Integrated Musical Instrument Systems

Information

  • Patent Application
  • 20200027430
  • Publication Number
    20200027430
  • Date Filed
    July 21, 2019
    5 years ago
  • Date Published
    January 23, 2020
    5 years ago
  • Inventors
    • Marticorena; Jorge (Woodside, NY, US)
Abstract
A system suitable for use as a musical instrument system is provided. The system includes at least one sensor. The system also includes at least one control surface configured to interface with the at least one sensor. Further, the system includes at least one controller configured to interface with the at least one sensor. Additionally, the system includes at least one program module configured to interface with the at least one sensor. The system includes a base. The at least one sensor and the at least one control surface are positionable on the base. The system also includes at least one data processor configured to interface with the at least one sensor, the at least one control surface, and the at least one program module arranged to function as a musical instrument system.
Description
REFERENCE TO APPLICATION SOURCE CODE, RULES, AND COMPONENTS IN APPENDIX

The material included in Appendix A is incorporated herein by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates generally to musical instruments, and more particularly, to integrated musical instrument systems, which utilize sensors to communicate with other digital audio technologies to produce integrated musical sound.


BACKGROUND OF THE INVENTION

Many methods and systems have been used unsuccessfully attempting to incorporate unique musical sounds generated by a musician produced solely by movement of a musician or an object controlled by a musician. Several devices and methods have been created attempting unsuccessfully to solve the problem of producing integrated musical sounds without physical contact in a practical way. These previous systems and methods have not been effective in solving the problem of overcoming the limitations of a musician's interaction to produce integrated musical sounds solely by physical touch. Further, these previous systems and methods have not been effective in taking advantage of digital audio technology to augment interaction between a musician and an instrument and/or digital audio software beyond the limitations of physical touch to control and/or produce integrated musical sounds.


There have been many unsuccessful attempts by musicians to digitally generate musical sounds other than by pushing buttons, striking pads, or turning dials. For musicians, playing live music is about moving the body and being physical. Current musical instruments and device hardware continue to limit the ways in which a musician can use digital controls to bridge the gap between their physical movements and sounds that those movements can generate and/or manipulate, alone or concurrently, with other analog or digital instruments.


Accordingly, there is an established need for integrated musical instrument systems which solve at least one of the aforementioned problems. Further, there is an established need for integrated musical instrument systems which can combine various sounds generated created by movement without physical touch.


SUMMARY OF THE INVENTION

The present invention is directed to innovative integrated musical instrument systems. These systems are used to produce integrated musical sounds that are controlled by a musician's hands, head, feet, hands, fingers, torso, appendages, and/or objects as the musician physically interacts with devices. These systems incorporate the musical sounds resulting from movement and/or presence of physical objects in the proximity of the devices. These devices provide unique methods of playing sounds which can be programmed and varied, and wherein sound can be manifested and controlled directly in real-time from digital audio software, either alone or concurrently with sounds generated by a musical instrument the musician is playing by reacting to the physical movements manifested while in the act of playing. These devices can also directly manipulate the sound generated by a musical instrument the musician is playing.


The devices can include, but are not limited to, proximity sensors, motion sensors, range sensors, sonic sensors, laser sensors, accelerometers, magnetometers, and/or gyroscope sensors. In an embodiment of the present invention, the integrated musical instrument systems can include a controller. The controller can include multiple proximity sensors configured to transmit data to a plurality of computer interfaces and can affect parameters within those interfaces in a binary (on/off) fashion and/or in gradual increments via bodily motion, for example, waving a hand over the sensors without any physical contact.


According to an aspect of the present invention, a system suitable for use as a musical instrument system is provided. The system includes at least one sensor. The system also includes at least one control surface configured to interface with the at least one sensor. Further, the system includes at least one controller configured to interface with the at least one sensor. Additionally, the system includes at least one program module configured to interface with the at least one sensor. The system includes a base. The at least one sensor and the at least one control surface are positionable on the base. The system also includes at least one data processor configured to interface with the at least one sensor, the at least one control surface, and the at least one program module arranged to function as a musical instrument system.


According to another aspect of the present invention, an apparatus suitable for use as a musical instrument device is provided. The apparatus includes at least one sensor. The apparatus also includes at least one control surface configured to interface with the at least one sensor. Further, the apparatus includes at least one controller configured to interface with the at least one sensor. Additionally, the apparatus includes at least one program module configured to interface with the at least one sensor. The apparatus includes a base. The at least one sensor and the at least one control surface are positionable on the base. The apparatus also includes at least one data processor configured to interface with the at least one sensor, the at least one control surface, and the at least one program module arranged to function as a musical instrument apparatus.


According to yet another aspect of the present invention, a method of creating sound with an integrated musical instrument system is provided. The method includes initializing at least one sensor. The method also includes interfacing at least one control surface with the at least one sensor. Further, the method also includes coupling at least one controller with the at least one sensor. Additionally, the method includes programming at least one program module configured to interface with the at least one sensor. The method includes communicating with the at least one sensor, the at least one control surface, the at least one controller, and/or the at least one program module with at least one data processor. The method also includes actuating the integrated musical instrument system with motion to trigger and/or manipulate sounds and effects.


In an embodiment of the present invention, the system can include a program module. The program module can be configured for a plurality of functions and/or responses including assigning multiple functions and/or responses to a single sensor that would otherwise need to be assigned to a greater number of physical controls.


In an aspect of the present invention, the integrated musical instrument systems can include a controller. The controller can include multiple proximity sensors configured to transmit Musical Instrument Digital Interface (MIDI) data to a digital audio workstation (DAW) and/or any digital MIDI-enabled device, such as, a synthesizer to trigger sounds and affect parameters within a software/device in both a binary (on/off) fashion or in gradual increment manner actuated by bodily motion, for example, waving a hand over the sensors without any physical contact.


In another aspect of the present invention, the integrated musical instrument systems can be integrated into a plurality of digital and/or analog musical instruments in a plurality of physical arrangements. The system can be configured for personal preference directed by the musician's playing style and needs.


In yet another embodiment of the present invention, the integrated musical instrument system can also be incorporated in and/or onto and/or within a body, neck, and/or headstock of a guitar.


In another aspect, the integrated musical instrument system can be included in a modified body, neck, and/or headstock of the guitar.


In yet another aspect of the present invention, the integrated musical instrument systems can also include controllers, such as but not limited to, musical instrument digital interfaces (MIDI). The controllers may be incorporated into a musical instrument, such as but limited to, an electric guitar. The guitar can include a plurality of sensors. The sensors can be, but not limited to, proximity sensors. These proximity sensors can transmit MIDI data when a musician places an object, such as but not limited to, fingers, hands, arms, head, torso, body part, an/or objects controlled by the musician in proximity to the sensors. These sensors can be programmed to produce different sounds when, for example, waving a hand past a sensor and/or moving the hand up and down over the sensor. Frequency of movement, distance to the sensor, horizontal movement across the sensor, vertical movement over the sensor, and/or horizontal movement in other horizontal directions can also produce different sounds and/or change the parameters of the sounds being produced.


In another aspect of the present invention, the system can include a plurality of digital and/or analog musical instruments with a plurality of sensors incorporated within the instruments.


In another aspect, the system can trigger and/or manipulate programmed sounds mapped from a digital audio workstation (DAW) to the sensors through transmission of MIDI data.


In yet another aspect, the system can also include a plurality of sensors incorporated within a musical instrument.


In another aspect, the system can include a portable device that acts solely as a controller, a remote controller, or a MIDI controller. The portable device can include sensors. The sensors can be configured to generate sound by transmitting MIDI data to a DAW and/or one or a plurality of MIDI-enabled devices when a musician places and/or moves an object in proximity to the sensors.


In yet another aspect, the system can also include proximity sensors incorporated into a body, neck, and/or headstock of a guitar in a or a plurality of physical arrangements.


In another aspect, the system can include external sounds and parameters mapped in a DAW directly to the sensors, in the same manner that one would map sounds and parameters in a DAW to buttons, keys, dials, knobs, sliders, and/or touch pads on other control surfaces, such as that of traditional MIDI controller. Moreover, each sensor has the distinct advantage of functioning like a button, key, dial, knob, slider, touch pad, all of the above or any combination of the aforementioned physical controls, without the limitations of the physical constitution and/or design that determines the functionality of those physical controls, to provide a more versatile, expressive, frictionless, and customizable method of controlling sounds and effects.


In yet another aspect, the system can also include a pedal board, wherein the pedal board is configured to produce and/or switch between different sounds and/or deactivate the sensors and/or switch between program modes of how the sensors function via physical buttons, rotary dials, switches and/or other sensors.


In an embodiment, the system can include proximity sensors on a surface of a guitar configured to be utilized as a percussive instrument, which can be achieved when the musician's strumming hand waves over the sensors as he or she plays, triggering external sounds in rhythm with what is being played on the guitar strings, or by tapping on the surface of the guitar where the sensors are located.


In another embodiment, the system can also include devices arranged to replace physical controls with motion sensors. For example, a button, a switch, a key, a dial, a knob, a slider, a touch pad, a joystick, or any other physical control that may be found on a controller.


In yet another embodiment, the system can include a program module. The program module allows the sensors to function in a plurality of ways, such as but not limited to as a binary button that you can either wave your hand above, or physically touch to activate, and/or as a gradual dial that you move your hand up and down to increase and decrease. The system can also include a program module which is configured to allow all sensors to do either all or some of the functions as described.


The system can also include programming to allow system interaction with directional gestures on an x-y axis, so the sensor will register left to right motions, right to left, up to down, down to up, and any combination including diagonal. This can be done by grouping four or more sensors together to function as one sensor. In an embodiment the program module will register lateral motions, and/or also up and down motions all together, to create, a three-dimensional x-y-z axis. The system can emulate a joystick that also moves up and down, which provides both lateral and vertical control simultaneously, for example, being able to move laterally on a digital map while at the same time being able to zoom in and out, all with the movement of your hand without it physically touching anything.


In embodiments, a plurality of sensors can be grouped together to register motions of designated fingers. Embodiments can require a combination of a proximity sensor matrix and other motion sensing technology, to register, even more complicated gestures: zig-zag, clock-wise and counter clockwise circular movements, and/or even any shape in two dimensions, such as but not limited to, a square, a circle, an oval, a rectangle, a triangle, and/or a trapezoid and/or shapes in three dimensions such as but not limited to a cube, sphere, cone, egg shape, and/or droplet. Further, the plurality of sensors can be grouped together with other motion and/or image sensing technology to specifically register common gestures, such as but not limited to snapping one's finger or clapping one's hands. Further still the system can include accelerometers and gyroscopes to register the orientation and rotation of the device itself, while also registering the 3-D movement of your hand above it.


In embodiments, the system can include a program module arranged to actuate system response with gesture sensing and rotational sensing. The system can also include short distance infrared sensors. The system can also include sensors such as but not limited to passive infrared sensors (PIR), microwave sensors, dual technology motion sensors, area reflective type, ultrasound, and/or vibration sensors.


In embodiments, the system can include RGB color sensors, the color sensors configured to return an amount of red, blue, green, and/or clear light based on the system actuation and programmed response. The system can be arranged to play different notes on a scale based on the color of the object being waved in front of the sensor, and/or a light that changes colors to morph into different notes. The system can also include heat and/or temperature and/or humidity sensors and/or pressure sensors. For example, the pressure sensors programmed response can be tuned to measure how hard a sensor is being pressed. This functionality can be programmed into a MIDI controller providing key sensitivity. The system can include system responses which emulate, such as, playing a piano key softly, as opposed to hitting it hard and getting a louder sound. Furthermore, key sensitivity can also be measured by proximity sensors without the need for physical touch such as but not limited to measuring the velocity by which a hand moves past a sensor—faster velocities generating louder sounds and slower velocities generating softer sounds.


In embodiments, the system can include wind speed sensors, air quality sensors, barometric pressure, altitude sensors, waterproof liquid sensors, piezoelectric sensors, electrochemical sensors, image sensors, current sensors and/or voltage sensors.


In an aspect, the system can include light sensors.


In another aspect, the system can also include the capability of transmitting digital signals, the signals designed to be read by a plurality of computer programs.


In yet another aspect, the system can include program modules configured to produce different sounds from the same sensor. The different sounds resulting from interaction with a motion sensing mechanism detecting a plurality of movements and/or a plurality of velocities of movement over and/or in the proximity of the sensor.


In an embodiment, the system can include a program module designed to filter out motions and/or movements and/or velocities of movements in order to minimize system response to avoid erratic and/or extraneous sounds and/or noise.


In another embodiment, the system can also be actuated by moving a dial or by waving over the sensor to emulate turning a dial.


In yet another embodiment, the system can be actuated by three-dimensional motion.


In an aspect, the system can be actuated and/or operated without any physical contact with the system.


In another aspect, the system can also be actuated by both movement and physical touch with the system.


In yet another aspect, the system can interact with a plurality of digital audio workstations (DAW).


In an embodiment of the present invention, the system can be operated and/or activated without any physical contact with the system. The system can include a control surface wherein the control surface works without the use of physical touch. The system can also be arranged for a user to physically touch the control surface if he or she wants, as an option. The system can have the capability of doing both.


In another embodiment of the present invention, the system can also include a controller that uses sensors in the place of physical controls to affect parameters in a variety of software/hardware.


In yet another embodiment of the present invention, the system can include a MIDI controller that uses sensors in the place of physical controls to affect parameters in digital audio software/hardware.


In an aspect, the system can include a system and/or method which makes use of the negative space directly above and around the surface of the system itself, and turns that thin air into a new kind of tactile experience, providing a more versatile and expressive way for a musician to interact with the system.


In another aspect, the system can also include an apparatus which is itself the controller.


In yet another aspect, a method of creating sound with an integrated musical instrument system can include actuating the integrated musical instrument system with motion to trigger and/or manipulate sounds and effects by using a variety of physical gestures, such as but not limited to moving a hand up and down to gradually increase and/or decrease a sonic parameter.


These and other objects, features, and advantages of the present invention will become more apparent from the attached drawings and the detailed description of the preferred embodiments, which follow. It is understood, that the drawings are designed for the purposes of illustration and not as a definition of the limits of the embodiments of the present invention. It should be further understood that the drawings are not necessarily drawn to scale and are merely intended to conceptually illustrate the methods and systems described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The preferred embodiments of the invention will hereinafter be described in conjunction with the appended drawings provided to illustrate and not to limit the invention, where like designations denote like elements, and in which:



FIG. 1 presents a front view of a portion of an integrated musical instrument system on a guitar, in accordance with an embodiment of the present invention;



FIG. 2 presents a perspective view of a pedal board; and



FIG. 3 presents a perspective view of a portable integrated musical instrument system.





Like reference numerals refer to like parts throughout the several views of the drawings.


DETAILED DESCRIPTION

The following detailed description is exemplary in nature and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims. For purposes of description herein, the terms “upper”, “lower”, “left”, “rear”, “right”, “front”, “vertical”, “horizontal”, and derivatives thereof shall relate to the invention as oriented in FIG. 1. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Shown throughout the figures, embodiments of the present invention are directed towards methods and systems for integrating musical instruments and/or software with devices and sensors. These devices and sensors can function in concert and configured as an integrated musical instrument system.


Referring initially to FIG. 1, an integrated musical instrument system is illustrated with an embodiment of the present invention. As seen in FIG. 1, an integrated musical instrument system can include a guitar 101. The guitar 101 can include proximity sensor 102. The proximity sensor 102 can function as a binary (on/off) sensor, with a plurality of responses and/or parameters upon activation. For example, with 3 parameters, such as downward, when a hand crosses the threshold of the sensor, held downward when the hand stays within the threshold of the sensor 102, and upward when the hand exits the threshold of the sensor. When a hand crosses the sensor's 102 threshold, a sound mapped on a Digital Audio Workstation (DAW) can be configured to activate. The DAW can be include a launch mode. The launch mode can be programmed within the DAW, to respond with a plurality of responses. For example, play and continue playing if the hand remains within the threshold and/or stop playing when the hand exits the threshold. The threshold distance of the sensor 102 may be set to about 100 mm away from the sensor 102, and may be configured to be coded to have a shorter or longer threshold, for example, with a maximum of about 200 mm. Different sensors may include different threshold ranges, such as but not limited to, about 10 mm to 500 mm. For example, the guitar 101 threshold may be on the lower range of thresholds so that unwanted objects/movements don't interfere with playing the guitar 101 and the musician can have a more microscopic control of what is being triggered.


Continuing with FIG. 1, proximity sensors 104 and 106 can be included in an embodiment. The sensors 104 and 106 can be configured to function similarly to proximity sensor 102, and can be configured to be coded to transmit gradual increments. For example, such as but not limited to, between the values of 0 to 127, 0 being off and 127 being turned up 100%. In embodiments, the system can include values of 60 to 187. Also, in embodiments, the system can include negative values. The sensors 104 and 106 can include a plurality of MIDI-mapped effects configured to the sensors 102, 104 and/or 106. For example, the proximity sensor 102 may trigger a sound, the sensors 104 and 106 can be configured to add an effect, gradually, and in real-time when the threshold of the proximity sensors 104 and 106 are activated. For example, a vocal sample can be triggered with sensor 102 and an echo effect can be added and can be configured with sensors 104 and/or 106, a value of 0 being no echo, a value of 127 corresponding to maximum echo in the DAW. The threshold ranges on the sensors 104 and/or 106 may be set at around the same as proximity sensor 102.


As best seen in FIG. 1, gradual sensors 104 and 106 can be configured to operate similarly to proximity sensor 102. Further, sensor 104 can be configured to operate similarly to sensor 106. A switch 108 can be arranged such that the gradual sensors 104 and 106 can be configured to switch and/or alternate between the sensors 104 and/or 106. In an embodiment, sensors can be configured to switch to the right, for example, the upper right sensor 106 can be active and the left sensor 104 may be inactive. In an embodiment, sensors 104 and 106 can be configured to switch to the left, for example, the lower sensor 104 can be active and the right sensor 106 can be inactive. In embodiments, a musician can have two options in terms of where to configure the gradual sensors 104 and/or 106, either further away from a musician's hand or closer to the hand. The sensor 102 may be configured to always be active and may not be affected by the switch 108.


In an embodiment, the sensors 102, 104, and/or 106 may be configured to be active, and the sensors 102, 104, and/or 106 can be configured in any variation of the on/off and/or gradual functionality.


In an embodiment, sensors 102, 104, and/or 106 may be active and/or configured in a plurality of alignments of binary, on/off, and/or gradual functionality.


In an embodiment, an integrated musical instrument system can include a plurality of sensors, including but not limited to, 5, 10, 20, 30, 50, and/or 100 sensors.


In embodiments, an integrated musical instrument system may include shielding, the shielding configured to prevent the sensors, which are close to the instrument pick-ups, from producing unwanted interference/noise.


As shown in FIG. 1, a XLR cable connection 110 can be configured to connect with an XLR cable, not shown. The XLR cable can be configured to connect the sensors 102, 104, 106 and/or the switch 108, and/or a sensor plate, and/or connections to lights and/or other components on the musical instrument, to an external pedal board 200, as seen in FIG. 2.


Referencing FIG. 2, the pedal board 200 can include buttons 202 configured to activate the sensors 102, 104, and 106 on the guitar 101, as shown in FIG. 1. The buttons 202, when not actuated, may configure the sensors 102, 104, and 106 inactive. The buttons 202, may be configured individually and/or in combination corresponding to preset mapping to the sensors 102, 104, and/or 106 to a plurality of sounds and/or effects in the DAW. The DAW may be pre-programmed and musical instrument digital interface (MIDI)-mapped in advance. The buttons 202, individually and/or in combination, for example, when actuated may configure the sensors 102, 104, and/or 106 active. The lights 204 can be light emitting diodes (LED). The lights 204 may energize when a corresponding button 202 below the light 204 is actuated. The sounds and effects in the DAW can include, but not limited to, drum sounds, tones of varying frequencies and timbre, pre-recorded samples, synthetic sound waves, reverberation, distortion, delay, chorus, vibrato, volume, pitch-shifting, time-warping, equalization, compression, panning, and/or a plurality of sounds and/or effects. The sensors 102, 104, and/or 106 can be configured to trigger sounds and/or effects when an object comes within proximity to sensors 102, 104, and/or 106. The buttons 202 can trigger a corresponding light 204 to de-energize when the buttons 202 are actuated, iteratively. Buttons 202 can be configured with individual preset sounds and/or effects.


Continuing with FIG. 2, the pedal board can include a bank up switch 206 and bank down switch 208. The bank up switch 206 and the bank down switch 208 can be configured to provide a new set of sounds and/or effects corresponding to the buttons 202. The bank up switch 206 and bank down switch 208 can include a plurality of bank levels. The plurality of bank levels can be arranged to provide different sounds and/or effects for the buttons corresponding to the bank levels. A numeric display 210 can be configured to display corresponding active buttons 202 and/or bank level. A XLR cable 212 may connect the pedal board 200 to the guitar 101, as seen in FIG. 1. A universal serial bus (USB) cable 214 can be arranged to connect the pedal board 200 to a computer, not shown. In embodiments, the pedal board 200 and/or the sensors 102, 104, and/or 106 may be configured to be energized through the USB cable 214. The buttons 202 individually and/or in combination may be configured to be proximity sensors.


In embodiments, the pedal board 200, the buttons 202, the lights 204, and/or the sensors 102, 104, and/or 106 can be configured to operate independently from strings, pick-ups, and/or the guitar 101. In embodiments, the sounds and/or effects produced from the pedal board 200, the buttons 202, and/or the bank up switch 206 and/or bank down switch 208 can be configured to be produced in parallel to sounds and/or effects generated from the guitar 101.


As best seen in FIG. 3, an embodiment of the present invention can include a portable integrated musical instrument system 300. The system can include a trigger sensor 302. The system can also include a gradual effect sensor 304. The system can include a sound up sensor 306. The system can also include sound up sensor or button 308 and sound down sensor or button 310. The system can include bank up sensor or button 312 and bank down sensor or button 314. The system can also include a numeric display 316. The numeric display 316 can be configured to display sound and/or bank level. The system can include input/output connection 318 and input/output connection 320.


In embodiments, the system 300 can include a USB port. The USB port can connect to a computer, not shown. The USB port can also provide power to the system 300. The system can also include a stand-by switch configured to deactivate the sensors. The system can additionally include a switch on a side of the system 300 which can deactivate the sound up sensor 306.


In embodiments, the system can include trigger sensors 1 and 2 on the face of the box and can function in the same way a simple binary button or a key would. When your hand crosses the threshold of the sensor's field of detection, for example about 1, 2, 3, 5, 10, 20 cm above the sensor or any dimension in between, it's the same as if you were to push down on a button and holding down if your hand remains in the field of detection. As soon as your hand leaves the threshold, it's the same as if you were releasing the button. The system can also be programmed so that you can also touch the sensor to achieve the same functionality. The system feature helps for musical purposes because sometimes you want to tap a button repeatedly, very quickly, which is easier to do by actually tapping the surface of the box, as opposed to waving your hand above it, which you can also do. The system can include a plurality of ways to actuate the system. The system can also include two ways of pushing this imaginary button, by waving your hand in the air above the sensor, and by physically tapping the sensor.


In embodiments, the “effect” sensor on the side of the box functions like a knob or a dial would. When unaffected, the knob is at 0%, as soon as your hand crosses the threshold of detection and moves closer and closer to the sensor, it gradually goes up to 100% and remains at 100% if your hand is touching the sensor. This is useful for sound effects that you want to turn up and down volume, panning, distortion, reverb, delay, etc. basically any effect imaginable that is supported by your DAW. Any gradual effect or parameter is customizable in your DAW. If you only want a certain effect to go up to a maximum value of 50%, you can set that as your max value in your DAW, so when the sensor is at its maximum value of 100% the parameter will only go up to 50%. Interaction with DAW allows you to customize the range of each sensor. In addition, the range of each sensor can be tweaked in the program module, depending upon how it is coded.


In embodiments, the sensors on the system can include an array of sensors. There are a lot of possibilities. The system can include algorithms and programming to program all three sensors to function both as a binary button and a gradual dial, to further customize the user experience. In the system, crossing the threshold of detection can register as “on” but also as gradually going from 0% to 100%. So if you want to MIDI map just a sound to it, that's fine, it'll just be registered as “on” or “off” to play the sound, but if you want to MIDI map an effect to it, that's good too, it'll turn up the dial on the effect, nothing can trip anything up, it's how you configure things in your DAW that can determine how the sensor reacts, because it's essentially reacting in both ways at the same time). Furthermore, if you want to MIDI map both a sound and an effect to the same sensor, you can do that too: once the threshold is crossed, the sound will play and the effect will start ticking up from 0% to 100%. In some embodiments, the sensors can include a plurality of functions. The two trigger sensors can act only as buttons, and the one effects sensor can act only as a dial, or all the sensors can act as dials or buttons, or any combination, and therefore all sensors are customizable and may be able to act as both buttons and dials.


In an embodiment, the switch at the front of the box can include a red light and it can be a standby switch, which can be programmed such that once you turn it on, all the sensors are deactivated. This is actually very useful if you want to move the box around without having your sounds playing all over the place. The system can include a plurality of functions incorporating motion sensing technology. There are so many options that the user needs options to deactivate them as needed.


In an embodiment, the +/− “select” and “bank” buttons in the middle which can correspond to white and yellow numbers in a number display let you cycle through 8 selections of MIDI mappings, and 5 banks (40 selections in total, but the number of selections and banks can be programmed to include any configuration of numbers). What a selection means is: let's say in selection #1 you MIDI map a cymbal sound to sensor 1, a vocal sample to sensor 2, and a reverb effect to sensor 3. As long as you're in selection #1, those sounds/effects will play from their respective sensors. Once you go to selection #2, you can map 3 more new sounds/effects to the sensors, and so on. This is similar to an embodiment of the present invention which includes a pedal board. The pedal board works in concert with a guitar version of the product. You can cycle through your selections with your foot, on physical stomp box style switches, though theoretically they can also be sensors. The buttons on the prototype can also be sensors and/or physical buttons.


In an embodiment, a trigger sensor can have a double function, which you can use the switch on the side to engage. It's called a sequencer and it basically cycles through your 8 selections at a steady rhythm: it's called an 8-step sequence (though more steps can be programmed). You can switch to sequencer mode with the toggle switch; if you want to start a sequence, you push down on the sensor until the numbers flash, then you tap the tempo you want (tapping for tempo is a very common action in the modern music world, in this case you can use the sensor to do it—another functionality that embodiments of the present invention include), and the sequence will start playing at the tempo you tapped. Then you can hold down the respective sensors to play the sounds and effects mapped to them in sequence.


In embodiments, the system can be portable and handheld so that it's convenient and easy to handle and you can also pick it up and hit the sensors, like you would a maraca, which is something that makes embodiments of the invention unique, most MIDI controllers are not this small, and they cannot be picked up and played. By holding it, you have the freedom of triggering multiple sounds by interacting with multiple on-board sensors in a rhythmic fashion. Embodiments of the present invention can include a digital percussive instrument that produces different sounds depending on where you hit it.


In embodiments, the system can include materials such as but not limited to stainless steel, other metals, ceramic, plastic, composites, and/or wood. It's also very strong, it can be made of stainless steel and can withstand physical hits and contact, you can pick it up, play it, and because the sensors are so reactive it's almost like you're playing an old percussive instrument—most MIDI controllers aren't built for that sort of thing.


In embodiments, the system 300 can include a three-way switch. The three-way switch can be configured to reorganize the sensors in a plurality of arrangements.


In some embodiments, the method or methods described above may be executed or carried out by a computing system including a tangible computer-readable storage medium, also described herein as a storage machine, that holds machine-readable instructions executable by a logic machine (i.e. a processor or programmable control device) to provide, implement, perform, and/or enact the above described methods, processes and/or tasks. When such methods and processes are implemented, the state of the storage machine may be changed to hold different data. For example, the storage machine may include memory devices such as various hard disk drives, CD, flash drives, cloud storage, or DVD devices. The logic machine may execute machine-readable instructions via one or more physical information and/or logic processing devices. For example, the logic machine may be configured to execute instructions to perform tasks for a computer program. The logic machine may include one or more processors to execute the machine-readable instructions. The computing system may include a display subsystem to display a graphical user interface (GUI) or any visual element of the methods or processes described above. For example, the display subsystem, storage machine, and logic machine may be integrated such that the above method may be executed while visual elements of the disclosed system and/or method are displayed on a display screen for user consumption. The computing system may include an input subsystem that receives user input. The input subsystem may be configured to connect to and receive input from devices such as a mouse, keyboard or gaming controller. For example, a user input may indicate a request that certain task is to be executed by the computing system, such as requesting the computing system to display any of the above described information, or requesting that the user input updates or modifies existing stored information for processing. A communication subsystem may allow the methods described above to be executed or provided over a computer network. For example, the communication subsystem may be configured to enable the computing system to communicate with a plurality of personal computing devices. The communication subsystem may include wired and/or wireless communication devices to facilitate networked communication. The described methods or processes may be executed, provided, or implemented for a user or one or more computing devices via a computer-program product such as via an application programming interface (API)


While the foregoing written description of the exemplary embodiments enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The exemplary embodiments should therefore not be limited by the above described embodiment, method and examples, but all embodiments and methods within the scope and spirit of the exemplary embodiments as claimed.


Since many modifications, variations, and changes in detail can be made to the described preferred embodiments of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Furthermore, it is understood that any of the features presented in the embodiments may be integrated into any of the other embodiments unless explicitly stated otherwise. The scope of the invention should be determined by the appended claims and their legal equivalents.


Insofar as the description above and the accompanying drawings disclose any additional subject matter that is not within the scope of the claims below, the inventions are not dedicated to the public and the right to file one or more applications to claim such additional inventions is reserved.

Claims
  • 1. A system suitable for use as a musical instrument system, the system comprising: at least one sensor;at least one control surface configured to interface with the at least one sensor;at least one controller configured to interface with the at least one sensor;at least one program module configured to interface with the at least one sensor;a base, wherein the at least one sensor and the at least one control surface are positionable on the base; andat least one data processor configured to interface with the at least one sensor, the at least one control surface, and the at least one program module arranged to function as a musical instrument system.
  • 2. The system as recited in claim 1, wherein the at least one controller further comprises a remote controller, the remote controller structured to utilize motion sensing technology.
  • 3. The system as recited in claim 1, wherein the system further comprises at least one computer system configured to process digital signals.
  • 4. The system as recited in claim 1, wherein the system further comprises at least one accelerometer and/or at least one gyroscope configured to sense rotation and/or orientation of the system.
  • 5. The system as recited in claim 1, wherein the system further comprises at least one mobile device configured to digitally communicate with system components.
  • 6. The system as recited in claim 1, wherein the system further comprises at least one proximity sensor.
  • 7. The system as recited in claim 1, wherein the system further comprises at least one musical instrument digital. interface (MIDI) controller and/or at least one digital audio workstation (DAW).
  • 8. The system as recited in claim 1, wherein the system further comprises at least one musical instrument digital interface (MIDI)-enabled device.
  • 9. An apparatus suitable for use as a musical instrument device, the apparatus comprising: at least one sensor;at least one control surface configured to interface with the at least one sensor;at least one controller configured to interface with the at least one sensor;at least one program module configured to interface with the at least one sensor;a base, wherein the at least one sensor and the at least one control surface are positionable on the base; andat least one data processor configured to interface with the at least one sensor, the at least one control surface, and the at least one program module arranged to function as a musical instrument apparatus.
  • 10. The apparatus as recited in claim 9, wherein the at least one controller further comprises a remote controller, the remote controller structured to utilize motion sensing technology.
  • 11. The apparatus as recited in claim 9, wherein the apparatus further comprises at least one computer system configured to process digital signals.
  • 12. The apparatus as recited in claim 9, wherein the apparatus further comprises at least one accelerometer and/or at least one gyroscope configured to sense rotation and/or orientation of the apparatus.
  • 13. The apparatus as recited in claim 9, wherein the apparatus further comprises at least one mobile device configured to digitally communicate with apparatus components.
  • 14. The apparatus as recited in claim 9, wherein the apparatus further comprises at least one proximity sensor.
  • 15. The apparatus as recited in claim 9, wherein the apparatus further comprises at least one musical instrument digital interface (MIDI) controller and/or at least one digital audio workstation (DAW).
  • 16. The apparatus as recited in claim 9, wherein the apparatus further comprises at least one musical instrument digital interface (MIDI)-enabled device.
  • 17. A method of creating sound with an integrated musical instrument system, the method comprising: initializing at least one sensor;interfacing at least one control surface with the at least one sensor;coupling at least one controller with the at least one sensor;programming at least one program module configured to interface with the at least one sensor;communicating with the at least one sensor, the at least one control surface, the at least one controller, and/or the at least one program module with at least one data processor; andactuating the integrated musical instrument system with motion to create sound.
  • 18. The method as recited in claim 17, wherein the actuating the integrated musical instrument system includes triggering motion sensors with movement of an object over a control surface.
  • 19. The method as recited in claim 17, wherein the actuating the integrated musical instrument system includes activating the integrated musical instrument system with other than physical touching of the integrated musical instrument system.
  • 20. The method as recited in claim 17, further comprising communicating digitally with at least one musical instrument digital interface (MIDI) controller, at least one application software, such as a digital audio workstation (DAW), and/or at least one MIDI enabled device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to provisional application 62/701,789 filed on Jul. 22, 2018, and is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
62701789 Jul 2018 US