The present invention is directed to micro electro-mechanical systems, commonly termed “MEMS.” In particular, the present invention provides a MEMS speaker device and related methods, including MEMS actuator devices. Although the invention has been described in terms of specific examples, it will be recognized that the invention has a much broader range of applicability.
Loud speakers, also referred to as speaker drivers or speakers, are electro acoustic transducers. A loud speaker is an essential part of many consumer gadgets such as home music systems, MP3 players, smartphones, laptops, tablets, earbuds, among others. As the miniaturization or reduction of height profile of mobile devices advances, speakers have become smaller in size. As an example, terminology, based on the size of the speaker, typically refers speakers with greater than 4 inch diameters as loud speakers, 2-4 inch diameter as mini speakers, and less than 2 inch diameter as micro speakers. More recently with the popularity of ear buds, the size of the speakers has decreased to less than 1 inch diameter.
Most of the conventional speakers, however, are still designed with conventional technologies that are based upon the cone speaker, which is configured with a thin moving diaphragm of paper, plastic, or similar material, driven by a spring element which is actuated by electromagnetic signals that are proportional to an audio signal input to the speaker. The conventional speakers use a permanent magnet to generate a magnetic field in which a moving coil driven by electromagnetic force is operated. The conventional speakers are incompatible with any conventional surface mount Printed Circuit Board (PCB) technology which is a disadvantage in the manufacturing flow for Original Equipment manufacturers (OEM) of electronic systems. The conventional speaker technology creates an additional constraint on the placement in the speaker inside smartphones, as an example, due to the fact that magnets in the speaker adversely affect other components such as sensors and other electronics. These and other limitations plague conventional speakers and related technologies.
From the above, it is seen that conventional speakers continue to remain as one of the conventional devices that have limitations (e.g., occupy larger spaces) in the consumer devices.
The present invention is directed to micro electro-mechanical systems, commonly termed “MEMS.” In particular, the present invention provides a MEMS speaker device and related methods, including MEMS actuator devices. Although the invention has been described in terms of specific examples, it will be recognized that the invention has a much broader range of applicability.
In an example, the present invention provides a micro-speaker device. The device has a movable diaphragm device comprising a thickness of silicon or graphene material having, for example, a thickness of 0.1 nm to fifty microns, but can be others. In an example, the movable diaphragm device has a first surface and a second surface opposite of the first surface. In an example, the device has a shaft device having a first end and a second end, where the first end coupled to the second surface. As used herein, the terms “first” and “second” are not to be interpreted to define an order. In an example, the device has an actuator device coupled to the second end and configured to drive the shaft device in a piston action to pull and push the movable diaphragm. The device has a housing enclosing the movable diaphragm device, the shaft device, and the actuator device. The device has a vented enclosure opposite of the movable diaphragm. In an example, the vented enclosure may have one or more vent openings to allow air to move in and out of the one or more vent openings to generate a sound pressure signal. In an example, the device has an electrode device coupled to the actuator device to initiate movement of the actuator device in a first direction and a second direction.
In an example, the present invention provides an alternative micro speaker device. The device has a movable diaphragm device comprising essentially of a first silicon material, and configured using the first silicon material to generate a variable pressure to output an acoustic signal. In an example, the device has a free standing peripheral region provided in the movable diaphragm device. The device has an actuator device configured from a second silicon material and coupled to the movable diaphragm device using a shaft device, which is coupled to an inner region of the diaphragm. In an example, the device has an electrode device operably coupled to the actuator device and configured to electrostatically move the actuator device. The device has a third silicon material coupled to the electrode device. The device has a housing comprising an inner housing region to enclose the movable diaphragm device, the actuator device, and the electrode device. In an example, the device has a cover device enclosing the inner housing region and overlying the movable diaphragm device.
Depending upon the example, the present invention can achieve one or more of these benefits and/or advantages. The present invention provides a MEMS Micro-speaker that can reduce the size and profile height of the speaker without affecting the performance. In an example, the present invention can integrate the CMOS audio processing within a monolithic element together with MEMS, thereby miniaturizing the whole audio chain for demanding components such as ear buds, hearables, smart watches, and smart phones. In an example, the present invention can be implemented using conventional semiconductor and MEMS process technologies for wide scale commercialization. These and other benefits and/or advantages are achievable with the present device and related methods. Further details of these benefits and/or advantages can be found throughout the present specification and more particularly below.
A further understanding of the nature and advantages of the invention may be realized by reference to the latter portions of the specification and attached drawings.
In order to more fully understand the present invention, reference is made to the accompanying drawings. Understanding that these drawings are not to be considered limitations in the scope of the invention, the presently described examples and the presently understood best mode of the invention are described with additional detail through use of the accompanying drawings in which:
According to the present invention, techniques directed to micro electro mechanical systems, commonly termed “MEMS” are provided. In particular, the present invention provides a MEMS speaker device and related methods, including MEMS actuator devices. Although the invention has been described in terms of specific examples, it will be recognized that the invention has a much broader range of applicability.
As shown, the electrode layer may have a vent hole (or a plurality of vent regions) to allow air (or other fluid) movement there through created by the diaphragm coupled to the actuator device. The vent hole or holes also leads to a larger back volume for the backside of the diaphragm (where the front side is opposite of the backside, although the term front side and back side are intended to be used in reference to each other and may have other terms.
In an example, the electrode layer may be a CMOS die which will have one or more metal layers. Part of the top metal layer will be used as electrostatic actuator to implement one or more electrodes. In an example, the metal actuator can be symmetrically placed or configured using other spatial configurations. The metal actuator will be driven by an electrical signal that may have DC (direct current) as well as AC (alternating current) component. Voltage of the actuator generates an electrostatic force on the MEMS layer above an actuation area, which includes the actuator device.
The ‘Actuator Layer’, also referred as the MEMS layer (each of which the term layer does not generally mean a single homogeneous layer, but can include multiple layers and related structures) is shown as multiple elements in
The movable MEMS actuation area is connected to a MEMS spring as shown in
The spring is connected to a beam. In the example shown on
In an example, baffles are added to prevent back air pressure from mixing with the front air waves. It also allows protecting the MEMS layer and the silicon from external particles.
The top of the diaphragm may have additional protective material to prevent humidity, moisture or dust particles but allow audio waves to pass through.
The spring constant, the beam dimensions and the area and mass of the diaphragm can be designed to obtain the resonance of the MEMS at a desired frequency. At the resonant frequency, the movement of the diaphragm will be maximum. On the other hand, the dimensions and mass can be optimized to obtain a flatter frequency response for a desired frequency bandwidth.
An additional electrode created on the CMOS layer shown as “sense”, allows to track the capacitive change created by the displacement in the position of the diaphragm and MEMS proof mass. On the ASIC (Application Specific Integrated Circuit), this change in capacitance can be tracked to sense the precise position of the MEMS proof mass and the diaphragm. The electrical signal created, which can be proportional to the MEMS proof mass displacement, can be used for controlling damping or non linearity compensation.
Multiple speaker cells can be designed with each cell optimized to achieve a certain desired resonance frequency.
A method for fabricating the device begins with conventional silicon and MEMS process technology. As an example, the fabrication process for the present invention can use Silicon on Insulator (SOI) to create the diaphragm layer. The SOI wafer can be thinned down to desired thickness of the diaphragm. A post is created that acts as the shaft shown in the
In an example, the present invention provides a micro-speaker device. The device has a movable diaphragm device comprising a thickness of silicon or graphene material having a thickness 0.1 nm to fifty microns, but can be others. In an example, the movable diaphragm device has a first surface and a second surface opposite of the first surface. In an example, the device has a shaft device having a first end and a second end, where the first end coupled to the second surface. As used herein, the terms “first” and “second” are not to be interpreted to define an order. In an example, the device has an actuator device coupled to the second end and configured to drive the shaft device in a piston action to pull and push the movable diaphragm. The device has a housing enclosing the movable diaphragm device, the shaft device, and the actuator device. The device has a vented enclosure opposite of the movable diaphragm. In an example, the vented enclosure may have one or more vent openings to allow air to move in and out of the one or more vent openings to generate a sound pressure signal. In an example, the device has an electrode device coupled to the actuator device to initiate movement of the actuator device in a first direction and a second direction.
In an example, the device has additional variations. For example, the actuator device comprises one or more tortional springs or other suitable elements. The actuator device comprises at least one pivot coupled to lever, but can have multiple pivot regions. In an example, the actuator device comprises one or more spatial regions operably coupled to each other to work with each other. In an example, the electrode device comprises one or more electrodes to initiate movement of the actuator device. In an example, the actuator device is configured with one or more springs to cause a tortional effect to generate a vertical (or other) motion of the movable diaphragm device. In an example, the actuator device is configured with a lever coupled to a spring to amplify a spatial movement of a deflection of the movable diaphragm device caused by an electrostatic force of the electrode device.
In an example, the movable diaphragm comprises a free-standing region outside of a portion attached to the shaft device. That is, the diaphragm is free standing and configured around a center region in an example. In an example, the movable diaphragm device is characterized by a frequency response provided by one or more characteristics including a dimension of a spring device, a mass of the movable diaphragm device, mass of beams and levers and air damping from the vent, volume of the air in the enclosure to achieve a resonance and a bandwidth at a desired frequency. In an example, the movable diaphragm device comprises a material selected from a silicon material, a graphene material, poly-silicon, silicon oxide, metal, or a graphene material overlaying a silicon material. In an example, one or more portions of a peripheral region of the movable diaphragm is coupled to the housing.
In an example, the electrode device is configured within a CMOS device substrate and manufacture using a CMOS process technology. In an example, the electrode device comprises a first electrode to move the actuator in the first direction and a second electrode to move the actuator the second direction.
In an example, the device further comprising a feedback device to track a position of the actuator device to adjust a position of the actuator device. In an example, the feedback device can include a sensing device coupled to actuator device to track it's position.
In an example, the actuator device is monolithically coupled to a CMOS device. That is, the actuator device is bonded or otherwise attached to the CMOS device.
In an example, the present invention provides an alternative micro speaker device. The device has a movable diaphragm device comprising a first silicon material, and configured using the first silicon material to generate a variable pressure to output an acoustic signal. In an example, the device has a free standing peripheral region provided in the movable diaphragm device. The device has an actuator device configured from a second silicon material and coupled to the movable diaphragm device using a shaft device, which is coupled to an inner region of the diaphragm. In an example, the device has an electrode device operably coupled to the actuator device and configured to electrostatically move the actuator device. The device has a third silicon material coupled to the electrode device. The device has a housing comprising an inner housing region to enclose the movable diaphragm device, the actuator device, and the electrode device. In an example, the device has a cover device enclosing the inner housing region and overlying the movable diaphragm device.
In an example, the third silicon material comprises a CMOS device, and having a cavity region. In an example, the third silicon material comprises a vent region coupled to the inner housing region to provide a volume to achieve a desired acoustical response. In an example, the third silicon material comprises a peripheral post region. In an example, the third silicon material is bonded to the second silicon material. In an example, the third silicon material comprises a peripheral post region configured to act as a baffle to filter a first acoustical wave from a back of the movable diaphragm from interfering with a second acoustical wave generated from a top of the movable diaphragm.
In an example, the device further comprising a feedback response coupled to the actuator device to reduce a distortion.
In an example, the cover comprises a fourth silicon material to enclose the housing.
In an example, the device further comprising a permeable material configured on the cover to allow acoustic waves to pass therethrough and block incoming contaminant material.
While the above is a full description of the specific examples, various modifications, alternative constructions and equivalents may be used. As an example, the packaged device can include any combination of elements described above, as well as outside of the present specification. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 17/746,485, filed on May 17, 2022, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
20070140514 | Pedersen | Jun 2007 | A1 |
20120087522 | Lee | Apr 2012 | A1 |
20170041717 | Zou | Feb 2017 | A1 |
20170325030 | Stoppel | Nov 2017 | A1 |
20210297787 | Lo | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
108141669 | Jun 2018 | CN |
Number | Date | Country | |
---|---|---|---|
20240163616 A1 | May 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17746485 | May 2022 | US |
Child | 18422638 | US |