep 2005 | B2 |
6952604 | DeNuzzio et al. | Oct 2005 | B2 |
6954662 | Freger et al. | Oct 2005 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
6965791 | Hitchcock et al. | Nov 2005 | B1 |
6966325 | Erickson | Nov 2005 | B2 |
6975893 | Say et al. | Dec 2005 | B2 |
6979315 | Rogers et al. | Dec 2005 | B2 |
6989891 | Braig et al. | Jan 2006 | B2 |
6997921 | Gray et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
7008979 | Schottman et al. | Mar 2006 | B2 |
7011630 | Desai et al. | Mar 2006 | B2 |
7022219 | Mansouri et al. | Apr 2006 | B2 |
7025727 | Brockway et al. | Apr 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7029444 | Shin et al. | Apr 2006 | B2 |
7033322 | Silver | Apr 2006 | B2 |
7048727 | Moss | May 2006 | B1 |
7058437 | Buse et al. | Jun 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7061593 | Braig et al. | Jun 2006 | B2 |
7063086 | Shahbazpour et al. | Jun 2006 | B2 |
7066884 | Custer et al. | Jun 2006 | B2 |
7070577 | Haller et al. | Jul 2006 | B1 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7097775 | Greenberg et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7100628 | Izenson et al. | Sep 2006 | B1 |
7120483 | Russell et al. | Oct 2006 | B2 |
7131967 | Gray et al. | Nov 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7146202 | Ward et al. | Dec 2006 | B2 |
7150741 | Erickson et al. | Dec 2006 | B2 |
7162290 | Levin | Jan 2007 | B1 |
7168597 | Jones et al. | Jan 2007 | B1 |
7169289 | Schulein et al. | Jan 2007 | B2 |
7184810 | Caduff et al. | Feb 2007 | B2 |
7207968 | Harcinske | Apr 2007 | B1 |
7211074 | Sansoucy | May 2007 | B2 |
7221970 | Parker | May 2007 | B2 |
7223253 | Hogendijk | May 2007 | B2 |
7225535 | Feldman et al. | Jun 2007 | B2 |
7228162 | Ward et al. | Jun 2007 | B2 |
7229288 | Stuart et al. | Jun 2007 | B2 |
7238165 | Vincent et al. | Jul 2007 | B2 |
7247138 | Reghabi et al. | Jul 2007 | B2 |
7254450 | Christopherson et al. | Aug 2007 | B2 |
7255690 | Gray et al. | Aug 2007 | B2 |
7258681 | Houde | Aug 2007 | B2 |
7261690 | Teller et al. | Aug 2007 | B2 |
7266400 | Fine et al. | Sep 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7276029 | Goode et al. | Oct 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7279174 | Pacetti et al. | Oct 2007 | B2 |
7288085 | Olsen | Oct 2007 | B2 |
7295867 | Berner et al. | Nov 2007 | B2 |
7311690 | Burnett | Dec 2007 | B2 |
7313425 | Finarov et al. | Dec 2007 | B2 |
7314452 | Madonia | Jan 2008 | B2 |
7315767 | Caduff et al. | Jan 2008 | B2 |
7316662 | Delnevo et al. | Jan 2008 | B2 |
7317939 | Fine et al. | Jan 2008 | B2 |
7318814 | Levine et al. | Jan 2008 | B2 |
7327273 | Hung et al. | Feb 2008 | B2 |
7329234 | Sansoucy | Feb 2008 | B2 |
7334594 | Ludin | Feb 2008 | B2 |
7335179 | Burnett | Feb 2008 | B2 |
7335195 | Mehier | Feb 2008 | B2 |
7338464 | Blischak et al. | Mar 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7357793 | Pacetti | Apr 2008 | B2 |
7359723 | Jones | Apr 2008 | B2 |
7361155 | Sage et al. | Apr 2008 | B2 |
7364562 | Braig et al. | Apr 2008 | B2 |
7367942 | Grage et al. | May 2008 | B2 |
7396353 | Lorenzen et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7417164 | Suri | Aug 2008 | B2 |
7426408 | DeNuzzio et al. | Sep 2008 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7519478 | Bartkowiak et al. | Apr 2009 | B2 |
7523004 | Bartkowiak et al. | Apr 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7618368 | Brown | Nov 2009 | B2 |
7624028 | Brown | Nov 2009 | B1 |
7640032 | Jones | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7654955 | Polidori et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
9451908 | Kamath | Sep 2016 | B2 |
20010016682 | Berner et al. | Aug 2001 | A1 |
20010021817 | Brugger et al. | Sep 2001 | A1 |
20010039053 | Liseo et al. | Nov 2001 | A1 |
20010041830 | Varalli et al. | Nov 2001 | A1 |
20010051768 | Schulman et al. | Dec 2001 | A1 |
20020009810 | O'Connor et al. | Jan 2002 | A1 |
20020018843 | Van Antwerp et al. | Feb 2002 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020019330 | Murray et al. | Feb 2002 | A1 |
20020022883 | Burg | Feb 2002 | A1 |
20020023852 | McIvor et al. | Feb 2002 | A1 |
20020026111 | Ackerman | Feb 2002 | A1 |
20020042090 | Heller et al. | Apr 2002 | A1 |
20020042561 | Schulman et al. | Apr 2002 | A1 |
20020043471 | Ikeda et al. | Apr 2002 | A1 |
20020045808 | Ford et al. | Apr 2002 | A1 |
20020065453 | Lesho et al. | May 2002 | A1 |
20020068860 | Clark, Jr. | Jun 2002 | A1 |
20020071776 | Bandis et al. | Jun 2002 | A1 |
20020084196 | Liamos et al. | Jul 2002 | A1 |
20020099282 | Knobbe et al. | Jul 2002 | A1 |
20020099997 | Pi ret | Jul 2002 | A1 |
20020111547 | Knobbe et al. | Aug 2002 | A1 |
20020119711 | Van Antwerp et al. | Aug 2002 | A1 |
20020133224 | Shults et al. | Sep 2002 | A1 |
20020155615 | Novikov et al. | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020182241 | Borenstein et al. | Dec 2002 | A1 |
20020188185 | Sohrab | Dec 2002 | A1 |
20020198513 | Lebel et al. | Dec 2002 | A1 |
20030006669 | Pei et al. | Jan 2003 | A1 |
20030023171 | Sato et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030031699 | Van Antwerp | Feb 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030050546 | Desai et al. | Mar 2003 | A1 |
20030070548 | Clausen | Apr 2003 | A1 |
20030072741 | Berglund et al. | Apr 2003 | A1 |
20030076082 | Morgan et al. | Apr 2003 | A1 |
20030078481 | McIvor et al. | Apr 2003 | A1 |
20030078560 | Miller et al. | Apr 2003 | A1 |
20030097082 | Purdy et al. | May 2003 | A1 |
20030099682 | Moussy et al. | May 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030100821 | Heller et al. | May 2003 | A1 |
20030125612 | Fox et al. | Jul 2003 | A1 |
20030125613 | Enegren et al. | Jul 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030132227 | Geisler | Jul 2003 | A1 |
20030134347 | Heller et al. | Jul 2003 | A1 |
20030143746 | Sage | Jul 2003 | A1 |
20030153821 | Berner | Aug 2003 | A1 |
20030176183 | Drucker et al. | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030188427 | Say et al. | Oct 2003 | A1 |
20030199744 | Buse et al. | Oct 2003 | A1 |
20030199745 | Burson et al. | Oct 2003 | A1 |
20030211050 | Majeti et al. | Nov 2003 | A1 |
20030211625 | Cohan | Nov 2003 | A1 |
20030212317 | Kovatchev et al. | Nov 2003 | A1 |
20030212346 | Yuzhakov et al. | Nov 2003 | A1 |
20030212347 | Sohrab | Nov 2003 | A1 |
20030225324 | Anderson et al. | Dec 2003 | A1 |
20030225437 | Ferguson | Dec 2003 | A1 |
20030235817 | Bartkowiak et al. | Dec 2003 | A1 |
20040006263 | Anderson et al. | Jan 2004 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040015063 | DeNuzzio et al. | Jan 2004 | A1 |
20040015134 | Lavi et al. | Jan 2004 | A1 |
20040023253 | Kunwar et al. | Feb 2004 | A1 |
20040023317 | Motamedi et al. | Feb 2004 | A1 |
20040024327 | Brodnick | Feb 2004 | A1 |
20040030285 | Lavi et al. | Feb 2004 | A1 |
20040039298 | Abreu | Feb 2004 | A1 |
20040039406 | Jessen | Feb 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040054352 | Adams et al. | Mar 2004 | A1 |
20040068230 | Estes et al. | Apr 2004 | A1 |
20040074785 | Holker | Apr 2004 | A1 |
20040078219 | Kaylor | Apr 2004 | A1 |
20040106857 | Gough | Jun 2004 | A1 |
20040138543 | Russell et al. | Jul 2004 | A1 |
20040143173 | Reghabi et al. | Jul 2004 | A1 |
20040146909 | Duong et al. | Jul 2004 | A1 |
20040152187 | Haight et al. | Aug 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040173472 | Jung et al. | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040180391 | Gratzl et al. | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040186365 | Jin et al. | Sep 2004 | A1 |
20040193025 | Steil et al. | Sep 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040204687 | Morgensen | Oct 2004 | A1 |
20040224001 | Pacetti et al. | Nov 2004 | A1 |
20040248282 | Sobha et al. | Dec 2004 | A1 |
20040253365 | Warren et al. | Dec 2004 | A1 |
20040254433 | Bandis | Dec 2004 | A1 |
20050003399 | Blackburn et al. | Jan 2005 | A1 |
20050010265 | Baru Fassio et al. | Jan 2005 | A1 |
20050027180 | Goode et al. | Feb 2005 | A1 |
20050027181 | Goode et al. | Feb 2005 | A1 |
20050027182 | Siddiqui et al. | Feb 2005 | A1 |
20050027463 | Goode et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050033132 | Shults et al. | Feb 2005 | A1 |
20050043598 | Goode et al. | Feb 2005 | A1 |
20050051427 | Brauker et al. | Mar 2005 | A1 |
20050051440 | Simpson et al. | Mar 2005 | A1 |
20050054909 | Petisce et al. | Mar 2005 | A1 |
20050056552 | Simpson et al. | Mar 2005 | A1 |
20050065464 | Talbot et al. | Mar 2005 | A1 |
20050077584 | Uhland et al. | Apr 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096519 | DeNuzzio et al. | May 2005 | A1 |
20050101847 | Routt et al. | May 2005 | A1 |
20050107677 | Ward et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050113653 | Fox et al. | May 2005 | A1 |
20050115832 | Simpson et al. | Jun 2005 | A1 |
20050118344 | Pacetti | Jun 2005 | A1 |
20050119720 | Gale et al. | Jun 2005 | A1 |
20050121322 | Say | Jun 2005 | A1 |
20050124873 | Shults et al. | Jun 2005 | A1 |
20050131305 | Danielson et al. | Jun 2005 | A1 |
20050139489 | Davies et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050143675 | Neel et al. | Jun 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050177036 | Shults et al. | Aug 2005 | A1 |
20050181012 | Saint et al. | Aug 2005 | A1 |
20050182451 | Griffin et al. | Aug 2005 | A1 |
20050183954 | Hitchcock et al. | Aug 2005 | A1 |
20050187720 | Goode et al. | Aug 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050197554 | Polcha | Sep 2005 | A1 |
20050203360 | Brauker | Sep 2005 | A1 |
20050211571 | Schulein et al. | Sep 2005 | A1 |
20050215871 | Feldman et al. | Sep 2005 | A1 |
20050215872 | Berner et al. | Sep 2005 | A1 |
20050239154 | Feldman et al. | Oct 2005 | A1 |
20050242479 | Petisce et al. | Nov 2005 | A1 |
20050245795 | Goode et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050251083 | Carr-Brendel et al. | Nov 2005 | A1 |
20050261563 | Zhou et al. | Nov 2005 | A1 |
20050288596 | Eigler et al. | Dec 2005 | A1 |
20060001550 | Mann et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060040402 | Brauker et al. | Feb 2006 | A1 |
20060047095 | Pacetti | Mar 2006 | A1 |
20060052745 | Van Antwerp et al. | Mar 2006 | A1 |
20060067908 | Ding | Mar 2006 | A1 |
20060078908 | Pitner et al. | Apr 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060079809 | Goldberger et al. | Apr 2006 | A1 |
20060094946 | Kellogg et al. | May 2006 | A1 |
20060100588 | Brunnberg et al. | May 2006 | A1 |
20060134165 | Pacetti | Jun 2006 | A1 |
20060171980 | Helmus et al. | Aug 2006 | A1 |
20060177379 | Asgari | Aug 2006 | A1 |
20060183871 | Ward et al. | Aug 2006 | A1 |
20060183984 | Dobbles et al. | Aug 2006 | A1 |
20060183985 | Brister et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060195029 | Shults et al. | Aug 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060253085 | Geismar et al. | Nov 2006 | A1 |
20060258929 | Goode et al. | Nov 2006 | A1 |
20060263839 | Ward et al. | Nov 2006 | A1 |
20060269586 | Pacetti | Nov 2006 | A1 |
20060275857 | Kjaer et al. | Dec 2006 | A1 |
20070007133 | Mang et al. | Jan 2007 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070027385 | Brister et al. | Feb 2007 | A1 |
20070032706 | Kamath et al. | Feb 2007 | A1 |
20070038044 | Dobbles et al. | Feb 2007 | A1 |
20070049873 | Hansen et al. | Mar 2007 | A1 |
20070066873 | Kamath et al. | Mar 2007 | A1 |
20070085995 | Pesach et al. | Apr 2007 | A1 |
20070116600 | Kochar et al. | May 2007 | A1 |
20070129619 | Ward et al. | Jun 2007 | A1 |
20070129621 | Kellogg et al. | Jun 2007 | A1 |
20070135698 | Shah et al. | Jun 2007 | A1 |
20070135699 | Ward et al. | Jun 2007 | A1 |
20070151869 | Heller et al. | Jul 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173710 | Petisce et al. | Jul 2007 | A1 |
20070197889 | Brister et al. | Aug 2007 | A1 |
20070200254 | Curry | Aug 2007 | A1 |
20070200267 | Tsai | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203410 | Say et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070206193 | Pesach | Sep 2007 | A1 |
20070208244 | Brauker et al. | Sep 2007 | A1 |
20070208245 | Brauker et al. | Sep 2007 | A1 |
20070208246 | Brauker et al. | Sep 2007 | A1 |
20070213610 | Say et al. | Sep 2007 | A1 |
20070218097 | Heller et al. | Sep 2007 | A1 |
20070219441 | Carlin | Sep 2007 | A1 |
20070225675 | Robinson et al. | Sep 2007 | A1 |
20070227907 | Shah et al. | Oct 2007 | A1 |
20070233013 | Schoenberg | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070240497 | Robinson et al. | Oct 2007 | A1 |
20070244381 | Robinson et al. | Oct 2007 | A1 |
20070244382 | Robinson et al. | Oct 2007 | A1 |
20070249916 | Pesach et al. | Oct 2007 | A1 |
20070275193 | DeSimone et al. | Nov 2007 | A1 |
20070299409 | Whibourne et al. | Dec 2007 | A1 |
20080021666 | Goode et al. | Jan 2008 | A1 |
20080027301 | Ward et al. | Jan 2008 | A1 |
20080029390 | Roche | Feb 2008 | A1 |
20080029391 | Mao et al. | Feb 2008 | A1 |
20080033254 | Kamath et al. | Feb 2008 | A1 |
20080034972 | Gough et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080071157 | McGarraugh et al. | Mar 2008 | A1 |
20080071158 | McGarraugh et al. | Mar 2008 | A1 |
20080072663 | Keenan et al. | Mar 2008 | A1 |
20080086040 | Heller et al. | Apr 2008 | A1 |
20080086041 | Heller et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086043 | Heller et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080091094 | Heller et al. | Apr 2008 | A1 |
20080091095 | Heller et al. | Apr 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080119703 | Brister et al. | May 2008 | A1 |
20080119704 | Brister et al. | May 2008 | A1 |
20080119706 | Brister et al. | May 2008 | A1 |
20080125751 | Fjield | May 2008 | A1 |
20080154101 | Jain et al. | Jun 2008 | A1 |
20080183061 | Goode et al. | Jul 2008 | A1 |
20080183399 | Goode et al. | Jul 2008 | A1 |
20080187655 | Markle et al. | Aug 2008 | A1 |
20080188722 | Markle et al. | Aug 2008 | A1 |
20080188725 | Markle et al. | Aug 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080189051 | Goode et al. | Aug 2008 | A1 |
20080194936 | Goode et al. | Aug 2008 | A1 |
20080194937 | Goode et al. | Aug 2008 | A1 |
20080195967 | Goode et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080210557 | Heller et al. | Sep 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080287766 | Rasdal et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080305009 | Gamsey et al. | Dec 2008 | A1 |
20080305506 | Suri | Dec 2008 | A1 |
20080306368 | Goode et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20090012379 | Goode et al. | Jan 2009 | A1 |
20090018418 | Markle et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090018426 | Markle et al. | Jan 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090061528 | Suri | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090076356 | Simpson | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090081803 | Gamsey et al. | Mar 2009 | A1 |
20090099434 | Liu et al. | Apr 2009 | A1 |
20090124877 | Goode, Jr. et al. | May 2009 | A1 |
20090124878 | Goode, Jr. et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090177143 | Markle et al. | Jul 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090264719 | Markle et al. | Oct 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20100010324 | Brauker et al. | Jan 2010 | A1 |
20100010331 | Brauker et al. | Jan 2010 | A1 |
20100010332 | Brauker et al. | Jan 2010 | A1 |
20100016687 | Brauker et al. | Jan 2010 | A1 |
20100022855 | Brauker et al. | Jan 2010 | A1 |
20100030053 | Goode, Jr. et al. | Feb 2010 | A1 |
20100030484 | Brauker et al. | Feb 2010 | A1 |
20100036215 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036216 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036222 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036223 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036224 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036225 | Goode, Jr. et al. | Feb 2010 | A1 |
20100041971 | Goode, Jr. et al. | Feb 2010 | A1 |
20100045465 | Brauker et al. | Feb 2010 | A1 |
20100049024 | Saint et al. | Feb 2010 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100081908 | Dobbles et al. | Apr 2010 | A1 |
20100081910 | Brister et al. | Apr 2010 | A1 |
20100161269 | Kamath et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
0 098 592 | Jan 1984 | EP |
0 127 958 | Dec 1984 | EP |
0 320 109 | Jun 1989 | EP |
0 353 328 | Feb 1990 | EP |
0 390 390 | Oct 1990 | EP |
0 396 788 | Nov 1990 | EP |
0 441 394 | Aug 1991 | EP |
0 535 898 | Apr 1993 | EP |
0 539 751 | May 1993 | EP |
0 563 795 | Oct 1993 | EP |
0 747 069 | Dec 1996 | EP |
0 776 628 | Jun 1997 | EP |
0 817 809 | Jan 1998 | EP |
0 838 230 | Apr 1998 | EP |
0 880 936 | Dec 1998 | EP |
0 885 932 | Dec 1998 | EP |
0 967 788 | Dec 1999 | EP |
1 078 258 | Feb 2001 | EP |
1 153 571 | Nov 2001 | EP |
1 266 607 | Dec 2002 | EP |
1 571 582 | Sep 2005 | EP |
2656423 | Jun 1991 | FR |
2760962 | Sep 1998 | FR |
1 442 303 | Jul 1976 | GB |
2149918 | Jun 1985 | GB |
2002-189015 | Jun 1985 | JP |
62083649 | Apr 1987 | JP |
07-083871 | Mar 1995 | JP |
WO 1989-02720 | Apr 1989 | WO |
WO 1990-00738 | Jan 1990 | WO |
WO 1990-10861 | Sep 1990 | WO |
WO 1990-13021 | Nov 1990 | WO |
WO 1991-16416 | Oct 1991 | WO |
WO 1992-13271 | Aug 1992 | WO |
WO 1993-14693 | Aug 1993 | WO |
WO 1993-23744 | Nov 1993 | WO |
WO 1994-22367 | Oct 1994 | WO |
WO 1995-13838 | May 1995 | WO |
WO 1996-01611 | Jan 1996 | WO |
WO 1996-03117 | Feb 1996 | WO |
WO 1996-14026 | May 1996 | WO |
WO 1996-25089 | Aug 1996 | WO |
WO 1996-30431 | Oct 1996 | WO |
WO 1996-32076 | Oct 1996 | WO |
WO 1996-37246 | Nov 1996 | WO |
WO 1997-01986 | Jan 1997 | WO |
WO 1997-06727 | Feb 1997 | WO |
WO 1997-19188 | May 1997 | WO |
WO 1997-28737 | Aug 1997 | WO |
WO 1997-43633 | Nov 1997 | WO |
WO 1998-24358 | Jun 1998 | WO |
WO 1999-56613 | Apr 1999 | WO |
WO 1999-48419 | Sep 1999 | WO |
WO 2000-19887 | Apr 2000 | WO |
WO 2000-32098 | Jun 2000 | WO |
WO 2000-33065 | Jun 2000 | WO |
WO 2000-59373 | Oct 2000 | WO |
WO 2000-74753 | Dec 2000 | WO |
WO 2001-012158 | Feb 2001 | WO |
WO 2001-020019 | Mar 2001 | WO |
WO 2001-020334 | Mar 2001 | WO |
WO 2001-034243 | May 2001 | WO |
WO 2001-043660 | Jun 2001 | WO |
WO 2001-052727 | Jul 2001 | WO |
WO 2001-058348 | Aug 2001 | WO |
WO 2001-068901 | Sep 2001 | WO |
WO 2001-069222 | Sep 2001 | WO |
WO 2001-088524 | Nov 2001 | WO |
WO 2001-088534 | Nov 2001 | WO |
WO 2002-024065 | Mar 2002 | WO |
WO 2002-082989 | Oct 2002 | WO |
WO 2002-100266 | Dec 2002 | WO |
WO 2003-022125 | Mar 2003 | WO |
WO 2003-072269 | Sep 2003 | WO |
WO 2005-032400 | Apr 2005 | WO |
WO 2005-057168 | Jun 2005 | WO |
WO 2005-057175 | Jun 2005 | WO |
WO 2005-026689 | Oct 2005 | WO |
WO 2006-017358 | Feb 2006 | WO |
WO 2006-105146 | Oct 2006 | WO |
WO 2007-002209 | Jan 2007 | WO |
WO 2008-001091 | Jan 2008 | WO |
Entry |
---|
US 7,530,950 B2, 05/2009, Brister et al. (withdrawn) |
Aalders et al. 1991. Development of a wearable glucose sensor; studies in healthy volunteers and in diabetic patients. Intl J Artificial Organs 14(2):102-108. |
Abe et al. 1992. Characterization of glucose microsensors for intracellular measurements. Analytical Chemistry 64(18):2160-2163. |
Abel et al. 1984. Experience with an implantable glucose sensor as a prerequisite of an artificial beta cell. Biomedica Biochimica Acta 43(5):577-584. |
Abel et al. 2002. Biosensors for in vivo glucose measurement: can we cross the experimental stage. Biosensors & Bioelectronics 17:1059-1070. |
Adilman 1983. Videogames: Knowing the Score, Creative Computing, V9, p. 224(5), Dec. 1983, Dialog: File 148, Acc# 01891055. |
Amin et al. 2003. Hypoglycemia prevalence in prepubertal children with type 1 diabetes on standard insulin regimen: Use of continuous glucose monitoring system. Diabetes Care 26(3):662-667. |
Answers.com 2002. “xenogenic.” The American Heritage Stedman's Medical Dictionary. Houghton Mifflin Company, 2002. Downloaded Nov. 7, 2006 from http://www.Answers.com/topic/xenogenic. |
Armour et al. Dec. 1990. Application of Chronic Intravascular Blood Glucose Sensor in Dogs. Diabetes 39:1519-1526. |
Asberg et al. 2003. Hydrogels of a Conducting Conjugated Polymer as 3-D Enzyme Electrode. Biosensors & Bioelectronics 19:199-207. |
Atanasov et al. 1994. Biosensor for continuous glucose monitoring. Biotechnology and Bioengineering 43:262-266. |
Atanasov et al. 1997, Implantation of a refillable glucose monitoring-telemetry device. Biosensors & Bioelectonics 12:669-680. |
Aussedat et al. 1997. A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycaemic alarm. Biosensors & Bioelectronics 12(11): 1061-1071. |
Bailey et al. 2007. Reduction in hemoglobin A1c with real-time continuous glucose monitoring: results from a 12-week observational study. Diabetes Technology & Therapeutics 9(3):203-210. |
Baker et al. 1993. Dynamic concentration challenges for biosensor characterization. Biosensors & Bioelectronics 8:433-441. |
Baker et al. 1996. Dynamic delay and maximal dynamic error in continuous biosensors. Analytical Chemistry 68(8):1292-1297. |
Bani Amer, M. M. 2002. An accurate amperometric glucose sensor-based glucometer with eliminated cross-sensitivity. J Med Eng Technol 26(5):208-213. |
Bard et al. 1980. Electrochemical Methods. John Wiley & Sons, pp. 173-175. |
Beach et al. 1999. Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring. IEEE Transactions on Instrumentation and Measurement 48(6):1239-1245. |
Bellucci et al. Jan. 1986. Electrochemical behaviour of graphite-epoxy composite materials (GECM) in aqueous salt solutions. J Applied Electrochemistry 16(1):15-22. |
Bessman et al, 1973. Progress toward a glucose sensor for the artificial pancreas, Proceedings of a Workshop on Ion-Selective Microelectrodes, Jun. 4-5, 1973, Boston, MA, 189-197. |
Biermann et al. 2008. How would patients behave if they were continually informed of their blood glucose levels? A simulation study using a “virtual” patient. Diabetes Technology & Therapeutics 10:178-187. |
Bindra et al. 1989. Pulsed amperontetric detection of glucose in biological fluids at a surface-modified gold electrode. Analytical Chemistry 61:2566-2570. |
Bindra et al. 1991. Design and In Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring. Analytical Chemistry 63:1692-96. |
Bisenberger et al. 1995. A triple-step potential waveform at enzyme multisensors with thick-film gold electrodes for detection of glucose and sucrose. Sensors and Actuators B 28:181-189. |
Bland et al. 1986. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307-310. |
Bland et al. 1990. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput. Biol. Med. 20(5):337-340. |
Bobbioni-Harsch et al. 1993. Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats. J Biomed. Eng. 15:457-463. |
Bode et al. 1999. Continuous glucose monitoring used to adjust diabetes therapy improves glycosylated hemoglobin: A pilot study. Diabetes Research and Clinical Practice 46:183-190. |
Bode et al. 2000. Using the continuous glucose monitoring system to improve the management of type 1 diabetes. Diabetes Technology & Therapeutics 2(Suppl 1):S43-S48. |
Bode, B. W. 2000. Clinical utility of the continuous glucose monitoring system. Diabetes Technology & Therapeutics 2(Suppl 1):S35-S41. |
Boland et al. 2001. Limitations of conventional methods of self-monitoring of blood glucose. Diabetes Care 24(11): 1858-1862 |
Bolinder et al. 1992. Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia 35:1177-1180. |
Bolinder et al. 1997. Self-monitoring of blood glucose in type 1 diabetic patients: Comparison with continuous microdialysis measurements of glucose in subcutaneous adipose tissue during ordinary life conditions. Diabetes Care 20(1):64-70. |
Bort, A. 1998. Electrochemical methods for the determination of glucose. Current Separations 17(1) :25-31. |
Bott, A. W. 1997. A Comparison of Cyclic Voltammetry and Cyclic Staircase Voltammetry, Current Separations 16(1):23-26. |
Bowman, L.; Meindi, J. D. 1986. The packaging of implantable integrated sensors. IEEE Trans Biomed Eng (BME) 33(2):248-255. |
Brauker et al. 1995. Neovascularization of synthetic membranes directed by membrane Microarchitecture. J Biomed Mater Res 29:1517-1524. |
Brauker et al. 1998. Sustained expression of high levels of human factor IX from human cells implanted within an immunoisolation device into athymic rodents. H um Gene Ther 9:879-888. |
Brauker et al. 2001. Unraveling Mysteries at the Biointerface: Molecular Mediator of Inhibition of Blood vessel Formation in the Foreign Body Capsule Revealed. Surfacts Biomaterials 6. 1;5. |
Brauker et al. Jun. 27, 1996. Local Inflammatory Response Around Diffusion Chambers Containing Xenografts. Transplantation 61 (12): 1671-1677. |
Braunwald, 2008. Biomarkers in heart failureNEJM 358: 2148-2159. |
Bremer et al. 1999. Is blood glucose predictable from previous values? A solicitation for data. Diabetes 48:445-451. |
Bremer et al. 2001. Benchmark data from the literature for evaluation of new glucose sensing technologies. Diabetes Technology & Therapeutics 3(3):409-418. |
Brooks et al. 1987/88. Development of an on-line glucose sensor for fermentation monitoring/Biosensors 3:45-56. |
Bruckel et al. 1989. In vivo measurement of subcutaneous glucose concentrations with an enzymatic glucose sensor and a wick method. Klin Wochenschr 67:491-495. |
Brunner et al. 1998. Validation of home blood glucose meters with respect to clinical and analytical approaches. Diabetes Care 21(4):585-590. |
Brunstein et al, 1989. Preparation and validation of implantable electrodes for the measurement of oxygen and glucose. Biomedica Biochimica Acta 48(11/12):911-917. |
Cai et al. 2004. A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Analytical Chemistry 76(4):4038-4043. |
Cameron et al. 1997. Micromodular Implants to provide electrical stimulation of paralyzed muscles and limbs. IEEE Trans Biomed Eng (BME) 44(9):781-790. |
Campanella et al. 1993. Biosensor for direct determination of glucose and lactate in undiluted biological fluids. Biosensors & Bioelectronics 8:307-314. |
Candas et al 1994. An adaptive plasma glucose controller based on on a nonlinear insulin/glucose model IEEE Trans Biomed Eng (BME) 41(2): 116-124. |
Cass et al. 1984. Ferrocene-mediated enzyme electrodes for amperometric determination of glucose. Analytical Chemistry 36:667-671. |
Cassidy et al., Apr. 1993. Novel electrochemical device for the detection of cholesterol or glucose. Analyst 118:415-418. |
Chase et al. 2001. Continuous subcutaneous glucose monitoring in children with type 1 diabetes. Pediatrics 107:222-226. |
Chen et al. 2002. Defining the period of recovery of the glucose concentration after its local perturbation by the implantation of a miniature sensor. Clin. Chem. Lab. Med. 40:786-789. |
Chen et al. 2006. A nonterference polypyrrole glucose biosensor. Biosensor & Bioelectronics 22:639-643. |
Chia et al. 2004. Glucose sensors: toward closed loop insulin delivery. Endocrinol Metab Clin North Am 33:175-95. |
Choleau et al. 2002. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 1. Effect of measurement uncertainties on the determination of sensor sensitivity and background current. Biosensors & Bioelectronics 17:641-646. |
Choleau et al. 2002. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 2. Superiority of the one-point calibration method. Biosensors & Bioelectronics 17:647-654. |
Ciba Speciality Chemicals, inc. 1998. Ciba® Irgacure® 2959 Photoinitiator, Product Description. Apr. 2, 1998. Ciba Specialty Chemicals Inc., Basel, Switzerland. 3 pages. |
Claremont et al. 1986. Subcutaneous implantation of a ferrocene-mediated glucose sensor in pigs. Diabetologia 29:817-821. |
Claremont et al. Jul. 1986. Potentially-implantable, ferrocene-mediated glucose sensor. J Biomed. Eng. 8:272-274. |
Clark et al. 1981. One-minute electrochemical enzymic assay for cholesterol in biological materials. Clinical Chemistry 27(12):1978-1982. |
Clark et al. 1987. Configurational cyclic voltammetry: increasing the specificity and reliablity of implanted electrodes, IEEE/Ninth Annual Conference of the Engineering in Medicine and Biology Society, pp. 0782-0783. |
Clark et al. 1988. Long-term stability of electroenzymatic glucose sensors implanted in mice. Trans Am Soc Artif Intern Organs 34:259-265. |
Clarke et al. Sep.-Oct. 1987. Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose. Diabetes Care 10(5):622-628. |
CLSI. Performance metrics for continuous interstitial glucose monitoring; approved guideline, CLSI document POCT05-A. Wayne, PA: Clinical and Laboratory Standards Institute: 2008 28(33), 72 pp. |
Colangelo et al. 1967. Corrosion rate measurements in vivo. J Biomed Matls Res 1:405-414. |
Colowick et al. 1976, Methods in Enzymology, vol. XLIV, Immobilized Enzymes. New York: Academic Press. |
Cox et al. 1985. Accuracy of perceiving blood glucose in IDDM, Diabetes Care 8(6):529-536. |
Csoregi et al. 1994. Amperometric microbiosensors for detection of hydrogen peroxide and glucose based on peroxidase-modified carbon fibers. E lectroanalysis 6:925-933. |
Csoregi et al. 1994. Design, characterization, and one-point in vivo calibration of a subcutaneously implanted glucose electrode. Analytical Chemistry 66(19):3131-3138. |
Currie et al. 2004. Novel non-intrusive trans-dermal remote wireless micro-fluidic monitoring system applied to continuous glucose and lactate assays for casualty care and combat readiness assessment, RTO HFM Symposium, St. Pete Beach, RTO-MP-HEM-109, Aug. 16-18, 2004. |
Dade International Chemical Systems 1998. DuPont Dimension AR®. 1998. The chemistry analyzer that makes the most of your time, money and effort. Catalog. Dade International, Chemistry Systems. Newark, DE (18 pages). |
Dai et al. 1999. Hydrogel Membranes with Mesh Size Asymmetry Based on the Gradient Crosslink of Poly(vinyl alcohol), J Membrane Science 156:67-79. |
Danielsson et al. 1988, Enzyme thermistors. Methods in Enzymology 137:181-197. |
D'Arrigo et al. 2003. Porous-Si based bioreactors for glucose monitoring and drugs production. Proc. of SPIE 4982:178-184. |
Dassau et al. 2009. In silico evaluation platform for artifical pancreatic (3-cell development—a dynamic simulator for closed loop control with hardware-in-the-loop. Diabetes Technology & Therapeutics 11 (3): 1-8. |
Davies, et al. 1992. Polymer membranes in clinical sensor applications. I. An overview of membrane function. Biomaterials 13(14):971-978. |
Davis et al. 1983. Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase. Enzyme Microb. Technol. 5:383-388. |
Deutsch et al. 1994. Time series analysis and control of blood glucose levels in diabetic patients. Computer Methods and Programs in Biomedicine 41:167-182. |
Dixon et al. 2002. Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. J Neuroscience Methods 119:135-142. |
Durliat et al. 1976 . Spectrophotometric and electrochemical determinations of L(+)-lactate in blood by use of lactate dehydrogenase from yeast. Clinical Chemistry 22(11):1802-1805. |
Edwards Lifesciences 2002. Accuracy for you and your patients. Marketing materials (4 pages). |
El Deheigy et al. 1986, Optimization of an implantable coated wire glucose sensor. J. Biomed Eng. 8:121-129. |
El-Khatib et al. 2007. Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic swine. J Diabetes Sci Tech 1(2):181-192. |
El-Sa'ad et al. 1990. Moisture Absorption by Epoxy Resins: The Reverse Thermal Effect. J Materials Science 25:3577-3582. |
Ernst et al. 2002. Reliable glucose monitoring through the use of microsystem technology. Analytical Bioanalytical Chemistry 373:758-761. |
Fabietti et al. 2007. Clinical validation of new control-oriented model of insulin and glucose dynamics in subjects with type 1 diabetes. Diabetes Technology & Therapeutics 9(4):327-338. |
Fahy et al, 2008. An analysis: hyperglycemic intensive care patients need continuous glucose monitoring—easier said than done. J Diabetes Sci Tech 2(2):201-204. |
Fare et al. 1998. Functional characterization of a conducting polymer-based immunoassay system. Biosensors & Bioelectronics 13(3-4):459-470. |
Feldman et al. 2003. A continuous glucose sensor based on wired enzyme technology—results from a 3-day trial in patients with type 1 diabetes. Diabetes Technology & Therapeutics 5(5):769-779. |
Fischer et al. 1987. Assessment of subcutaneous glucose concentration: validation of the wick technique as a reference for implanted electrochemical sensors in normal and diabetic dogs. Diabetologia 30:940-945. |
Fischer et al. 1989. Oxygen Tension at the Subcutaneous Implantation Site of Glucose Sensors. Biomedica Biochimica Acta 11/12:965-972. |
Fischer et al. 1995. Abstract: Hypoglycaemia-warning by means of subcutaneous electrochemical glucose sensors: an animal study. Horm. Metab. Rese. 27:53. |
Freiberger 1992. Video Game Takes on Diabetes Superhero ‘Captain Novolin’ Offers Treatment Tips, San Francisco Examiner, Jun. 26, 1992, Fourth Edition, Business Sec. B1. |
Frohnauer et al. 2001. Graphical human insulin time-activity profiles using standardized definitions. Diabetes Technology & Therapeutics 3(3):419-429. |
Frost et al. 2002. Implantable chemical sensors for real-time clinical monitoring: Progress and challenges. Current Opinion in Chemical Biology 6:633-641. |
Gabbay et al. 2008. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes. Diabetes Technology & Therapeutics 10:188-193. |
Ganesan et al. 2005. Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor. Analytical Biochemistry 343:188-191. |
Ganesh et al. 2008. Evaluation of the VIA® blood chemistry monitor for glucose in healthy and diabetic volunteers. J Diabetes Sci Tech 2(2):182-193. |
Garg et al. 1999. Correlation of fingerstick blood glucose measurements with GlucoWatch biographer glucose results in young subjects with type 1 diabetes. Diabetes Care 22(10):1708-1714. |
Garg et al. 2004. Improved Glucose Excursions Using an Implantable Real-Time continuous Glucose Sensor in Adults with Type I Diabetes. Diabetes Care 27:734-738. |
Geller et al. 1997, Use of an immunoisolation device for cell transplantation and tumor immunotherapy. Ann NY Acad Sci 831:438-451. |
Gerritsen et al. 1999. Performance of subcutaneously implanted glucose sensors for continuous monitoring. Netherlands J Medicine 54:167-179. |
Gerritsen et al. 2001. Influence of inflammatory cells and serum on the performance of implantable glucose sensors. J Biomed Mater Res 54:69-75. |
Gerritsen, M. 2000. Problems associated with subcutaneously implanted glucose sensors. Diabetes Care 23(2):143-145. |
Gilligan et al. 1994. Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model. Diabetes Care 17(8):882-887. |
Gilligan et al. 2004. Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans. Diabetes Technology & Therapeutics 6:378-386. |
Godsland et al. 2001. Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: The Importance of Basal Glucose Levels. The Biochemical Society and the Medical Research Society 101:1-9. |
Gouda et al., Jul. 4, 2003. Thermal inactivation of glucose oxidase. J Biological Chemistry 278(27):24324-24333. |
Gough et al. 2000. Immobilized glucose oxidase in implantable glucose sensor technology. Diabetes Technology & Therapeutics 2(3):377-380. |
Gough et al. 2003. Frequency characterization of blood glucose dynamics. Annals of Biomedical Engineering 31:91-97. |
Gregg el al. 1990. Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications. Analytical Chemistry 62:258-263. |
Gross et al. 2000. Efficacy and reliability of the continuous glucose monitoring system. Diabetes Technology & Therapeutics 2(Suppl 1):S19-S26. |
Gross et al. 2000. Performance evaluation of the MiniMed® continuous glucose monitoring system during patient home use. Diabetes Technology & Therapeutics 2(1):49-56. |
Guerci et al. 2003. Clinical performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion using insulin analogs. Diabetes Care 26:582-589. |
Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part I: An adsorption-controlled mechanism. Electrochimica Acta 43(5-6):579-588. |
Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: Effect of potential. Electrochimica Acta 43(14-15):2015-2024. |
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature. Electrochimica Acta 44:2455-2462. |
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: Phosphate buffer dependence. Electrochimica Acta 44:4573-4582. |
Hall et al. 2000. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: Inhibition by chloride. Electrochimica Acta 45:3573-3579. |
Harrison et al. 1988. Characterization of perfluorosulfonic acid polymer coated enzyme electrodes and miniaturized integrated potentiostat for glucose analysis in whole blood. Analytical Chemistry 60:2002-2007. |
Hashiguchi et al. 1994. Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method: Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients. Diabetes Care 17(5): 387-396. |
Heise et al. 2003. Hypoglycemia warning signal and glucose sensors: Requirements and concepts. Diabetes Technology & Therapeutics 5:563-571. |
Heller 1990. Electrical wiring of redox enzymes. Acc. Chem. Res. 23:128-134. |
Heller 1992. Electrical Connection of Enzyme Redox Centers to Electrodes. J Phys. Chem. 96:3579-3587. |
Heller, A. 1999. Implanted electrochemical glucose sensors for the management of diabetes. Annu Rev Biomed Eng 1:153-175. |
Heller, A. 2003. Plugging metal connectors into enzymes. Nature Biotechnology 21:631-2. |
Hicks 1985. In Situ Monitoring. Clinical Chemistry 31 (12): 1931-1935. |
Hitchman, M. L. 1978. Measurement of Dissolved Oxygen. In Elving et al. (Eds.). Chemical Analysis, vol. 49, Chap. 3, pp. 34-49, 59-123. New York: John Wiley & Sons. |
Hrapovic et al. 2003. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization. Analtyical Chemistry 75:3308-3315. |
Hu, et al. 1993. A needle-type enzyme-based lactate sensor for in vivo monitoring. Analytica Chimica Acta, 281:503-511. |
Huang et al. Aug. 1975. Electrochemical Generation of Oxygen. 1: The Effects of Anions and Cations on Hydrogen Chemisorption and Aniodic Oxide Film Formation on Platinum Electrode. 2: The Effects of Anions and Cations on Oxygen Generation on Platinum Electrode, pp. 1-116. |
Huang et al., Sep. 1997. A 0.5mW Passive Telemetry IC for Biomedical Applications, Proceedings of the 23rd European Solid-State Circuits Conference (ESSCIRC '97), pp. 172-175, Southampton, UK. |
Hunter et al. Mar. 31, 2000, Minimally Invasive Glucose Sensor and Insulin Delivery System. MIT Home Automation and Healthcare Consortium. Progress Report No. 2-5, 17 pages. |
Ishikawa et al. 1998. Initial evaluation of a 290-mm diameter subcutaneous glucose sensor: Glucose monitoring with a Biocompatible, flexible-wire, enzyme-based amperometric microsensor in diabetic and nondiabetic humans. J Diabetes and Its Complications 12:295-301. |
Jablecki el al. 2000. Simulations of the frequency response of implantable glucose sensors. Analytical Chemistry 72:1853-1859. |
Jaremko et al. 1998. Advances toward the implantable artificial pancreas for treatment of diabetes. Diabetes Care 21(3):444-450. |
Jensen et al. 1997. Fast wave forms for pulsed electrochemical detection of glucose by incorporation of reductive desorption of oxidation products. Analytical Chemistry 69(9):1776-1781. |
Jeong et al. 2003. In vivo calibration of the subcutaneous amperometric glucose sensors using a non-enzyme electrode. Biosensors & Bioelectronics 19:313-319. |
Jeutter et al. 1993. Design of a radio-linked implantable cochlear prosthesis using surface acoustic wave devices. IEEE Transactions on ultrasonics, ferroelectrics and frequency control 40(5):469-477. |
Jeutter, D. C. 1982. A transcutaneous implanted battery recharging and biotelemeter power switching system. IEEE Trans Biomed Eng (BME) 29:314-321. |
Johnson et al. 1992. In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Biosensors & Bioelectronics 7:709-714. |
Joung et al. 1998. An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer. IEEE Trans Power Electronics 13 (6): 1013-1022. |
Jovanovic, L. 2000. The role of continuous glucose monitoring in gestational diabetes mellitus. Diabetes Technology & Therapeutics 2(Suppl 1):S67-S71. |
Kacaniklic et al. May-Jun. 1994. Amperometric Biosensors for Detection of L- and D-Amino Acids Based on Coimmoblized Peroxidase and L- and D-Amino Acid Oxidases in Carbon Paste Electrodes. Electroanalysis, 6(5-6): 381-390. |
Kamath et al. 2008. Calibration of a continuous glucose monitor: effect of glucose rate of change, Eighth Annual Diabetes Technology Meeting, Nov. 13-15, 2008, p. A88. |
Kang et al. 2003. In vitro and short-term in vivo characteristics of a Kel-F thin film modified glucose sensor. Analytical Science 19:1481-1486. |
Kargol et al. 2001. Studies on the structural properties of porous membranes: measurement of linear dimensions of solutes. Biophysical Chemistry 91:263-271. |
Karube et al. 1993. Microbiosensors for acetylcholine and glucose. Biosensors & Bioelectronics 8:219-228. |
Kaufman et al. 2001. A pilot study of the continuous glucose monitoring system. Diabetes Care 24(12):2030-2034. |
Kaufman. 2000. Role of the continuous glucose monitoring system in pediatric patients. Diabetes Technology & Therapeutics 2(Supp 1):S49-S52. |
Kawagoe et al. 1991. Enzyme-modified organic conducting salt microelectrode. Analytical Chemistry 63:2961-2965. |
Keedy et al. 1991. Determination of urate in undiluted whole blood by enzyme electrode. Biosensors & Bioelectronics 6: 491-499. |
Kerner et al. 1988. A potentially implantable enzyme electrode for amperometric measurement of glucose. Horm Metab Res Suppl. 20:8-13. |
Kerner et al. 1993. The function of a hydrogen peroxide-detecting electroenzymatic glucose electrode is markedly impaired in human sub-cutaneous tissue and plasma. Biosensors & Bioelectronics 8:473-482. |
Kerner, W. 2001 . Implantable glucose sensors: Present status and future developments. Exp. Clin. Endocrinol. Diabetes 109(Suppl 2):S341-S346. |
Kiechle, F.L. 2001. The impact of continuous glucose monitoring on hospital point-of-care testing programs. Diabetes Technology & Therapeutics 3:647-649. |
Klueh et al. 2003. Use of Vascular Endothelia Cell Growth Factor Gene Transfer to Enhance Implantable Sensor Function in Vivo. J Biomed Mater Res 67A:1072-1086. |
Klueh et al. 2007. Inflammation and glucose sensors: use of dexamethasone to extend glucose sensor function and life span in vivo. J Diabetes Sci Tech 1(4):496-504. |
Kondo et al. 1982. A miniature glucose sensor, implantable in the blood stream. Diabetes Care. 5(3):218-221. |
Koschinsky et al. 1988. New approach to technical and clinical evaluation of devices for self-monitoring of blood glucose. Diabetes Care 11 (8): 619-619. |
Koschinsky et al, 2001. Sensors for glucose monitoring: Technical and clinical aspects. Diabetes Metab. Res. Rev. 17:113-123. |
Kost et al. 1985. Glucose-sensitive membranes containing glucose oxidase: activitiy, swelling, and permeability studies. J Biomed Matls Res 19:1117-1133. |
Koudelka et al. 1989 , In vivo response of microfabricated glucose sensors to glycemia changes in normal rats. Biomedica Biochimica Acta 48(11-12):953-956. |
Koudelka et al. 1991. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors. Biosensors & Bioelectronics 6:31-36. |
Kovatchev et al. Aug. 2004. Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data. Diabetes Care 27(8):1922-1928. |
Kraver et al. 2001. A mixed-signal sensor interface microinstrument. Sensors and Actuators A 91:266-277. |
Krouwer, J. S. 2002. Setting performance goals and evaluating total analytical error for diagnostic assays. Clinical Chemistry 48(6):919-927 |
Kruger et al. 2000. Psychological motivation and patient education: A role for continuous glucose monitoring. Diabetes Technology & Therapeutics 2(Suppl 1):S93-S97. |
Kulys et al., 1994. Carbon-paste biosensors array for long-term glucose measurement. Biosensors& Beioelectronics 9:491-500. |
Kunjan et al. 2008. Automated blood sampling and glucose sensing in critical care settings. J Diabetes Sci Tech 2(3):194-200. |
Kunzler et al. 1993. Hydrogels based on hydrophilic side chain siloxanes. Poly Mat Sci and Eng 69:226-227. |
Kunzler et al. Aug. 21, 1995. Contact lens materials. Chemistry & Industry, pp. 651-655. |
Kurnik et al. 1999. Application of the mixtures of experts algorithm for signal processing in a noninvasive glucose monitoring system. Sensors and Actuators B 60:19-26. |
Kurtz et al. 2005. Recommendations for blood pressure measurement in humans and experimental animals, Part 2: Blood pressure measurement in experimental animals, A statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45:299-310. |
LaCourse et al. 1993. Optimization of waveforms for pulsed amperometric detection of carbohydrates based on pulsed voltammetry. Analytical Chemistry 65:50-52. |
Ladd et al. 1996. Structure Determination by X-ray Crystallography, 3rd ed. Plenum, 1996, Ch. 1, pp. xxi-xxiv and 1-58. |
Lee et al. 1999. Effects of pore size, void volume, and pore connectivity on tissue responses. Society for Biomaterials 25th Annual Meeting, p. 171. |
Lehmann et al. May 1994. Retrospective validation of a physiological model of glucose-insulin interaction in type 1 diabetes mellitus. Med. Eng. Phys. 16:193-202. |
Lerner et al. 1984. An implantable electrochemical glucose sensor. Ann. N. Y. Acad. Sci. 428:263-278. |
Lewandowski et al. 1988. Evaluation of a miniature blood glucose sensor. Trans Am Soc Artif Intern Organs 34:255-258. |
Leypoldt et al. 1984. Model of a two-substrate enzyme electrode for glucose. Analytical Chemistry 56:2896-2904. |
Linke et al. 1994. Amperometric biosensor for in vivo glucose sensing based on glucose oxidase immobilized in a redox hydrogel. Biosensors & Bioelectronics 9:151-158. |
Loffler et al. 1995. Separation and determination of traces of ammonia in air by means of chromatomembrane cells. Fresenius J Analytical Chemistry 352:613-614. |
Lohn et al. 1999. A knowledge-based system for real-time validation of calibrations and measurements,. Chemometrics and Intelligent Laboratory Systems 46:57-66. |
Lowe, 1984. Biosensors. Trends in Biotechnology 2(3):59-65. |
Luong et al. 2004. Solubilization of Multiwall Carbon Nanotubes by 3-Aminopropyltriethoxysilane Towards the Fabrication of Electrochemical Biosensors with Promoted Electron Transfer. Electronanalysis 16(1-2): 132-139. |
Lyman D. 1960. Polyurethanes. I. The Solution Polymerization of Diisocyanates with Ethylene Glycol. J Polymer Sci XLV:45:49. |
Lynch et al. 2001. Estimation-based model predictive control of blood glucose in type I diabetics: A simulation study. Proceedings of the IEEE 27th Annual Northeast Bioengineering Conference, pp. 79-80. |
Lynn, P. A. 1971. Recursive digital filters for biological signals. Med. & Biol. Eng 9:37-43. |
Madaras et al. 1996. Microfabricated amperometric creatine and creatinine biosensors. Analytica Chimica Acta 319:335-345. |
Maidan et al. 1992. Elimination of Electrooxidizable Interferent-Produced Currents in Amperometric Biosensors. Analytical Chemistry 64:2889-2896. |
Makale et al. 2003. Tissue window chamber system for validation of implanted oxygen sensors. Am. J. Physiol. Heart Circ. Physiol. 284:H2288-H2294. |
Malin et al. 1999. Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy. Clinical Chemistry 45(9);1651-1658. |
Mancy et al. 1962. A galvanic cell oxygen analyzer. J Electroanalytical Chemistry 4:65-92. |
Maran et al. 2002. Continuous subcutaneous glucose monitoring in diabetic patients: A multicenter analysis. Diabetes Care 25(2):347-352. |
March, W. F. 2002. Dealing with the delay. Diabetes Technology & Therapeutics 4(1):49-50. |
Marena et al. 1993: The artificial endocrine pancreas in clinical practice and research. Panminerva Medica 35(2):67-74. |
Markwell medical 1990. Direct 30/30® Blood Glucose Sensor, (Markwell Medical) Catalog, © 1990, ELCO Diagnostics Company (1 page). |
Martin, R. F. 2000. General Deming regression for estimating systematic bias and its confidence interval in method-comparison studies. Clinical Chemistry, 46(1):100-104. |
Mascini et al. 1989. Glucose electrochemical probe with extended linearity for whole blood. J Pharm Biomed Anal 7(12): 1507-1512. |
Mastrototaro et al. 1991. An electroenzymatic glucose sensor fabricated on a flexible substrate. Sensors and Actuators B 5:139-144. |
Mastrototaro et al. 2003. Reproducibility of the continuous glucose monitoring system matches previous reports and the intended use of the product. Diabetes Care 26:256; author reply p. 257. |
Mastrototaro, J. J. 2000. The MiniMed continuous glucose monitoring system. Diabetes Technology & Therapeutics 2(Suppl 1):S13-S18. |
Matsuki. 1994. Energy transfer system utilizing amorphous wires for implantable medical devices. IEEE Trans Magnetics 31(2):1276-1282. |
Matsumoto et al. 1998. A micro-planar amperometeric glucose sensor unsusceptible to interference species. Sensors and Actuators B 49:68-72. |
Matsumoto et al. 2001. A long-term lifetime amperometric glucose sensor with a perfluorocarbon polymer coating. Biosensors & Bioelectronics 16:271-276. |
Matthews et al. 1988. An amperometric needle-type glucose sensor testing in rats and man. Diabetic Medicine 5:248-252. |
Mazze et al. 2008. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diabetes Technology & Therapeutics 10:149-159. |
Mazzola et al. 1983. Video Diabetes: A Teaching Tool for Children with Insulin-Dependent Diabetes, Proceedings—7th Annual Symposium on Computer Applications in Medical Care; Washington, D.C.; Dialog;, (Oct. 1983), File 8, Acc# 01624462. |
McCartney et al. 2001. N ear-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Analytical Biochemistry 292:216-221. |
McGrath et al. 1995. The use of differential measurements with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis. Biosensors & Bioelectronics 10:937-943. |
McKean, et al. Jul. 7, 1988, A Telemetry Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors. IEEE Trans Biomed Eng (BME) mckean-198835:526-532. |
Memoli et al. 2002. A comparison between different immobilised glucoseoxides-based electrodes. J Pharm Biomed Anal 29:1045-1052. |
Merriam Webster on-line dictionary 3008. http://www.merriam-webster.com/dictionary, definition for “aberrant,” Aug. 19, 2008. |
Merriam-Webster Online Dictionary 2007. Definition of “nominal”, downloaded Apr. 23, 2007 from http://www.merriam-webster.com/dictionary/nominal. |
Metzger et al. Jul. 2002. Reproducibility of glucose measurements using the glucose sensor. Diabetes Care 25(6):1185-1191. |
Meyerhoff et al. 1992. On line continuous monitoring of subcutaneous tissue glucose in men by combining portable glucosensor with microdialysis. Diabetologia 35:1087-1092. |
Miller et al. 1989. Generation of IL1-like activity in response to biomedical polymer implants: a comparison of in vitro and in vivo models. J Biomed Mater Res 23:1007-1026. |
Miller et al. 1989. In vitro stimulation of fibroblast activity by factors generated for human monocytes activated by biomedical polymers. J Biomed Mater Res 23:911-930. |
Miller et al. 1993. Development of an autotuned transcutaneous energy transfer system. ASAIO J 39:M706-M710. |
Miller, A. 1988. Human monocyte/macrophage activation and interleukin 1 generation by biomedical polymers. J Biomed Mater Res 23:713-731. |
Moatti-Sirat et al. 1992. Evaluating in vitro and in vivo the interference of ascorbate and acetaminophen on glucose detection by a needle-type glucose sensor. Biosensors & Bioelectronics 7:345-352. |
Moatti-Sirat et al. 1992. Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several says in rat subcutaneous tissue. Diabetologia 35:224-230. |
Moatti-Sirat et al. 1994. Reduction of acetaminophen interference in glucose sensors by a composite Nafion membrane: demonstration in rats and man. Diabetologia 37(6):610-616. |
Monsod et al. 2002. Do sensor glucose levels accurately predict plasma glucose concentrations during hypoglycemia and hyperinsulinemia? Diabetes Care 25(5):889-893. |
Morff et al. 1990. Microfabrication of reproducible, economical, electroenzymatic glucose sensors, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 12(2):0483-0484. |
Mosbach et al. 1975. Determination of heat changes in the proximity of immobilized enzymes with an enzyme termistor and its use for the assay of metabolites. Biochimica Biophysica Acta (Enzymology) 403:256-265. |
Motonaka et al. 1993. Determination of cholesterol and cholesterol ester with novel enzyme microsensors. Analytical Chemistry 65:3258-3261. |
Moussy et al. 1994. A miniaturized Nation-based glucose sensor: In vitro and in vivo evaluation in dogs. Int. J Artif. Organs 17(2):88-94. |
Moussy et al. 2000. Biomaterials community examines biosensor biocompatibility. Diabetes Technology & Therapetuics 2:473-477. |
Mowery et al. 2000. Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release. Biomaterials 21:9-21. |
Murphy, et al. 1992. Polymer membranes in clinical sensor applications. II. The design and fabrication of permselective hydrogels for electrochemical devices. Biomaterials 13(14):979-990. |
Muslu. 1991. Trickling filter performance. Applied Biochemistry & Biotechnology 37:211-224. |
Myler et al. 2002. Ultra-thin-polysiloxane-film-composite membranes for the optimisation of amperometric oxidase enzyme electrodes. Biosensors & Bioelectronics17:35-43. |
Nakayama et al. 1992. Surface fixation of hydrogels: heparin and glucose oxidase hydrogelated surfaces. ASAIO J 38:M421-M424. |
Nam et al. 2000. A-novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 53:1-7. |
Neuburger et al. 1987. Pulsed amperometric detection of carbohydrates at gold electrodes with a two-step potential waveform. Analytical Chemistry. 59:150-154. |
Nintendo Healthcare, Wired, Dec. 1993. |
Novo Nordisk 1994. Diabetes Educational Video Game Recognized by Software Publishers Association, Press Release, Novo Nordisk, Mar. 14, 1994. |
Ohara et al. 1994. “Wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Analytical Chemistry 66:2451-2457. |
Ohara, et al. Dec. 1993. Glucose electrodes based on cross-linked bis(2,2′-bipyridine)chloroosmium(+/2+) complexed poly(l-vinylimidazole) films. Analytical Chemistry 65:3512-3517. |
Okuda et al. 1971. Mutarotase effect on micro determinations of D-glucose and its anomers with p-D-glucose oxidase. Analytical Biochemistry 43:312-315. |
Palmisano et al. 2000. Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosensors & Bioelectronics 15:531-539. |
Panetti 2002. Differential effects of sphingosine 1-phosphate and lysophosphatidic acid on endothelial cells. Biochimica Biophysica Acta 1582:190-196. |
Panteleon et al. 2003. The role of the independent variable to glucose sensor calibration. Diabetes Technology & Therapeutics 5(3):401-410. |
Parker et al. 1999. A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng (BME) 46(2):148-157. |
Patel et al. 2003. Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems—a preliminary report. Biosensors & Bioelectronics. 18:1073-6. |
Pfeiffer et al. 1992. On line continuous monitoring of subcutaneous tissue glucose is feasible by combining portable glucosensor with microdialysis. Horm. Metab. Res. 25:121-124. |
Pfeiffer, E.F. 1990. The glucose sensor: the missing link in diabetes therapy. Horm Metab Res Suppl 24:154-164. |
Phillips et al. 1988. Biomedical Applications of Polyurethanes: Implications of Failure Mechanisms. J. Biomat. Appl. 3:202-227. |
Phillips. 1995. A high capacity transcutaneous energy transmission system. ASAIO J 41 :M259-M262. |
Pichert et al. 2000. issues for the coming age of continuous glucose monitoring. Diabetes Educ 26(6):969-980. |
Pickup et al. 1987/88. Implantable glucose sensors: choosing the appropriate sensor strategy. Biosensors 3:335-346 (1987/88). |
Pickup et al. 1988. Progress towards in vivo glucose sensing with a ferrocene-mediated amperometric enzyme electrode. Horm Metab Res Suppl 20:34-36. |
Pickup et al. 1989. In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer. Diabetologia 32:213-217. |
Pickup et al. 1989. Potentially-implantable, amperometric glucose sensors with mediated electron transfer: improving the operating stability. Biosensors 4:109-119. |
Pickup et al. 1993. Responses and Calibration of Amperometric Glucose Sensors Implanted in the Subcutaneous Tissue of Man. ACTA Diabetologia 30:143-148. |
Pineda et al. 1996, Bone regeneration with resorbable polymeric membranes. III. Effect of poly(L-lactide) membrane pore size on the bone healing process in large defects. J Biomed Matls Res 31:385-394. |
Pinner et al. 1959. Cross-linking of cellulose acetate by ionizing radiation. Nature 184:1303-1304. |
Pishko et al. 1991. Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels. Analytical Chemistry 63:2268-2272. |
Pitzer et al. 2001. Detection of hypoglycemia with the GlucoWatch biographer. Diabetes Care 24(5):881-885. |
Poirier et al. 1998. Clinical and statistical evaluation of self-monitoring blood glucose meters. Diabetes Care 21 (11):1919-1924. |
Poitout et al. 1993. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Diabetologia 36:658-663. |
Poitout et al. 1994. Development of a glucose sensor for glucose monitoring in man: the disposable implant concept. Clinical Materials 15:241-246. |
Poitout, et al. 1991. In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor. ASAIO Transactions, 37:M298-M300. |
Postlethwaite et al. 1996. Interdigitated array electrode as an alternative to the rotated ring-disk electrode for determination of the reaction products of dioxygen reduction. Analytical Chemistry 68:2951-2958. |
Prabhu et al. 1981. Electrochemical studies of hydrogen peroxide at a platinum disc electrode. Electrochitnica Acta 26(6):725-729. |
Quinn et al. 1995. Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors. Am J Physiol 269(1 Pt 1):E155-E161. |
Quinn et al. 1997. Biocompatible glucose-permeable hydrogel for in situ coating of implatable biosensors. Biomaterials 18:1665-1670. |
Rabah et al. 1991. Electrochemical wear of graphite anodes during electrolysis of brine. Carbon 29(2):165-171. |
Ratner, B.D. 2002, Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Control Release 78:211-218 1548. |
Raya Systems Pioneers Healthy Video Games, PlayRight, Nov. 1993 (pp. 14-15). |
Reach et al. 1986. A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors. Biosensors 2:211-220. |
Reach et al. 1992. Can continuous glucose monitoring be used for the treatment of diabetes? Analytical Chemistry 64(5):381-386. |
Reach, G. 2001. Which threshold to detect hypoglycemia? Value of receiver-operator curve analysis to find a compromise between sensitivity and specificity. Diabetes Care 24(5):803-804. |
Reach, Gerard. 2001. Letters to the Editor Re: Diabetes Technology & Therapeutics, 2000;2:49-56. Diabetes Technology & Therapeutics 3(1): 129-130. |
Rebrin et al. 1989. Automated feedback control of subcutaneous glucose concentration in diabetic dog. Diabetologia 32:573-576. |
Rebrin et al. 1992. Subcutaenous glucose monitoring by means of electrochemical sensors: fiction or reality? J Biomed Eng 14:33-40. |
Rebrin et al. 1999. Subcutaneous glucose predicts plasma glucose independent of insulin: Implications for continuous monitoring. Am J Physiol 277:E561-E571. |
Rhodes et al. 1994. Prediction of pocket-portable and implantable glucose enzyme electroce performance from combined species permeability and digital simulation analysis. Analytical Chemistry 66(9):1520-1529. |
Rigla et al. 2008. Real-time continuous glucose monitoring together with telemedical assistance improves glycemic control and glucose stability in pump-treated patients. Diabetes Technology & Therapeutics 10:194-199. |
Rinken et al. 1998. Calibration of glucose biosensors by using pre-steady state kinetic data. Biosensors & Bioelectronic, 13:801-807. |
Rivers et al. 2001. Central venous oxygen saturation monitoring in the critically ill patient. Current Opinion in Critical Care 7:204-211. |
Sachlos et al. 2003. Making Tissue Engineering Scaffolds Work. Review on the Application of Sold Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds. European Cells and Materials 5:29-40. |
Sakakida et al. 1992. Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations. Artif. Organs Today 2(2):145-158. |
Sakakida et al. 1993. Ferrocene-Mediated Needle Type Glucose Sensor Covered with Newly Designed Biocompatible Membran. Sensors and Actuators B 13-14:319-322. |
Salardi et al. 2002 . The glucose area under the profiles obtained with continuous glucose monitoring system relationships with HbA1c in pediatric type 1 diabetic patients. Diabetes Care 25(10):1840-1844. |
Sanders et al. 2003. Fibrous Encapsulation of Single Polymer Microfibers Depends on their Vertical Dimension in subcutaneous Tissue Polymer Microfibers. J Biomed Mater Res 67A:1181-1187. |
Sansen et al. 1985. Glucose sensor with telemetry system. Chapter 12, pp. 167-175 In Ko, W. H. (Ed.). Implantable Sensors for Closed Loop Prosthetic Systems, Futura Publishing Co., Mount Kisco, NY. |
Sansen et al. 1990. A smart sensor for the voltammetric measurement of oxygen or glucose concentrations. Sensors and Actuators B 1:298-302. |
Schmidt et al. 1992. Calibration of a wearable glucose sensor. Intl J Artif Organs 15(1):55-61. |
Schmidt et al. 1993. Glucose concentration in subcutaneous extracellular space. Diabetes Care 16(5):695-700. |
Schmidtke et al. 1998. Accuracy of the one-point in vivo calibration of “wired” glucose oxidase electrodes implanted in jugular veins of rats in periods of rapid rise and decline of the glucose concentration. Analytical Chemistry 70:2149-2155. |
Schmidtke et al. 1998. Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. PNAS USA 95:294-299. |
Schoemaker et al. 2003. The SCGMI system: Subcutaneous continuous glucose monitoring based on microdialysis technique. Diabetes Technology & Therapeutics 5(4):599-608. |
Schoonen et al. 1990 Development of a potentially wearable glucose sensor for patients with diabetes mellitus: design and in-vitro evaluation. Biosensors & Bioelectronics 5:37-46. |
Schuler et al. 1999, Modified gas-permeable silicone rubber membranes for covalent immobilisation of enzymes and their use in biosensor development. Analyst 124:1181-1184. |
Selam, J. L. 1997. Management of diabetes with glucose sensors and implantable insulin pumps, From the dream of the 60s to the realities of the 90s. ASAIO J, 43:137-142. |
Service et al. 1970. Mean amplitude of glycemic excursions, a measure of diabetic instability, Diabetes 19: 644-655. |
Service et al. 1987. Measurements of glucose control. Diabetes Care 10: 225-237. |
Service, R. F. 2002. Can sensors make a home in the body? Science 297:962-3. |
Sharkawy et al. 1996. Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J Biomed Mater Res 37:401-412. |
Shaw et al. 1991. In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients. Biosensors & Bioelectronics 6:401-406. |
Shichiri et al. 1982. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet 2:1129-1131. |
Shichiri et al. 1983. Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas. Diabetologia 24:179-184. |
Shichiri et al. 1985. Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas in Implantable Sensors Chapter 15, pp. 197-210 In Ko, W. H. (Ed.). Implantable Sensors for Closed Loop Prosthetic Systems, Futura Publishing Co., Mount Kisco, NY. |
Shichiri et al. 1986, Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals, Diabetes Care 9(3):298-301. |
Shichiri et al., 1989. Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor. Diab. Nutr. Metab. 2:309-313. |
Shults et al. 1994. A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Trans Biomed Eng (BME) 41(10):937-942. |
Sieminski et al. 2000. Biomaterial-microvasculature interactions. Biomaterials 21:2233-2241. |
Sigma-Adrich Corp. 2005. Cellulose Acetate Product Description, Product No. 419028, Sigma-Aldrich Corp., St. Louis, MO. |
Sigma-Aldrich Corp 2005. Nafion® 117 Solution Product Description, Product No. 70160, Sigma-Aldrich Corp., St. Louis, MO. Downloaded from https://www.signaaldrich.com/cgi-bin/hsrun/Suite7/Suite/HAHTpage/Suite.HsExternal Prod . . . on Apr. 7, 2005. |
Skyler, J. S. 2000. The economic burden of diabetes and the benefits of improved glycemic control: The potential role of a continuous glucose monitoring system. Diabetes Technology & Therapeutics 2(Suppl 1):S7-S12. |
Slater-Maclean et al. 2008. Accuracy of glycemic measurements in the critically ill. Diabetes Technology & Therapeutics 10:169-177. |
Smith et al. 1998. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans Biomed Eng (BME) 45(4):463-475. |
Sokol et al. 1980. Immobilized-enzyme rate-determination method for glucose analysis. Clinical Chemistry. 26(1):89-92. |
Sokolov et al. 1995. Metrological opportunities of the dynamic mode of operating an enzyme amperometric Biosensor. Med. Eng. Phys. 17(6):471-476. |
Sparacino et al. 2008. Continuous glucose monitoring time series and hypo/hyperglycemia prevention: requirements, methods, open problems. Current Diabetes Reviews 4:181-192. |
Sproule et al, 2002. Fuzzy pharmacology: Theory and applications. Trends in Pharmacological Sciences 23(9):412-417. |
Sriyudthsak et al. 1996. Enzyme-epoxy membrane based glucose analyzing system and medical applications. Biosensors & Bioelectronics 11:735-742. |
Steil et al. 2003. Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor. Diabetes Technology & Therapeutics 5(1 ):27-31. |
Stern et al. 1957. Electrochemical polarization: 1. A theoretical analysis of the shape of polarization curves. J the Electrochemical Society 104(1):56-63. |
Sternberg et al. 1988. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Analytical Chemistry 69:2781-2786. |
Sternberg et al. 1988. Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors. Biosensors 4:27-40. |
Sternberg et al. 1996. Does fall in tissue glucose precede fall in blood glucose? Diabetologia 39:609-612. |
Stokes 1988. P olyether Polyurethanes: Biostable or Not? J Biomat Appl 3:228-259. |
Street et al. 1988. A note on computing robust regression estimates via iteratively reweighted least squares. The American Statistician 42(2):152-154. |
Suh et al. 2002. Behavior of fibroblasts on a porous hyaluronic acid incorporated collagen matrix. Yonsei Medical Journal 43(2):193-202. |
Sumino T. et al. 1998. Preliminary study of continuous glucose monitoring with a microdialysis technique. Proceedings of the IEEE 20(4):1775-1778. |
Takegami et al. 1992. Pervaporation of ethanol/water mixtures using novel hydrophobic membranes containing polydimethylsiloxane. J Membrane Science 75:93-105. |
Tamura, T. et al. 2000. Preliminary study of continuous glucose monitoring with a microdialysis technique and a null method—a numerical analysis. Frontiers Med Biol Eng 10(2):147-156. |
Tanenberg et al. 2000. Continuous glucose monitoring system: A new approach to the diagnosis of diabetic gastroparesis. Diabetes Technology & Therapeutics 2(Suppl 1):S73-S80. |
Tang et al. 1993. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 178:2147-2156. |
Tang et al. 1995. Inflammatory responses to biomaterials. Am J Clin Pathol 103:466-471. |
Tang et al. 1996. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 97:1329-1334. |
Tang et al. 1998. Mast cells mediate acute inflammatory responses to implanted biomaterials. PNAS USA 95:8841-8846. |
Tatsuma et al. 1991. Oxidase/peroxidase bilayer-modified electrodes as sensors for lactate, pyruvate, cholesterol and uric acid. Analytical Chimica Acta 42:85-89. |
Thome et al. 1995. (Abstract) Can the decrease in subcutaneous glucose concentration precede the decrease in blood glucose level? Proposition for a push-pull kinetics hypothesis. Horm. Metab. Res. 27:53. |
Thorne-Duret et al. 1996, Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue, Diabetes Metabolism, 22:174-178. |
Thome-Duret et al, 1996. Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood. Analytical Chemistry 68:3822-3826. |
Thome-Duret et al. 1998. Continuous glucose monitoring in the free-moving rat. Metabolism 47:799-803. |
Thompson et al. 1986. In Vivo Probes: Problems and Perspectives. Clin Biochem 19(5):255-261. |
Tibell et al. 2001. Survival of macroencapsulated allogeneic parathyroid tissue one year after transplantation in nonimmuno-suppressed humans. Cell Transplant 10:591-9. |
Tierney et al. 2000. Effect of acetaminophen on the accuracy of glucose measurements obtained with the GlucoWatch biographer. Diabetes Technology & Therapeutics 2:199-207. |
Tierney et al. 2000. The GlucoWatch® biographer: A frequent, automatic and noninvasive glucose monitor. Ann. Med. 32:632-641. |
Tilbury et al. 2000. Receiver operating characteristic analysis for intelligent medical systems—A new approach for finding confidence intervals. IEEE Trans Biomed Eng (BME) 47(7):952-963. |
Torjman et al. 2008. Glucose monitoring in acute care: technologies on the horizon. J Diabetes Sci Tech 2(2):178-181. |
Trajanoski et al. 1998. Neural predictive controller for insulin delivery using the subcutaneous route. IEEE Trans Biomed Eng (BME) 45(9): 1122-1134. |
Trecroci, D. 2002. A Glimpse into the Future—Continuous Monitoring of Glucose with a Microfiber. Diabetes Interview 42-43. |
Tse and Gough. 1987. Time-Dependent Inactivation of Immobilized Glucose Oxidase and Catalase. Biotechnol Bioeng 29:705-713. |
Turner and Pickup 1985. Diabetes mellitus: biosensors for research and management. Biosensors 1:85-115. |
Turner et. al. 1984. Carbon Monoxide: Acceptor Oxidoreductase from Pseudomonas Thermocarboxydovorans Strain C2 and its use in a Carbon Monoxide Sensor. Analytica Chimica Acta 163: 161-174. |
Turner, A.P.F. 1988. Amperometric biosensor based on mediator-modified electrodes. Methods in Enzymology 137:90-103. |
Unger et al. 2004. Glucose control in the hospitalized patient. Emerg Med 36(9):12-18. |
Updike et al. 1967. The enzyme electrode. Nature 214:986-988. |
Updike et al. 1979. Continuous glucose monitor based on an immobilized enzyme electrode detector. J Lab Clin Med 93(4):518-527. |
Updike et al. 1982. Implanting the glucose enzyme electrode: Problems, progress, and alternative solutions. Diabetes Care 5(3):207-212. |
Updike et al. 1988. Laboratory Evaluation of New Reusable Blood Glucose Sensor. Diabetes Car, 11:801-807. |
Updike et al. 1994. Enzymatic glucose sensor: Improved long-term performance in vitro and in vivo. ASAIO J 40(2):157-163. |
Updike et al. 1997. Principles of long-term fully implanted sensors with emphasis on radiotelemetric monitoring of blood glucose form inside a subcutaneous foreign body capsule (FBC), Chapter 4. pp. 117-137 In Fraser. ed., Biosensors in the Body. John Wiley & Sons, New York, NY. |
Updike et al. 2000. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration, Diabetes Care 23(2):208-214. |
Utah Medical Products Inc. 2003. Blood Pressure Transducers product specifications. (6 pages). |
Vadgama, P. Nov. 1981. Enzyme electrodes as practical biosensors. J Medical Engineering & Technology 5(6):293-298. |
Vadgama. 1988. Diffusion limited enzyme electrodes. NATO ASI Series: Series C, Math and Phys. Sci, 226:359-377. |
Valdes et al. 2000. In vitro and in vivo degradation of glucose oxidase enzyme used for an implantable glucose biosensor. Diabetes Technology & Therapeutics 2:367-376. |
Van den Berghe 2004. Tight blood glucose control with insulin in “real-life” intensive care. Mayo Clin Proc 79(8):977-978. |
Velho et al. 1989. In vitro and in vivo stability of electrode potentials in needle-type glucose sensors. Influence of needle material. Diabetes 38:164-171. |
Velho et al. 1989. Strategies for calibrating a subcutaneous glucose sensor. Biomedica Biochimica Acta 48(11/12):957-964. |
Von Woedtke et al. 1989. In situ calibration of implanted electrochemical glucose sensors. Biomedica Biochimica Acta 48(11/12):943-952. |
Wade Jr., 2003. Organic Chemistry, Fifth Edition, pp. 762-763. Prentice Hall, Upper Saddle River, NJ. |
Wagner et al. 1998. Continuous amperometric monitoring of glucose in a brittle diabetic chimpanzee with a miniature subcutaneous electrode. PNAS USA 95:6379-6382. |
Wang et al. 1994. Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor. Analytical Chemistry 66:3600-3603. |
Wang et al. 1997. Improved ruggedness for membrane-based amperometric sensors using a pulsed amperometric method. Analytical Chemistr7y 69:4482-4489. |
Ward et al. 1999. Assessment of chronically implanted subcutaneous glucose sensors in dogs: The effect of surrounding fluid masses. ASAIO J 45:555-561. |
Ward et al. 2000. Rise in background current overtime in a subcutaneous glucose sensor in the rabbit: Relevance to calibration and accuracy. Biosensors & Bioelectronics 15:53-61. |
Ward et al. 2000. Understanding Spontaneous Output Fluctuations of an Amperometric Glucose Sensor: Effect of Inhalation Anesthesia and e of a Nonenzyme Containing Electrode. ASAIO J 46:540-546. |
Ward et al. 2002. A new amperometric glucose microsensor: In vitro and short-term in vivo evaluation. Biosensors & Bioelectronics 17:181-189. |
Wientjes 2000. Development of a glucose sensor for diabetic patients (Ph.D. Thesis). |
Wikipedia 2006. “Intravenous therapy,” http://en.wikipedia.org/wiki/Intravenous therapy, Aug. 14, 2006 (6 pages). |
Wiley Electrical and Electronics Engineering Dictionary. 2004. John Wiley & Sons, Inc. pp. 141, 142,548, 549. |
Wilkins et al. 1988. The coated wire electrode glucose sensor. Horm Metab Res Suppl.,20:50-55. |
Wilkins et al. 1995. Glucose monitoring: state of the art and future possibilities. Med Eng Phys 18:273-288. |
Wilkins et al. 1995. I ntegrated implantable device for long-term glucose monitoring. Biosensors & Bioelectronics 10:485-494. |
Wilson et al. 1992. Progress toward the development of an implantable sensor for glucose. Clinical Chemistry 38(9):1613-1617. |
Wilson et al. 2000. Enzyme-based biosensors for in vivo measurements. Chem. Rev. 100:2693-2704. |
Wood, W. et al. Mar. 1990. Hermetic Sealing with Epoxy. Mechanical Engineering 1-3. |
Woodward. 1982. How Fibroblasts and Giant Cells Encapsulate Implants: Considerations in Design of Glucose Sensor. Diabetes Care 5:278-281. |
Worsley et al. 2008. Measurement of glucose in blood with a phenylboronic acid optical sensor. J Diabetes Sci Tech 2(2):213-220. |
Wright et al. 1999. Bioelectrochemical dehalogenations via direct electrochemistry of poly(ethylene oxide)-modified myoglobin. Electrochemistry Communications 1:603-611. |
Wu et al. 1999. In situ electrochemical oxygen generation with an immunoisolation device. Annals NY Acad Sci 875:105-125. |
Yamasaki et al. 1989. Direct measurement of whole blood glucose by a needle-type sensor. Clinica Chimica Acta 93:93-98. |
Yamasaki, Yoshimitsu. Sep. 1984. The development of a needle-type glucose sensor for wearable artificial endocrine pancreas. Medical Journal of Osaka University 35(1-2):25-34. |
Yang et al. 1996. A glucose biosensor based on an oxygen electrode: In-vitro performances in a model buffer solution and in blood plasma. Biomedical Instrumentation & Technology 30:55-61. |
Yang et al. 1998. Development of needle-type glucose sensor with high selectivity. Science and Actuators B 46:249-256. |
Yang et al. 2004. A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate/Nafion Composite Membranes. J Membrane Science 237:145-161. |
Ye et al. 1993. High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode. Analytical Chemistry 65:238-241. |
Zamzow et al. 1990. Development and evaluation of a wearable blood glucose monitor. ASAIO Trans 36:M588-M591. |
Zavalkoff et al. 2002. Evaluation of conventional blood glucose monitoring as an indicator of integrated glucose valuse using a continuous subcutaneous sensor. Diabetes Care 25(9):1603-1606. |
Zethelius et al. 2008. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. NEJM 358: 2107-2116. |
Zhang et al. 1993. In vitro and in vivo evaluation of oxygen effects on a glucose oxidase based implantable glucose sensor. Analytica Chimica Acta 281:513-520. |
Zhang et al. 1993. Electrochemical oxidation of H202 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H202-based biosensors. J Electroanal. Chem. 345:253-271. |
Zhang et al. 1994. Elimination of the acetaminophen interference in an implantable glucose sensor. Analytical Chemistry 66(7): 1183-1188. |
Zhu et al. 1994. Fabrication and characterization of glucose sensors based on a microarray H202 electrode. Biosensors & Bioelectronics 9: 295-300. |
Zhu et al. 2002. Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on prussian blue layer. Sensors 2:127-136 |
Ziaie et al. 1997. A single-channel implantable microstimulator for funcional neuromuscular stimulation. IEEE Trans Biomed Eng (BME) 44(10):909-920. |
PCT/US2008/065978, filed Jun. 5, 2008: International Preliminary Report on Patentability dated Dec. 11, 2009. |
PCT/US2008/065978, filed Jun. 5, 2008: International Search Report and Written Opinion dated Oct. 2, 2008. |
Number | Date | Country | |
---|---|---|---|
20170316592 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
60942787 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13963416 | Aug 2013 | US |
Child | 15653394 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12133786 | Jun 2008 | US |
Child | 13963416 | US |