The present invention relates to an integrated chemical sensor, particularly a gas sensor, using metal oxide. The sensor is sufficiently small to be located within the exterior shell or housing of a portable electronic device such as a mobile phone, tablet and the like.
Portable or mobile devices originally introduced as mobile phones or electronic agendas become more and more ubiquitous. As the processing power of their internal processors grows and equally the bandwidth for communication with stationary processors, such portable devices take on more and more the role of multi-purpose tools available to consumers and specialist users alike.
It has been recognized that portable devices can benefit from the presence of sensors capable of providing a chemical analysis of materials brought into contact or the vicinity of the device. Whilst there are many possible applications for such sensors, it suffices to consider for example the analysis of air surrounding the portable device. Such an analysis can be useful for multiple purposes such as testing for hazardous gases, breath analysis for general medical purposes or driving fitness, and the like.
However integrating such a sensor within the narrow confines of a modern day portable device poses a significant technical challenge. Typically for such devices only a very limited volume is acceded to additional sensors outside the core functionality of the device such as wireless voice or data communication, display, speaker, processors and battery. This means that the real overall dimensions of the sensor, its associated circuitry for control and readout have to be within or close to the sub-millimeter range.
A sensor with these outer dimensions can only be manufactured, if the active structures, i.e. the size of the metal oxide film between electrodes, are reduced in length to below 50 microns or even less. However, in metal oxide sensors of this size the changes of electrical resistance caused by the gas become less whilst the resistance caused by interface effects between the (metallic) contact electrodes and the metal oxide film contributes in ever larger proportion to the measurement, thus making it more difficult to measure actual changes in gas concentrations.
It is therefore seen as an object of the invention to improve the chemical sensors using metal oxide films contacted through metallic electrodes, particularly for very small devices.
Hence, according to a first aspect of the invention, there is provided a chemical sensor comprising at least one layer of a metal oxide arranged between two electrodes with the length of the layer of a metal oxide between the electrodes being less than 50 microns, wherein at least one interface layer is placed between the surface of at least one of the electrodes and the layer of metal oxide and wherein the interface layer lowers the contact resistance between the electrodes and the layer of metal oxide by facilitating transport of charge carriers across layer boundaries.
In a preferred variant the interface layer includes a material which creates under static conditions a positively [negatively] charged layer leading to a band bending at the interface to the electrode material. This material can be for example a strongly n-doped [p-doped] material, if the metal oxide used as sensor material is n-doped [p-doped].
In another variant the interface material provides a conduction band at an energy level between the
Fermi level of the electrode material and the conduction band of the layer of metal oxide.
In yet another variant of the invention the interface material includes a dipole layer between the electrode and the layer of metal oxide, particularly a dipole layer with the positively charged pole oriented towards the metal oxide layer.
In a preferred embodiment of the invention, a sensor in accordance with this invention is integrated as component within a portable electronic device having further uses other than chemical sensing. The portable device can be a smart phone, a handheld computer, a laptop, an electronic reader, a tablet computer, a game controller, a pointing device, a photo or a video camera, a digital music player, a wrist watch, a key fob, a head set or a computer peripheral. Its housing is typically a shell of metal, glass, or plastic material and can be assembled as a unibody or from several parts. Enclosed in the housing are typically processors, drivers for parts such as screens, antennae, cameras, microphones and speakers as well as batteries to provide power to the device and its parts. A screen is typically arranged as a part of the housing or mounted behind a transparent window of the housing. In a preferred embodiment of the invention, a sensor in accordance with this invention is behind an opening with an area of less than 3 square millimeters providing a gas permeable access to a small duct within the housing.
The duct acts as confinement for the air inside the housing and can take the shape of a tube or channel formed as part of the housing or as a separate part connected to an opening in the housing. It can be a single straight or curved duct.
The opening itself can be a dedicated opening thus exclusively connecting the chemical sensor to the outside. However, given that the manufacturers of portable electronic devices strive to maintain the housing as a good protection against humidity and water, it is seen as advantageous that the opening is shared with at least one further component of the portable device requiring a similar connection to the exterior, such as a loudspeaker, a microphone or a camera. The opening can further be protected by a grill or a membrane to prevent bigger particles or unwanted components of the air from entering or blocking the duct.
The chemical sensor may be understood as a sensor device for detecting one or even more properties of one or more analytes. It is preferably based on one of the following measurement principles:
The sensor is best based on a metal-oxide such as tin oxide, tungsten oxide, gallium oxide, indium oxide, zinc oxide, which preferably may be applied in a high temperature environment. ISFET (ion-selective FET) may also be used, as well as chemocapacitors wherein it is preferred to use a polymer as active material.
The sensor includes in form of a layer, also denoted as receptor layer, to which an analyte may bond to and as such modify an electrical property of the sensor material such as its electrical conductance, which principle preferably is applied in metal oxide chemical sensors. It can also include a plurality of different sensors or an array of similar sensors. In such a sensor array, each sensor cell may provide a layer of a material exhibiting different absorption characteristics such that each cell of the sensor array may specifically be sensitive to a different analyte and as such may enable the portable electronic device to detect the presence or absence or concentration of such analyte.
The sensor is best integrated with CMOS circuitry for control and read-out onto a common substrate.
The above and other aspects of the present invention together with further advantageous embodiments and applications of the invention are described in further details in the following description and figures.
A gas sensor 10 with a sensing layer 11 of metal oxide is shown in
Embedded within the layers 13 are conducting elements forming a heater 15 to provide a local source of heat to heat the metal oxide 11 during operation of the sensor. The membrane structure above the cavity 12 provides an inherent thermal insulation for the rest of the substrate with the CMOS circuit. Also, the temperature can rise rapidly around the metal oxide layer 11, while the thicker part of chip reacts due to its thermal inertia with a slower rise of temperature. By controlling the heater accordingly, the metal oxide can be heated to its operating temperature of 250 to 600 degrees Celsius.
The metal oxide layer 11 is contacted by two conductive electrodes 16 and hence acts as a resistor. In the presence of an analyte this resistance changes thereby providing a measure of the concentration of the analyte in the immediate vicinity of the metal oxide layer.
The resistance R(tot) measured across the pair of electrodes 16 and the layer of metal oxide can be represented as the sum of three resistors in series as shown in the equivalent of
In conventional metal oxide gas sensors the resistance R(mo) of the metal oxide layer is usually large and changes of it are readily accessible to the measurement without having regard to R(i1) and R(i2). However, as illustrated in
The interface or contact resistors R(i1) and R(i2) at the transition from the conductor to the semi-conductor material and can be represented in an energy band picture as shown in a schematic manner in
In
Referring now to an example of a sensor with reduced contact resistance as shown in
In the example represented by
The migration of charge carriers causes an effect known as band bending near the interface to the conductor, thus making it more likely for charge carriers to pass through the interface by tunneling. This effect is typically achieved using a dopant concentration in the order of 1019 or 1020 or higher per cubic centimeter. The band bending is represented by the curved shape of the band structure of valence E(v)and conduction band E(c).
In the example represented by
In the example represented by
The single interface layer 17 as shown in
It is further possible to use multiple layers combining at least two of the three different layers represented by the examples of
A method of manufacturing the sensor structures represented by
For that reason, the methods applied in the manufacturing of semiconductor circuits are less suited for the manufacturing of a chemical sensor on the basis of metal oxide films. Instead, for chemical sensors on the basis of metal oxide films it is considered paramount for any manufacturing process to interfere as little as possible with a film once it is deposited. To avoid such interference the process of
In
The exact locations and size of the printed structures and the timing of the deposition steps can vary depending on the sensor design and the material used in the process, particularly the properties of the inks.
Given the small size of the structures both the interface layers and the metal oxide layer may be deposited for example as three single dots rather than multiple dots shown in
The material of the electrodes is typically a metal, for example Pt, Au, Al or W. The metal-oxide used can be tin oxide, tungsten oxide, gallium oxide, indium oxide, or zinc oxide. As described the sensor can also include a micro electro-mechanical system or MEMS type heat source integrated within the sensor. The sensor is built integrated with its own CMOS circuitry for control and read-out. The physical dimensions of the substrate including the CMOS circuit and the MEMS sensor are less than 5 mm×5 mm.
As an alternative to the above methods, selective ion implanting can be used. Using conventional ion beam implanting methods, areas around the electrodes can be doped selectively to the desired level thus creating the interface layer. As an alternative, diffusion may be used for doping the interface region.
A chemical sensor in accordance with above can be for example part of a portable electronic device such as a mobile phone as shown in
In
Another opening 506 is located at the lower side wall. As shown in
The chemical sensor 52 is a sensor in accordance with the examples described above and both it and the humidity sensor 53 can be manufactured as described for example in the cited application WO 2012/100362 or in WO 95/19563. The humidity sensor is best combined with a temperature sensor. Such sensors are commercially available, e.g. from Sensirion™ under the trade name SHTC1. The SHTC1 sensor measures 2 mm×2 mm×0.8 mm. Both sensors are mounted adjacent to each other in the duct 51.
While there are shown and described presently preferred embodiments of the invention, it is to be understood that the invention is not limited thereto but may be otherwise variously embodied and practised within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
13405024.4 | Jan 2013 | EP | regional |