The present invention is directed to an apparatus that serves as a conduit for delivering airborne materials to the nasal cavity. In particular, the invention is directed to an integrated device that is useful for the administration of therapeutic agents to the nasal cavity and paranasal sinuses of a patient. The present invention integrates a nebulizer, particle dispersion chamber and nasal adapter into one device.
This invention relates to devices for administration of therapeutic agents to the nasal cavity and paranasal sinuses of a patient.
In the United States, sixty million people suffer from chronic sinusitis and allergic rhinitis and are treated by means of topically applied antihistamines, antibiotics, decongestants, and pain relievers. Many of these drugs would work more effectively in relieving symptoms if they could be directly applied to all of the affected areas. However, the devices utilized thus far to deliver these drugs have proven to be extremely inadequate, if not useless, in reaching all areas needed especially the deep nasal cavity and paranasal sinuses where it is critical in the treatment of some of these diseases. In addition to the topically applied drugs above, there are a wide variety of systemically absorbed drugs that are delivered intranasally. Devices utilized for these drugs as well, have proven to be extremely inadequate.
Current delivery systems comprise, for example, a pressurized canister (MDI) that ejects the medicine into the nostrils in short bursts, or streams of atomized liquid in an aqueous nasal spray. The efficacy of medicine administered in this manner is limited due to difficulties in the medicine reaching very little of the nasal mucosa and no part of paranasal sinuses where it needs to be delivered to fully treat the condition. In cases of severe congestion or nasal polyps, the medicine often does not proceed beyond the nostril and will not be effectively absorbed into the bloodstream or the necessary area of the nasal cavity and paranasal sinuses. Current systems also do not allow for particles to reach high into the nasal cavity and paranasal sinuses.
Additionally, nebulizers are machines that convert medicine into a mist, or vapor, of very tiny particles to deliver a drug to the lungs during an attack by breathing the medicine from a pipe attachment or, in the case of young children, a face mask. The small particle size generated is important in that it allows passage of the drug through heavily congested airways over a period of about 10 minutes which allows for deep penetration. Nebulizers are used by asthmatics in case of an asthma attack.
Nasal nebulizers are currently in use for antibiotics and are ineffectively delivering the drugs due to the fact they do not deliver into the paranasal sinuses nor as far into the nasal cavity as this device due to the lack of additional technology enclosed herein.
There is a pronounced need in the art for delivery methods that enable better delivery, and delivery of more medicament to the nasal cavity and paranasal sinuses.
There is a pronounced need in the art for more effective devices to deliver medicaments to all areas of the nasal cavity and paranasal sinuses.
There is a pronounced need in the art for more effective methods and devices to effectively administer therapeutic agents systemically via the nasal passages and the deep paranasal sinuses.
There is a pronounced need in the art for more effective methods and devices for delivery of medicament to treat patients for certain conditions without taking the medicament orally.
Novel nebulizers, methods of breathing to facilitate them, and methods of drug delivery using the inventive nebulizers are herein disclosed and described. According to preferred aspects of the present invention, particle size and velocity characteristics determine whether a majority of a medicament will reach the deep nasal cavities, the paranasal sinuses, the bloodstream, the circulation (systemic delivery), the lungs, or drip back down the nose or the mouth.
Particular embodiments provide a controlled particle dispersion breathing method performed by a user having a sinus includes providing a nebulizer having a particle dispersion chamber to a user, the particle dispersion chamber capable of producing nebulized particles; activating the nebulizer; breathing a plurality of quick breaths as nebulized particles begin to flow out of the particle dispersion chamber; holding the quick breaths for a plurality of seconds; creating a pressure in the sinus of the user using the back of the throat; repeating the breathing of plurality of long, slow steady breaths and creating a pressure in the sinuses for the duration, or repeating the breathing a plurality of quick breaths, holding the quick breaths and creating a pressure in the sinuses; breathing a plurality of long breaths; and repeating the breathing a plurality of quick breaths, holding the quick breaths, creating a pressure in the sinuses and breathing a plurality of long breaths.
In another embodiment, a nebulizer is shown and described including a nasal adapter; a dispersion chamber in communication with the nasal adapter; an outflow tube in communication with the dispersion chamber capable of causing a plurality of nebulized particles to move in a vortex or other randomized movement within the internal channel of the nebulizer; and a housing, the housing having a medicine chamber in communication with the outflow tube.
In yet another embodiment, a particle dispersion chamber is shown and described including a housing having an external surface and an internal channel; and a plurality of air outputs communicating with the internal chamber, whereby the air outputs are capable of causing a plurality of nebulized particles to move in a vortex or other randomized movement within the internal channel.
In a preferred embodiment, the present invention provides for a nebulizer (e.g., ‘jet’ or linear/direct nebulization) suitable for topical drug delivery to, or systemic drug delivery via, a deep nasal cavity or paranasal sinus, comprising: a nasal adapter; a dispersion chamber in communication with the nasal adapter; a nebulizing chamber in direct communication with the dispersion chamber, and in which a medicine is nebulizable; and a nebulizing pressure feed in communication with the nebulizing chamber, and having a compressor channel to channel compressed fluid.
In another preferred embodiment, the nebulizer further comprises a nebulizer pressure release member (e.g., nebulization cone in the context of a jet nebulizer, or nebulizatin platform in the context of linear nebulization), comprising a pressure release channel having at a first end a pressure release orifice, wherein the pressure release member and pressure release channel extend into the nebulizing chamber, and wherein the pressure release channel at a second end is in communication with the compressor channel of the nebulizing pressure feed to channel compressed fluid through the pressure release member and orifice and into the nebulizing chamber. Preferably, the pressure release member is integral with the nebulizing pressure feed, although the pressure release member is alternately integral with the nebulizing chamber or with a substantial portion thereof. Alternatively, the pressure release member is integral with both the nebulizing pressure feed, and the nebulizing chamber or a substantial portion thereof.
In preferred embodiments, the wall of the dispersion chamber comprises at least one integral dispersion feed channel suitable to channel compressed fluid into the dispersion chamber to create a vortex, or otherwise affect movement of nebulized particles. Preferably, the integral dispersion feed channel of the dispersion chamber is fed from a compressor channel of the nebulizing pressure feed. Even more preferably, the compressed fluid from a compressor channel of the nebulizing pressure feed is partially diverted to the integral dispersion feed channel of the dispersion chamber through a channel within or along the wall of the nebulizing chamber.
In alternative embodiments, the integral dispersion feed channel of the dispersion chamber and the compressor channel of the nebulizing pressure feed are fed by separate outputs of a multiple output compressor.
Preferably, the fluid is air or another suitable compressible gas, or combinations thereof.
According to preferred aspects of the present invention, the delivered nebulized particles are comprised of particles substantially having a mean diameter of about 2 to about 50 μm, about 5 to about 50 μm, about 5 to about 40 μm, about 5 to about 35 μm, about 5 to about 30 μm, about 5 to about 20 μm, about 5 to about 17 μm, about 5 to about 15 μm, about 8 to about 30 μm, about 8 to about 25 μm, about 8 to about 20 μm, about 10 to about 30 μm, about 10 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, about 11 to about 40 μm, about 11 to about 30 μm, about 11 to about 20 μm, about 11 to about 15 μm, about 12 to about 17 μm, about 15 to about 25 μm, about 15 to about 20 μm, and about 17 to about 23 μm.
Preferably, the delivered nebulized particles are comprised of particles substantially having a mean diameter of about 5 to about 30 μm, about 8 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, and about 12 to about 17 μm.
Preferably, the delivered nebulized particles are comprised of particles substantially having a mean diameter of about 8 to about 25 μm, about 10 to about 15 μm, or about 12 to about 15 μm.
In preferred embodiments, the nebulizer further comprises a medicament cartridge or ampoule, having a three-dimensional exterior surface shape and an interior cavity suitable for housing a medicament, wherein the cartridge or ampoule is insertible into a complementary receptacle of the nebulizing chamber and is thereby cooperative with the nebulizer to enable dispensing of medicament into the nebulizing chamber.
Preferably, cooperative insertion of the cartridge or ampoule is dependent or optionally dependent upon said complementarity between the exterior shape and the receptacle so that deliver of medicaments to individual users can be restricted or controlled by provision of the user with complementary nebulizers and cartridges or ampoules. Therefore, additional preferred embodiments provide a complementary cartridge docking system (CCDS) that allows for drug-specific delivery with respect to a given user and device.
The foregoing aspects and many of the attendant advantages will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings. The discussion below is descriptive, illustrative and exemplary and is not to be taken as limiting the invention.
a shows another embodiment of the nasal adapter, particle dispersion chamber, and tubing;
b shows a bottom view of one embodiment of the baffle;
Current topical drug delivery methods are ineffective at penetrating very far into the nasal cavity and not at all into the paranasal sinuses. Further, systemic delivery via inhalation utilizing the nasal mucosa and mucosa in the paranasal sinuses is desired for many targeted disease states. Preferred aspects of the present invention provide an integrated nebulizer and particle dispersion chamber apparatus that has the ability to deliver the same drugs presently prescribed for many diseases and conditions as very tiny particle doses of medicine via a nasal adapter that allows more efficacious sinus penetration and systemic delivery for the user.
Examples of diseases that can be treated by systemic delivery with the inventive apparatus and methods include, but are not limited to, endocrine and metabolic disorders, migraines, sleep disorders, autoimmune diseases, osteoporosis, neurological diseases and disorders, obesity, sexual dysfunctions, and cardiovascular diseases and episodes.
According to the present invention, the particle sizes, time of application and particle dispersion technology allow the medicine to reach and permeate the nasal cavity and most of the paranasal sinuses. These factors also allow the medicine to enter the user's system via the nasal cavity. All medicines currently applied by direct action to the nasal cavity and paranasal sinuses could be adapted for use with the inventive integrated nebulizer embodiments, including over-the-counter nasal medicines for allergy and colds and flu. Additionally, many medicines currently taken orally, by skin patch, or parenterally could be adapted for use with the inventive integrated nebulizer embodiments.
Significantly, according to the present invention, the integrated nebulizer is used for both topical and systemic delivery of drugs, therapeutics and other beneficial compounds.
For a user with a secondary condition of nasal polyps, the inventive apparatus and methods a low far more effective application of the medicine, which is otherwise blocked or precluded using contemporary systems. Nasal inhalers and spray bottles used to deliver corticosteroids are designed to also slow the re-growth of polyps following their removal. Currently, however, such devices are largely ineffective at accomplishing this, often not slowing polyp growth at all. According to the present invention, the apparatus and methods described herein are significantly more effective in slowing polyp re-growth following their removal.
Many of the side effects of some medicines are eradicated by the inventive devices and methods. With many sprays, for example, the propellant causes a drying of the nasal passages leading to bleeds. With the use of contemporary devices that lead to bleeds, a secondary spray of saline is added to the treatment to try and control the bleeding. Furthermore, steroids in pill form have many unpleasant side effects such as internal bleeding, a redistribution of fluid to the head, neck and back causing unsightly “humps,” and easy bruising, to name a few. An effective use of the inventive integrated nebulizer does not have these side effects associated with steroids in pill form.
The inventive integrated nebulizer will allow medicine to be administered to the nasal cavity and paranasal sinuses via very small particles that will penetrate deeply into the nasal cavity, most regions of the paranasal sinuses, and allow for both topical and systemic delivery. The inventive integrated nebulizer will also provide the patient with a more effective absorption of the drug, increasing effectiveness, and will allow multiple conditions to be treated in a far more effective manner.
Typically, since the medicine is delivered in a treatment and not an attack scenario, the application or delivery time is only 0.5-3 minutes, rather than the 10-15 minutes used during an asthma attack. Multiple dose levels of the medicine can be placed in the inventive integrated nebulizer, a week supply for example, and the unit will run for a prescribed time, for example but not limited to three minutes, and will then, in particular embodiments, shut itself off. Preferably, the inventive integrated nebulizer is designed with multiple dose capability and a timer with a pause feature. The pause feature allows the user to stop the treatment under way to deal with a short, minor happenstance and then resume the treatment for the remaining time. The timer is variable to accommodate the drug being administered and/or prescribed by the physician.
In preferred aspects, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 2 to about 50 μm, about 5 to about 50 μm, about 5 to about 40 μm, about 5 to about 35 μm, about 5 to about 30 μm, about 5 to about 20 μm, about 5 to about 17 μm, about 5 to about 15 μm, about 8 to about 30 μm, about 8 to about 20 μm, about 10 to about 30 μm, about 10 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, about 11 to about 40 μm, about 11 to about 30 μm, about 11 to about 20 μm, about 11 to about 15 μm, about 12 to about 17 μm, about 15 to about 25 μm, about 15 to about 20 μm, and about 17 to about 23 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 5 to about 30 the delivered nebulized particles are comprises of particles substantially having a mean diameter of about 5 to about 30 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, and about 12 to about 17 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 10 to about 15 μm, or about 12 to about 15 μm.
The phrase “substantially having a mean diameter,” as used herein with respect to preferred particle diameter ranges, refers to the use of particle collections, wherein at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% have the preferred diameter range. Preferably, at least 60%, at least 70%, at least 80%, at least 90% or at least 95% of the nebulized particles are of the preferred particle diameter range. Preferably, at least 70%, at least 80%, at least 90% or at least 95% of the nebulized particles are of the preferred particle diameter range.
Advantages of Vorticity and Preferred Particle Sizes
According to preferred aspects of the present invention, placing nebulized particles in a vortex (into vortical flow) for nasal delivery allows for efficient delivery of nebulized particles to the deep nasal cavity and paranasal sinuses. The following compares motion in a plane, and vortical circulation.
Motion in a Plane. Curved motion with constant acceleration is projectile motion. There is negligible impact of the air stream on the path of the droplet. In the case of the typical prior art nasal pump, the initial velocity of the droplet (v0) is generated by the pump, and where
v0>>vair stream
(this is further exaggerated in the nasal cavity), the air stream velocity is equal to the volumetric flow divided by the cross-sectional area.
Aaperture<<Anasal cavity
Thus, for conventional nasal pumps and nebulizers, motion of a droplet is one of constant acceleration, g, directed downward. There is no horizontal component of acceleration, and the horizontal velocity component retains its initial value throughout the flight.
Vorticity and Circulation. According to preferred embodiments of the present inventions, vorticity plays a central role in the development of forces on an object such as the lifting force. It is important to understand an important vorticity-related quantity known as circulation, “Γ.” Circulation is defined by:
Γ=∫Cuds=∫∫AωndA
Where: “C” is a closed contour, and “ds” is a differential vector tangent to the contour; “n” is a unit normal to the plane containing the contour C; and circulation is the integral of the vorticity component normal to the area bounded by the contour.
Circulation provides a measure of strength of the vorticity contained with in the contour. Circulation is constant across the vortex rings. Therefore velocity increases as a function of the distance from the center of the vortex, as illustrated in
pψn+1<pψn
Following the principles behind Bernoulli's equation, this generates lift. To emphasis the connection between vorticity and the force on a droplet (lift per unit diameter on the droplet) Lift is defined by:
L=ρvairΓn
The dynamic lift on the droplet is normal to the air stream flow, as illustrated in
A vortex will also act like a clarifier and will send the larger droplets to the outside rings and will keep the smaller diameter droplets in the air stream for a longer period of time.
To understand vortex stretching, consider a point in the vortex, where the cross-sectional area is defined by A. When the vortex is elongated, the principal of mass conservation states the cross-sectional area must decrease to contain the same fluid particles. The circulation (r) remains constant, and average voracity of the vortex increases inversely to the decrease in the cross-sectional area. The strength of the vortex is then carried deeper into the nasal cavity.
Droplet Distribution. According to the present invention, the mass median aerodynamic diameter (MMAD) is important in determining droplets within the nasal passages. Droplets with a MMAD less than about 8 microns (μm) in diameter have a high probability of reaching the lower areas respiratory track. Larger droplets (e.g., 8-25 μm) will be more controllable (are more substantially acted upon) by the forces generated within a vortex. Droplets with a MMAD greater than 25 μm are not very aerodynamic and have a high probability of leaving the vortex early.
Prior art nasal pumps, for example, have a mean droplet size of 35 μm. Droplet distribution indicates ˜99% of the delivered volume of drug will end up on the pallet.
According to preferred aspects of the present invention, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 2 to about 50 μm, about 5 to about 50 μm, about 5 to about 40 μm, about 5 to about 35 μm, about 5 to about 30 μm, about 5 to about 20 μm, about 5 to about 17 μm, about 5 to about 15 μm, about 8 to about 30 μm, about 8 to about 20 μm, about 10 to about 30 μm, about 10 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, about 11 to about 40 μm, about 11 to about 30 μm, about 11 to about 20 μm, about 11 to about 15 μm, about 12 to about 17 μm, about 15 to about 25 μm, about 15 to about 20 μm, and about 17 to about 23 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 5 to about 30 the delivered nebulized particles are comprises of particles substantially having a mean diameter of about 5 to about 30 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, and about 12 to about 17 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 10 to about 15 μm, or about 12 to about 15 μm.
The phrase “substantially having a mean diameter,” as used herein with respect to preferred particle diameter ranges, refers to the use of particle collections, wherein at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% have the preferred diameter range. Preferably, at least 60%, 70%, 80%, 90% or 95% of the nebulized particles are of the preferred particle diameter range. More preferably, at least 70%, 80%, 90% or 95% of the nebulized particles are of the preferred particle diameter range.
Referring now to the accompanying drawings, as shown in
Use of a nasal adaptor 10 also limits the spread and growth of bacteria or microorganisms. Use of a nasal adaptor 10 that fits over the nasal openings reduces the spread of bacteria that can be picked up from inside the nasal openings into or onto the delivery device if the nasal adaptor 10 were placed inside the nasal openings as is the case with current MDI's or AQ sprays. Further, use of a disposable nasal adaptor 10 that fits over the nasal openings reduces the occurrence of re-inoculation of the nasal openings with bacteria present on a nasal adaptor 10, when not properly cleaned, is fit over the nasal openings. Also, use of a disposable nasal adaptor 10 that fits over the nose reduces the extent of bacteria or microorganisms picked up from inside the nasal openings which can grow in the any tubing 80 associated with the nebulizer 25.
As shown in
The nebulizer 25 has been greatly improved by being designed to accommodate daily use rather than occasional use as originally intended. As shown in
As shown in
In other embodiments, rather than using the FFS ampoule 60, the nebulizer 25 is capable of accepting a multi-dose FFS ampoule 75. In use, the multi-dose FFS ampoule 75 may be filled with, for example, a week's supply of a particular medicament. The nebulizer 25 would then be provided with a dosing system so that each time medicament is dispensed from the multi-dose FFS ampoule 75, it is dispensed in a dose-specific amount. In other aspects of this embodiment, the multi-dose FFS ampoule 75 may be filled with enough medicament for a daily dose, bi-weekly dose, a weekly dose, a bi-monthly dose, and other variety of dosage amounts.
In another aspect of the embodiment of the FFS ampoule 60, it is envisioned that the FFS ampoule 60 may be an octagonal shape, a circular shape, an oval shape, and any other variety of shape which would be cooperative with the medicine chamber 45.
As shown in
In one embodiment of the particle dispersion chamber 85 as shown in
In a further embodiment, as shown in
As shown in
In the embodiment shown in
The embodiment shown in
The particle dispersion chambers 85 described herein can also be adopted for use with current pressurized canister inhalers, dry powder inhalers, inhaler and other mechanisms for which medicine is breathed through the nose, mouth, or both including inhaling and exhaling through the same orifice or alternating between the orifices. A small pump 35, either hand-primed, electric, or battery powered or otherwise, is attached to a housing and is prepared to be actuated. Tubing 80 which leads to air ports 90 lead from the pump 35 to a particle dispersion chamber 85 placed over the exit off the actuator 120. The pump fires when the unit is actuated and creates a vortex of the particles prior to the medicament entering the nostril where it can be swirled into the nasal cavity. The pump 35 can be fired by hand and timed with the breathing process of the user with such versions as a dry powder inhaler which uses the user's breathing to release the powder into the system.
In yet another embodiment, there are two air outputs 90, or jets, and a third jet is used to spin the particles prior to them entering the chamber 45. This is designed to get the individual particles spinning prior to being put into the vortex in the chamber 45. This will allow the particles to get better “bounce” in the nasal cavity and deeper penetration and larger coverage area into the nasal cavity and the sinuses. This will be done for specific medicaments that could benefit from this action and will be turned off for medicaments that would not benefit from it.
In an additional embodiment (
In yet another embodiment of the nebulizer 25 as shown in
In another embodiment, as shown in
In one manner of operation, a FFS ampoule 60 containing a medicament or the medicament itself is placed into the medicine chamber 45 of the nebulizer 25 shown in
1. In
2. The nasal adapter 10 is lifted from its compartment 2, shown in
3. As shown in
4. As shown in
5. As shown in
6. The user breathes using the BT, but inhaling and exhaling out the mouth as needed to maintain oxygen levels.
7. When the timer 4 stops the nebulizer 25, if it is being used for a single dose treatment, the nasal adapter 10 is replaced in its compartment 2 and the medicine chamber 45 is cleaned.
Preferably, the nebulizer 25 is allowed to dry fully before reusing. If using for a multiple dose treatment, it should be cleaned after each dosage is complete. The nebulizer 25 disclosed herein is capable of delivering nebulized particles far into the nasal cavity and the paranasal sinuses.
In another method of operation, the user uses the nebulizer 25, or any other art-recognized nebulizer (or even standard spray bottle-type ‘nebulizers’), in conjunction with a novel Controlled Particle Dispersion Breathing Technique (BT). The novel BT provides for the nebulized particles to reach deeply into the nasal cavity and paranasal sinuses. The BT includes placing the nasal adapter 10 of the nebulizer 25 over the nose of the patient and activating the nebulizer 25. As nebulized particles begin to flow out of the particle dispersion chamber 85, the user should take long, slow steady breaths alternating with approximately one to five quick breaths, preferably two to four quick breaths, and even more preferably three breaths, through the user's nose. The breath(s) should be held for approximately one to five seconds and more preferably for three seconds. Using the back of the throat, the user should then create pressure in their sinuses such as when relieving pressure due to a change in altitude when traveling in a car or plane. This allows the medicine to remain in the nasal cavity and aids in delivery of the medicine to the sinuses. This pressure should be used during both types of breathing. The breathing, breath holding, and pressure creation should be performed throughout the treatment. Preferably, the user should follow with three long, slow, deep breaths through the nose. More preferably, the user should follow with two long, slow deep breaths through the nose. Most preferably, the user should follow with one long, slow, deep breath through the nose. The above discussed breathing, breath holding, pressure creation, and slow, long deep breaths are then repeated until the treatment is complete. It is advised that when dealing with severe cases of sinus congestion, the user should be instructed to breathe through the mouth as needed to maintain necessary oxygen intake. Although the BT involves breathing in through the nose, it is understood that infants, children, the elderly and others with serious breathing problems may perform the BT through the mouth or through cooperatively the mouth and nose.
The nebulizer 25 disclosed herein is capable of delivering nebulized particles far into the ethmoid, maxillary and sphenoid sinus. The sphenoid sinus is located furthest from the nasal cavity. The ethmoid, maxillary and sphenoid sinuses have not been penetrated in the past through any other prior art technology. The delivery of medicament to the ethmoid, maxillary and sphenoid sinuses has been shown through sinus ventilation studies.
Preferably, the inventive nebulizer and methods deliver (nasally) nebulized particles comprised of particles substantially having a mean diameter of about 2 to about 50 μm, about 5 to about 50 μm, about 5 to about 40 μm, about 5 to about 35 μm, about 5 to about 30 μm, about 5 to about 20 μm, about 5 to about 17 μm, about 5 to about 15 μm, about 8 to about 30 μm, about 8 to about 20 μm, about 10 to about 30 μm, about 10 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, about 11 to about 40 μm, about 11 to about 30 μm, about 11 to about 20 μm, about 11 to about 15 μm, about 12 to about 17 μm, about 15 to about 25 μm, about 15 to about 20 μm, and about 17 to about 23 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 5 to about 30 the delivered nebulized particles are comprises of particles substantially having a mean diameter of about 5 to about 30 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, and about 12 to about 17 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 10 to about 15 μm, or about 12 to about 15 μm.
Preferably, the nebulizers of the present invention are used to deliver drugs, therapeutics and other beneficial compounds systemically.
Systemic delivery via inhalation utilizing the nasal mucosa and mucosa in the paranasal sinuses is desired for many targeted disease states, and the nebulizers of the present invention are well suited for this purpose. The nebulizer 16 of
For a user with a secondary condition of nasal polyps, the inventive apparatus and methods allow far more effective application of the medicine, which is otherwise blocked or precluded using contemporary systems. Prior art corticosteroid-based inhalers are designed to also slow the re-growth of polyps following their removal. Currently, however, such devices are largely ineffective at accomplishing this, often slowing polyp growth at all. According to the present invention, the apparatus and methods described herein are significantly more effective in slowing polyp re-growth following their removal.
Many of the side effects of some medicines are eradicated by the inventive devices and methods. With many sprays, for example, the propellant causes a drying of the nasal passages leading to bleeds. With the use of contemporary devices that lead to bleeds, a secondary spray of saline is added to the treatment to try and control the bleeding. Furthermore, steroids in pill form have many unpleasant side effects such as internal bleeding, a redistribution of fluid to the head, neck and back causing unsightly “humps,” and easy bruising, to name a few. An effective use of the inventive integrated nebulizer does not have these side effects associated with steroids in pill form.
The inventive integrated nebulizer will allow medicine to be administered to the nasal cavity and paranasal sinuses via very small particles that will penetrate deeply into the nasal cavity, most regions of the paranasal sinuses, and allow for systemic delivery. The inventive integrated nebulizer will also provide the patient with a more effective absorption of the drug, increasing effectiveness, and will allow multiple conditions to be treated in a far more effective manner.
Typically, since the medicine is delivered in a treatment and not an attack scenario, the application or delivery time is only 0.5-3 minutes, rather than the 10-15 minutes used during an asthma attack. Multiple dose levels of the medicine can be placed in the inventive integrated nebulizer, a week supply for example, and the unit will run for a prescribed time, for example but not limited to three minutes, and will then, in particular embodiments, shut itself off. Preferably, the inventive integrated nebulizer is designed with multiple dose capability and a timer with a pause feature. The pause feature allows the user to stop the treatment under way to deal with a short, minor happenstance and then resume the treatment for the remaining time. The timer is variable to accommodate the drug being administered and/or prescribed by the physician.
Use of a nasal adapter 24 also limits the spread and growth of bacteria or microorganisms. Use of a nasal adapter 24 reduces the spread of bacteria that can be picked up from inside the nasal openings as is the case with current MDI's or AQ sprays. Further, use of a disposable version of nasal adapter 24 reduces the occurrence of re-inoculation of the nasal openings with bacteria present on the nasal adapter 24, when not properly cleaned.
The nebulizer 16 is designed to accommodate daily use. The substantially compact size of the nebulizer allows for easy transport and discreet use.
Disrupting the air flow. A significant aspect of the inventive controlled particle dispersion technology is that it disrupts the air flow that air takes when passing through the nasal cavity through inhalation. This disruption allows the particles access to the upper and posterior sections of the nasal cavity and entry into the paranasal sinuses. This disruption can be, for example, a vortical, chaotic, or random mixing of the particles just prior to exiting the device with added but limited effect. Preferably, induction of vortical flow is the most efficient and effective means of disrupting the air flow but other means can accomplish this with the same goal of disrupting the air flow for better deposition in the nasal cavity.
As shown in
Further, the particles delivered by the inventive devices afford systemic delivery through the paranasal sinus membranes. The particles can be delivered across the nasal and sinus mucosal membranes to enter the systemic blood circulation to treat medical conditions elsewhere in the body. Treatments for medical conditions include, but are not limited to, treatments for pain management, sleep disorders, autoimmune diseases, neurological disease and disorders, and weight control, etc. Compounds that can be delivered include, but are not limited to, synthetic and natural peptides, proteins, antibodies, hormones, vaccines, DNA and RNA, sugars, carbohydrates, and lipids. Delivered compounds can also include small synthetic organic pharmaceuticals, radiopharmaceuticals, vitamins, homeopathic solutions or any pharmaceutical, with or without additional formulation to aid in the stability or to aid in the crossing of the mucosal membrane by the compound. The critical aspects, according to the present invention are the preferred particle size, and the randomized or vertical motion imparted by the inventive devices and methods.
In another embodiment, the nebulizer 16 shown in
Preferred Jet Nebulization Embodiments
A preferred embodiment of the nebulizer 16 is shown in
An impacter 180 (see
Located generally opposite the pressure release member 64 and impacter 180 is a particle dispersion chamber 12 (see
In another embodiment, the nebulizer 16 shown in
In another embodiment, the nebulizer 16 shown in
The nebulizer 16 disclosed herein is capable of delivering nebulized particles far into the nasal cavity and the paranasal sinuses. In another method of operation, the user uses the nebulizer 16 in conjunction with a Controlled Particle Dispersion Breathing Technique (BT). The BT provides for the nebulized particles to reach deeply into the nasal cavity and paranasal sinuses. The BT includes placing the nasal adapter 24 to the nose of the patient and activating nebulizer 16. As nebulized particles begin to flow out of the particle dispersion chamber 12, the user should take long, slow steady breaths alternating with approximately one to five quick breaths, preferably two to four quick breaths, and even more preferably three breaths, through the user's nose. The breath(s) should be held for approximately one to five seconds and more preferably for three seconds. Using the back of the throat, the user should then create pressure in their sinuses such as when relieving pressure due to a change in altitude when traveling in a car or plane. This allows the medicine to remain in the nasal cavity and aids in delivery of the medicine to the sinuses. This pressure should be used during both types of breathing. The breathing, breath holding, and pressure creation should be performed throughout the treatment. Preferably, the user should follow with three long, slow, deep breaths through the nose. More preferably, the user should follow with two long, slow deep breaths through the nose. Most preferably, the user should follow with one long, slow, deep breath through the nose. The above discussed breathing, breath holding, pressure creation, and slow, long deep breaths are then repeated until the treatment is complete. It is advised that when dealing with severe cases of sinus congestion, the user should be instructed to breathe through the mouth as needed to maintain necessary oxygen intake. Although the BT involves breathing in through the nose, it is understood that infants, children, the elderly and others with serious breathing problems may perform the BT through the mouth or through cooperatively the mouth and nose.
The nebulizer 16 disclosed herein is capable of delivering nebulized particles far into the ethmoid, maxillary and sphenoid sinus. The sphenoid sinus is located furthest from the nasal cavity. The ethmoid, maxillary and sphenoid sinuses have not been penetrated in the past through any other prior art technology. The delivery of medicament to the ethmoid, maxillary and sphenoid sinuses has been shown through sinus ventilation studies.
A particularly preferred embodiment of the present invention is shown in
Preferred embodiments comprise a supplementary inhalation channel integral to or in direct communication with the nasal adapter, the inhalation channel at one end in communication with ambient air, and the other end being positioned adjacent to and in communication with the perimeter of the nasal-proximal aperture of the adapter channel. Preferably, the nasal-proximal end of the inhalation channel is annular, positioned adjacent to and surrounding the perimeter of the nasal-proximal aperture of the adapter channel, and is suitable to provide for a supplementary air curtain substantially adjacent to and surrounding the dispersed flow of delivered nebulized particles. Preferably, the nebulized particles are delivered in a vortical flow, and upon supplemental inhalation, the air curtain provides sufficient convective draft to stretch and increase the vorticity of the vortical flow.
Nebulized particles (and nebulizing fluid and supplemental air) travel through the nebulizer chamber and exit through a top opening 3 into a particle dispersion chamber, which is in direct communication with the top opening of the nebulizer chamber 3. In this instance, the particle dispersion chamber is formed from an outer annular member 2 and an inner annular member 1. The inner annular member 1, equipped with a pair of o-rings, is insertable into the outer annular member 2 to form an internal chamber that is sealed at each end by the o-rings, which are compressed between the outer 2 and inner 1 annular members. The outer annular member 2 comprises a opening for entry of compressed fluid into the internal chamber. The wall of inner annular member 1 comprises one or more integral fluid output channels for channeling compressed fluid from the internal chamber (formed between the inner 1 and outer 2 annul members) to the interior of the particle dispersion chamber. The integral fluid output channels are directionally oriented so that compressed fluid exiting therefrom passes tangentially, and at an upward angle θ (see
In the instant embodiment, compressed fluid travels from the compressor channel 9 to the particle dispersion chamber by means of a dispersion feed channel 19. In the instant embodiment, the dispersion feed channel lies outside the nebulizer chamber and the particle dispersion chamber. Alternatively, the dispersion feed channel may be integrated in to the wall of the nebulizer chamber, or may travel within the nebulizer chamber to eventually feed the integral fluid output channels of the particle dispersion chamber.
An optional ‘check valve’, comprising upper and lower retaining members 4 and 6, along with a check valve disc 5 is shown located within the nebulizer chamber, and positioned between the impacter and the lower opening of the particle dispersion chamber. The check valve serves to prevent particles from exiting the supplementary air intake opening 18 of upper portion 3 of the nebulization chamber.
Factors affecting nebulization rate, and particle size. According to the present invention, the rate of nebulization is affected, inter alia, by both the angle θ (see
Dual particle dispersion chambers and complementary nasal adaptor. The nasal anatomy is structured so that particles entering one side or the other will have a better propensity to penetrate space and impact on tissue if they are in a vortex spinning in a particular direction. This spin is imparted on the droplets (particles) using the inventive controlled particle dispersion technology disclosed herein.
In particularly preferred embodiments (see
In the context of the present preferred implementations, there are two most preferred vortex motions, as seen in
Particle sizes. According to preferred aspects of the present invention, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 2 to about 50 μm, about 5 to about 50 μm, about 5 to about 40 μm, about 5 to about 35 μm, about 5 to about 30 μm, about 5 to about 20 μm, about 5 to about 17 μm, about 5 to about 15 μm, about 8 to about 30 μm, about 8 to about 20 μm, about 10 to about 30 μm, about 10 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, about 11 to about 40 μm, about 11 to about 30 μm, about 11 to about 20 μm, about 11 to about 15 μm, about 12 to about 17 μm, about 15 to about 25 μm, about 15 to about 20 μm, and about 17 to about 23 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 5 to about 30 the delivered nebulized particles are comprises of particles substantially having a mean diameter of about 5 to about 30 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, and about 12 to about 17 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 10 to about 15 μm, or about 12 to about 15 μm.
The phrase “substantially having a mean diameter,” as used herein with respect to preferred particle diameter ranges, refers to the use of particle collections, wherein at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% have the preferred diameter range. Preferably, at least 60%, 70%, 80%, 90% or 95% of the nebulized particles are of the preferred particle diameter range. More preferably, at least 70%, 80%, 90% or 95% of the nebulized particles are of the preferred particle diameter range.
Preferred Linear Nebulization Embodiments
In addition to art-recognized ‘jet’ nebulizers, linear or direct nebulizers are known. Particularly preferred embodiments of the present invention comprise linear nebulization.
Principles of linear nebulization. The basic principals of linear nebulization are discussed here with reference to
When a fluid in a pipe or conduit encounters a sudden enlargement in cross-sectional area, ‘head loss’ (HL) occurs. The momentum equation combines with Bemoulli's equation about the control volume
P1/ρ+V12/2gc=P2/ρ+V22/2gc+HLg/gc (equation 1)
The momentum equation equates the net force to the rate of change of momentum:
P1A2−P2A2=(V2)V2A2ρ/gc−(V1)V1A1ρ/gc (equation 2)
The salient term in equation 2 is P1A2. While it might appear that the force acting to the right (in the direction of the air stream) in the model of
P2−P1=(V12−V22)ρ/2gc−HL(gρ/gc)=(V1V2−V22)ρ/gc
Solving for head loss (HL):
HL=(½g)(V1−V2)2=(V12/2g)(1−(A1/A2))2
Furthermore, where A2>>>A1, A1/A2 approaches zero, such that:
HL=V12/2g
The pressure drop at the point of enlargement (inches of water) needs to be greater than the column of fluid (h). This will bring the liquid up the column and into the air stream.
The pressure generated by the water column is ρgh. This is the force the pressure, generated by the air flow, has to overcome.
Preferred linear nebulization embodiment. A particularly preferred embodiment of the present invention is shown in
Compressed fluid (e.g., air, gas, or combinations thereof) is directed from a compressor pump, via compressor channels, toward the pressure release channel 8 of the nebulizing pressure release member 64 projecting into the nebulizer chamber of the nebulizer. The compressed fluid is directed up through the pressure release channel 8 and member 64 to a pressure release orifice 19 located substantially at the center of the top surface of the pressure release member 64. A nebulization cap 7 fits over and substantially conforms to the surface (e.g., cylindrical surface) of the pressure release member 64. The nebulization cap 7 has a top opening 20 in communication with the pressure release orifice 19 to allow compressed fluid to travel from the pressure release orifice 19 through the top opening 20 of the nebulization cap 7. The nebulization cap 7 additionally comprises an obstructing member 22 that partially overlaps a position directly above the pressure release orifice 19, and thereby partially obstructs the path of emerging fluid from the pressure release orifice 19. The nebulizing pressure release member 64 further comprises a medicament channel 185 (see e.g., the analogous impacter channel 185 of
Preferred embodiments comprise a supplementary inhalation channel integral to or in direct communication with the nasal adapter, the inhalation channel at one end in communication with ambient air, and the other end being positioned adjacent to and in communication with the perimeter of the nasal-proximal aperture of the adapter channel. Preferably, the nasal-proximal end of the inhalation channel is annular, positioned adjacent to and surrounding the perimeter of the nasal-proximal aperture of the adapter channel, and is suitable to provide for a supplementary air curtain substantially adjacent to and surrounding the dispersed flow of delivered nebulized particles. Preferably, the nebulized particles are delivered in a vortical flow, and upon supplemental inhalation, the air curtain provides sufficient convective draft to stretch and increase the voracity of the vortical flow.
Nebulized particles (and nebulizing fluid and supplemental air) travel through the nebulizer chamber and exit through a top opening into a particle dispersion chamber 12, which is in direct communication with the top opening of the nebulizer chamber. In this instance, the particle dispersion chamber 12 is formed, at least in part, from an outer annular member 2 and an inner annular member 1. The inner annular member 1, equipped with a pair of o-rings, is insertable into the outer annular member 2 to form an internal chamber 9 that is sealed at each end by the o-rings, which are compressed between the outer 2 and inner 1 annular members. The outer annular member 2 comprises an opening for entry of compressed fluid (e.g., bled from a compressor channel of the unit) into the internal chamber 9. The wall of inner annular member 1 comprises one or more integral fluid output channels 28 for channeling compressed fluid from the internal chamber 9 (formed between the inner 1 and outer 2 annul members) to the interior of the particle dispersion chamber. The integral fluid output channels are directionally oriented so that compressed fluid exiting therefrom passes tangentially, and at an upward angle θ (see
In the instant embodiment, compressed fluid travels from the compressor channel 10 to the particle dispersion chamber by means of a dispersion feed channel 11. The dispersion feed channel 11 may lie outside the nebulizer chamber and the particle dispersion chamber. Alternatively, the dispersion feed channel may be integrated into the wall of the nebulizer chamber, or may travel within the nebulizer chamber to eventually feed the integral fluid output channels of the particle dispersion chamber.
An optional ‘check valve’, as described above with respect to preferred jet nebulization embodiments, serves to prevent particles from exiting the supplementary air intake opening of the nebulization chamber.
Referring to
Preferably, the compressed fluid output channel 28 is integral with the dispersion chamber wall 7. Preferably, the compressed fluid output channel 28 communicates with the nasal adaptor portion 26 of the internal dispersion channel. Preferably, there is a plurality of compressed fluid output channels in communication with at least one dispersion feed channel. Preferably, the dispersion feed channel 77 is integral with at least one of the nebulization chamber wall 5 and the dispersion chamber wall 7. Preferably, dispersed particle flow of nebulized particles comprises vortical particle flow thereof. Preferably, the nebulizer comprises: a single nebulizer pressure release orifice; and dual internal dispersion channels comprising corresponding dual nasal adapter channels. Alternately, the nebulizer comprises: dual nebulizer pressure release orifices; and dual internal dispersion channels comprising corresponding dual nasal adapter channels. Preferably, the dispersion chamber is suitable to provide for independent vortical flow patterns within and from each of the dual internal dispersion channels. Preferably, the dispersion chamber is suitable to provide for dual vortical flow patterns that spiral in opposite directions. Preferably, the nebulizer comprises at least one of jet nebulization means and linear nebulization means. Preferably, the nebulizer comprises linear nebulization means.
Preferably, the nebulizer further comprises a supplementary inhalation channel 18 integral to or in direct communication with the nasal adapter 24, the channel at one end in communication with ambient air, the other end 18 being positioned adjacent to and in communication with the perimeter of the nasal-proximal aperture of the adapter channel. Preferably, the nasal-proximal end 19 of the inhalation channel is annular, positioned adjacent to and surrounding the perimeter of the nasal-proximal aperture of the adapter channel, and is suitable to provide for a supplementary air curtain substantially adjacent to and surrounding the dispersed flow of delivered nebulized particles. Preferably, the nebulized particles are delivered in a vortical flow, and wherein, upon supplemental inhalation, the air curtain provides sufficient convective draft to stretch and increase the vorticity of the vortical flow.
Alternately, the nebulizer further comprises a supplementary inhalation channel integral to or in direct communication with the nasal adapter, the channel at one end in communication with ambient air, the other end being annularly positioned at the nasal distal end of the adapter channel to direct supplementary air flow in an annual curtain adjacent to the internal wall of the adapter channel.
According to the present invention, and as shown in the left central panel of
Preferably, the nebulizer further comprises: a medicament cartridge receiving portion in communication with the nebulizing means; and a medicament cartridge functionally complementary to the cartridge receiving portion.
Factors affecting nebulization rate, and particle size. According to the present invention, the rate of nebulization is affected, inter alia, by both the angle θ, and the compressed fluid flow. According to the present invention, the particle size is affected, inter alia, by the hydrodynamic properties of the medicament solution, the fluid flow, and the geometry (e.g., degree of overlap with, and distance above the pressure release orifice 19) of the nebulization cap relative to the pressure release member and orifice 19. Therefore, according to the present invention, these variables of the inventive integrated nebulizer and particle dispersion chamber can be adapted by one of ordinary skill in the art to provide particles having the preferred mean diameter range, and that can be delivered at an optimal rate and dosage.
Dual particle dispersion chambers and complementary nasal adaptor. In particularly preferred embodiments the inventive nebulizer is in direct communication with a pair of particle dispersion chambers oriented to provide direct parallel delivery of vortical flow particles into each nostril via a complementary bifurcated nasal adapter (see, e.g., the right panels of
According to preferred aspects of the present invention, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 2 to about 50 μm, about 5 to about 50 μm, about 5 to about 40 μm, about 5 to about 35 μm, about 5 to about 30 μm, about 5 to about 20 μm, about 5 to about 17 μm, about 5 to about 15 μm, about 8 to about 30 μm, about 8 to about 20 μm, about 10 to about 30 μm, about 10 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, about 11 to about 40 μm, about 11 to about 30 μm, about 11 to about 20 μm, about 11 to about 15 μm, about 12 to about 17 μm, about 15 to about 25 μm, about 15 to about 20 μm, and about 17 to about 23 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 5 to about 30 the delivered nebulized particles are comprises of particles substantially having a mean diameter of about 5 to about 30 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, and about 12 to about 17 μm.
Preferably, the nasally delivered nebulized particles are comprised of particles substantially having a mean diameter of about 10 to about 15 μm, or about 12 to about 15 μm.
The phrase “substantially having a mean diameter,” as used herein with respect to preferred particle diameter ranges, refers to the use of particle collections, wherein at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% have the preferred diameter range. Preferably, at least 60%, 70%, 80%, 90% or 95% of the nebulized particles are of the preferred particle diameter range. More preferably, at least 70%, 80%, 90% or 95% of the nebulized particles are of the preferred particle diameter range.
Novel Use of Preferred Particles.
In consideration of the above disclosure, therefore, preferred embodiments of the present invention provide novel use, for topical drug delivery to, or systemic drug delivery via, a deep nasal cavity or paranasal sinus, of an aerosol comprised of substantially uniform diameter aerosolized particles.
Preferred embodiments thus provide a method of drug delivery to a deep nasal cavity or paranasal sinus, comprising: producing nebulized particles substantially having a uniform mean diameter.
Preferably, the aerosolized particles pass through a particle dispersion chamber prior to delivery.
Preferably, the particle dispersion chamber is suitable to provide for vortical particle flow from at least one particle dispersion channel. Preferably, a dual dispersion channel is used to provide for dual vortical particle flows. Preferably, the dual vertical particle flows are in opposite directions (see, e.g., Type I and Type II flow patterns illustrated in
Preferably, the particles are comprised of particles substantially having a mean diameter of about 2 to about 50 μm, about 5 to about 50 μm, about 5 to about 40 μm, about 5 to about 35 μm, about 5 to about 30 μm, about 5 to about 20 μm, about 5 to about 17 μm, about 5 to about 15 μm, about 8 to about 30 μm, about 8 to about 25 μm, about 8 to about 20 μm, about 10 to about 30 μm, about 10 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, about 11 to about 40 μm, about 11 to about 30 μm, about 11 to about 20 μm, about 11 to about 15 μm, about 12 to about 17 μm, about 15 to about 25 μm, about 15 to about 20 μm, and about 17 to about 23 μm.
Preferably, the delivered nebulized particles are comprised of particles substantially having a mean diameter of about 5 to about 30 μm, about 8 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, and about 12 to about 17 μm.
Preferably, the particles are comprised of particles substantially having a mean diameter of about 8 to about 25 μm, 10 to about 15 μm, or about 12 to about 15 μm.
Preferably, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% have the preferred diameter range. Preferably, at least 60%, 70%, 80%, 90% or 95% of the nebulized particles are of the preferred particle diameter range. Preferably, at least 70%, 80%, 90% or 95% of the nebulized particles are of the preferred particle diameter range.
Preferred embodiments thus provide a method of drug delivery to a deep nasal cavity or paranasal sinus, comprising: producing nebulized particles substantially having a uniform mean diameter selected from the group consisting of about 5 to about 30 μm, about 8 to about 25 μm, about 10 to about 20 μm, about 10 to about 17 μm, about 10 to about 15 μm, and about 12 to about 17 μm; and passing the nebulized particles, prior to delivery, through a particle dispersion chamber suitable to provide for vortical particle flow. Preferably, the nebulized particles substantially have a uniform mean diameter of about 8 to about 25 μm. Preferably, at least 60%, at least 70%, at least 80%, at least 90% or at least 95% of the nebulized particles are of the preferred particle diameter range. More preferably, at least 70%, at least 80%, at least 90% or at least 95% of the nebulized particles are of the preferred particle diameter range. Most preferably, the integrated inventive nebulizers described herein are used for this purpose.
Complementary Cartridge Docking System: Drug Delivery Specificity, Based on Cartridge-Specific and Drug-Specific Docking with the Inventive Integrated Nebulizer Device
Referring to
According to preferred aspects, specific drugs are restricted to specific ampoule designs to provide for drug-specific docking with the adapter cartridge portion of the integrated nebulizer and particle dispersion chamber device. Preferably, each drug (or drug provider) is paired with a unique ampoule (e.g., UDV; unit dose vial) shape and/or configuration, such that only that assigned ampoule (and therefore, that matched drug) can be used in a respective functionally complementary version (e.g., branded version) of the inventive integrated nebulizer and particle dispersion chamber device. Functional complementarity between the adapter cartridge and the ampoule design is the key to this system. The medicament ampoule design is not only matched (assigned to) a particular drug, but specific ampoule designs will only work with the respective functionally complementary version of the adapter cartridge of the integrated nebulizer and particle dispersion chamber device (i.e., will only work with those having a complementary adapter cartridge).
The inventive CCDS system can be appreciated as a docking station concept, under which a specifically designed UDV would be docked to a respective functionally complementary integrated nebulizer/particle dispersion chamber. Drug delivery is user-specific where a particular drug and unique UDV are, for example, prescribed by a physician to a given user.
Accordingly, a variety of medicament cartridge shapes and configurations, as well as functional safeguards, are encompassed within the scope of the present invention, where in essence, the design of the ampoule must be insertibly complementary, and preferably also functionally complementary, with the adapter cartridge of the integrated nebulizer and particle dispersion chamber device. According to preferred aspects, complementarity is provided at the level of selective ampoule insertion/docking (e.g., by complementary ampoule body shape, or nozzle design), and/or at the level of nebulizer function after ampoule insertion. Thus, the inventive medicament ampoules could be of many shapes, sizes and designs, provided that insertional and functional complementarity exists between a specific medicament ampoule and a respective complementary adapter cartridge of the inventive integrated nebulizer and particle dispersion chamber device.
Preferably, a ampoule-specific adapter cartridge is provided to a user, along with the respective medicament ampoule (e.g., drug/UDV and adapter prescribed to a specific user). Ampoule design could take a variety of forms. For example, the ampoule could be complementary with a unique nozzle design/configuration of a particular adapter cartridge. Alternatively, the ampoule could be designed to preclude insertion into non-complementary shaped adapter cartridges.
Preferred embodiments provide a method for user-specific nebulized drug delivery using medicament ampoules, comprising: identifying an intended user of a desired nebulizable medicament; providing, to the user, a base nebulizer having an adapter cartridge receiving portion, wherein any one of a plurality of adapter cartridge types is receivable by the receiving portion, wherein each adapter cartridge type is designed to be functionally complementary to a corresponding distinctive medicament ampoule design, and wherein each medicament ampoule of a particular distinctive ampoule design comprises a particular nebulizable medicament or dosage thereof assigned to that design; and providing to the user an adapter cartridge type corresponding to the desired medicament, whereby user-specific nebulized drug delivery is afforded. Preferably, nebulization is according to claim 21. Preferably, where the intended use is of a plurality of particular medicaments, the user is provided with a corresponding plurality of adapter cartridges. Preferably, functionally complementary between the adapter cartridge and the medicament ampoule is based, at least in part, on the external surface or shape of the medicament ampoule. Alternatively, functional complementarity is based on functional design of an otherwise receivable medicament ampoule.
The present invention is further illustrated by reference to the EXAMPLES below. However, it should be noted that these EXAMPLES, like the embodiments described above, are illustrative and are not to be construed as restricting the enabled scope of the invention in any way.
A 21-year-old female subject was provided with the nebulizer 25 and was instructed to perform the Controlled Particle Dispersion Breathing Technique (BT). A TC-DTPA aerosol radiopharmaceutical was provided in the nebulizer 25 in a dose of 10 mci. After performance of the BT, a technesium imaging test was performed on the nasal sinuses of the subject. The technesium imaging test was performed at Swedish Medical Center in Seattle, Wash. The technesium imaging test allows for identification of nebulized particles in the ethmoid and sphenoid sinuses. The findings of the technesium imaging tests were of tracer activity in the ethmoid and sphenoid sinuses bilaterally. There was no activity in the maxillary or frontal sinuses. Communication between the nasal airway and ethmoidal and sphenoid sinuses was documented.
A 25-year-old male subject was provided with the nebulizer 25 and instructed to perform the Controlled Particle Dispersion Breathing Technique (BT). The nebulizer 25 was provided with TC-DTPA aerosol at a dose of 15 mci. The technesium imaging test was performed at Swedish Medical Center in Seattle, Wash. The technesium imaging test allows for identification of nebulized particles in the ethmoid and sphenoid sinuses. The findings of the technesium imaging study were that proton activity was greater in the ethmoid, maxillary and sphenoid sinuses bilaterally greater right than left. There was no tracer activity in the frontal sinuses. The aerosol was delivered via a nasal mask communicated with the ethmoid and sphenoid sinuses bilaterally but not with the frontal sinuses.
A representative sinus-bent image for the subjects in Examples 1 and 2 is provided in
All of these features have been built into the device for use as a nasal nebulizer for the treatment of chronic sinusitis, allergic rhinitis, colds and flu, pain relief and for any developments in which introduction of drugs via the nasal passages will be aided. In one potential embodiment the nebulizer 25 will be used to deliver various medicaments with a narrow range of particle sizes.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/29001 | 9/3/2004 | WO | 2/8/2007 |
Number | Date | Country | |
---|---|---|---|
60500386 | Sep 2003 | US | |
60581296 | Jun 2004 | US |