The present disclosure pertains to internal combustion engines and particularly to engines having aftertreatment mechanisms.
The disclosure reveals an engine and one or more aftertreatment subsystems integrated into one system for optimization and control. At least one controller may be connected to the engine and the one or more aftertreatment subsystems. The controller may contain and execute a program for the optimization and control of the one system. Controller may receive information pertinent to the engine and the one or more aftertreatment subsystems for the program. The controller may prescribe setpoints and constraints for measured variables and positions of actuators according to the program to aid in effecting the optimization and control of the one system.
The modern combustion engine appears to be a very complex system. The complexity growth may be driven namely by governmental legislation that restricts combustion engine emissions. Therefore, the original equipment manufacturers (OEMs) may be forced to add various equipment items, sensors and actuators to the engine to achieve the prescribed limits and to optimize engine operating costs, e.g., fuel economy, urea consumption, and so forth. Under these conditions, an engine operation optimization and design of an optimal control system may be a challenging task.
Some approaches may incorporate optimizing the engine and individual aftertreatment systems involving, e.g., selective catalytic reduction (SCR), diesel oxidation catalysts (DOC), diesel particulate filter (DPF), and so on, separately. These approaches do not necessarily provide a systematic way of optimization. They may involve time consuming and expensive tasks. Furthermore, it is not necessarily ensured that their results will be optimal. There might be a better solution.
Another approach may be to optimize the engine together with the aftertreatment subsystem (AFS) as a one system. Such an approach may enable one to find the global optimal behavior of the engine with an aftertreatment subsystem from an economical and technical point of view while satisfying virtually all of the prescribed emission limits. The engine and aftertreatment subsystem may have appropriate sensors and actuators as needed to effect an optimization program for the engine and aftertreatment subsystem or subsystems as one system. The engine may be seen as an exhaust gas source for the aftertreatment subsystem. The properties of the engine out exhaust gas as sensed may be influenced within certain range by manipulating available engine actuators such as those of a turbocharger waste gate (WG), variable geometry turbocharger (VGT), exhaust gas recirculation (EGR), start of injection (SOI), throttling valve (TV), and so on. Various degrees of freedom may be used to prepare or modify the exhaust gas properties for optimal operation of the aftertreatment subsystem at virtually all of the engine operating points. For example, if the actual state of the aftertreatment subsystem does not enable a reduction of emissions due to low temperature as sensed in some operating regimes, then the engine actuators may be controlled to increase temperature so that the engine exhaust gas out emissions do not violate prescribed limits. On the other hand, if the state of the aftertreatment subsystem enables a reduction of a significant amount of pollutants, the engine actuators may be controlled in a way to also achieve the best fuel economy.
An engine optimization and control design may be formulated as a rigorous mathematical optimization problem. The present approach may offer a modular and systematic solution to the problem. The approach may incorporate dividing the engine and aftertreatment optimization and control design into two stages: (i) an off-line part and (ii) an on-line part (real-time).
(i) The off-line part may be formulated as a mathematical optimization problem with constraints (known as mathematical programming) and the results may be various engine maps prescribing setpoints and constraints for different kinds of measured variables from sensors and positions of virtually all engine actuators for virtually all major operating points or conditions of the engine, e.g., over the engine speed and torque map. Virtually all of the maps may be parameterized by various variables of the engine and aftertreatment system but may be also parameterized by measured fuel and/or urea consumption and corresponding costs, by their ratio, or other relevant economically related quantities. Information about actual market prices of fuel and other fluids used by the engine and aftertreatment system may be incorporated to parameterize the control system and may be used as a tuning parameter during the engine's lifetime. This approach may enable a slight tuning of the controller behavior when the prices of the fluids used are changed, which can ensure economically optimal operation of the engine in view of such changes during its lifetime.
(ii) The on-line part may consist of one or more feedback single or multivariable real-time controllers. These controllers may be implemented, for example, as model based predictive controllers (MPCs). The feedback controllers may ensure realization of virtually all of the setpoints, but also satisfaction of virtually all of the constraints computed in the off-line part. The feedback controllers may also ensure disturbance rejection, a minimization of an impact of engine components production variability, and aging of the engine. Furthermore, the feedback controllers may also be designed to deliver needed performance during an engine transient operation.
“x0” within the symbol for engine 11 may indicate an internal state of the engine. “xi” and “xN” may indicate internal states of AFSi 12 and AFSN 13, respectively. “v0” may represent an external input 15 to engine 11. The external input may incorporate disturbance, fluid price, and so on. Similarly, “vi” and “vN” may represent external inputs 24 and 25 for AFSi 12 and AFSN 13, respectively. A “U0” input 16 may represent an actuator or actuators of engine 11, a “ui” input 26 may represent an actuator or actuators of AFSi 12, and a “uN” input 27 may represent an actuator or actuators of AFSN 13. Inputs 16, 26 and 27 may incorporate actuator inputs.
“J0(x0,v0,u0)” on an output 17 may represent a subsystem cost function of x0, v0 and/or u0 for engine 11. “g(x0,v0,u0)≤0” also on output 17 may represent subsystem constraints of x0, v0 and/or u0 for engine 11. “y0” may represent an interconnection output 18 from engine 11 which may be an interconnection input “yi−1” 19 to AFSi 12, assuming that AFSi 12 is the first AFS connected to engine 11, where i=1. However, there may be one or more AFSs connected between engine 11 and AFSi 12. “yi” may represent an interconnection output 21 from AFSi 12 which may be an interconnection input “yN−1” 22 to AFSN 13, assuming that AFSN 13 is connected to AFSi 12. However, there may be one or more AFSs connected between AFSi 12 and AFSN 13. “yN” may represent an output 23 of the AFSN 13 and the preceding AFSs from “1” through “N−1”.
“Ji(xi,vi,ui,yi−1)” on an output 28 may represent a subsystem cost function of xi, vi, ui and/or yi−1 for AFSi 12. “Ji(.)” may be an abbreviated designation of the subsystem cost function. “g(xi,vi,ui,yi−1)≤0” also on output 28 may represent subsystem constraints of xi, vi, ui and/or yi−1 for AFSi 12. “g(.)” may be an abbreviated designation of the subsystem constraints. “JN(xN,vN,uN,yN−1” on an output 29 may represent subsystem cost function of xN, vN, uN and/or yN−1 for AFSN 13. “g(xN,vN,uN,yN−1)≤0” also on output 29 may represent subsystem constraints of xN, vN, uN and/or yN−1 for AFSN 13. The similar designations may be made for additional AFSs, if any, between engine 11 and AFSi 12 and between AFSi 12 and AFSN 13, as done herein with the xs, vs, us and ys.
An optimization problem in each operating point may be indicated by:
The resulting optimal steady-state maps may be indicated by:
uiSS=fu
yiSS=fy
Abbreviated designations of the steady-state map indications may be uiSS=fu
An on-line part (real-time) for an i-th aftertreatment subsystem or an engine may be illustrated in
The on-line part for an i-th subsystem of
Some of the items or activities of the disclosed system in
A recap of the disclosure is provided in the following. An engine and aftertreatment system may incorporate an engine, an aftertreatment mechanism connected to the engine, and a controller connected to the engine and the aftertreatment mechanism. The controller may have an optimization program. The optimization program may be for optimized performance of the engine and the aftertreatment mechanism integrated as one system. Optimized performance may incorporate reducing emissions and increasing fluid efficiency of the one system.
The optimization program may incorporate the aftertreatment mechanism for reducing emissions from an exhaust of the engine to a prescribed level, and increasing fluid efficiency of the engine and the aftertreatment mechanism while the emissions are reduced at least down to the prescribed level.
The engine may incorporate a control input to actuators on the engine, an interconnection output and an information output. The information output may indicate engine costs and/or engine constraints. The aftertreatment mechanism may incorporate an interconnection input connected to the interconnection output of the engine, a control input to actuators on the aftertreatment mechanism, an interconnection output, and an information output. The information output may indicate aftertreatment mechanism costs and/or aftertreatment mechanism constraints. The costs and constraints may be a basis incorporated in the optimization program for optimized performance of the engine and the aftertreatment mechanism integrated as one system.
The controller may further incorporate a first input connected to the interconnection output of the engine, a first output connected to the control input to actuators of the engine, a second input connected with the interconnection input of the aftertreatment mechanism, a third input connected to the interconnection output of the aftertreatment mechanism, and a second output connected to the control input to actuators of the aftertreatment mechanism.
The controller may further incorporate a feedback loop for disturbance rejection, minimizing an impact of variability of performance of the engine, and/or delivering predetermined performance of the aftertreatment mechanism during transient operation of the engine, and maps prescribing setpoints and constraints for measured variables and positions of engine actuators for one or more operating points of the engine. The maps may be parameterized by variables of the engine and the aftertreatment mechanism. The maps may be a basis incorporated in the optimization program for optimized performance of the engine and the aftertreatment mechanism integrated as one system.
An approach for engine and aftertreatment optimization and control may incorporate formulating an off-line part which involves mathematically optimizing an engine and aftertreatment system, providing engine maps prescribing setpoints and constraints for measured variables from sensors and positions of engine actuators for operating points and conditions of the engine, and parameterizing the engine maps with variables of the engine and the aftertreatment system.
The approach for engine and aftertreatment optimization and control may also incorporate formulating an on-line part providing one or more feedback real-time controllers realizing the setpoints of the engine and aftertreatment system, and satisfying computed constraints with the one or more controllers. The one or more controllers may be model predictive controllers.
The one or more controllers may ensure disturbance rejection, minimization of input of engine components production variability, and/or engine aging. The one or more controllers may deliver needed performance during an engine transient operation.
The approach may further incorporate parameterizing the engine and aftertreatment system by measured fuel, urea consumption and/or corresponding costs. The approach may also further incorporate parameterizing a control system with market price information of fuel and other fluids used by the engine and aftertreatment system. There may also be parameterizing the control system to tune the controller when there are changes of prices of fluids used by the engine and aftertreatment system to ensure economically optimal operation of the engine during the changes.
There may be a system of an engine and aftertreatment subsystem incorporating an engine, an aftertreatment subsystem connected to the engine, and a controller connected to the engine and the aftertreatment subsystem. The controller may receive signals from sensors of the engine and the aftertreatment subsystem, process the signals, and provide signals to actuators of the engine and the aftertreatment subsystem according to an optimization program for optimized performance of the engine and the aftertreatment subsystem as one system. The optimized performance may incorporate reducing emissions and increasing fluid efficiency of the one system.
The external inputs of the engine and the aftertreatment subsystem may be connected to the controller. The controller may incorporate engine maps for operating points of the engine. The maps may be a basis for optimized performance of the engine and the aftertreatment subsystem as one system. The maps may prescribe setpoints and constraints for measured variables from the sensors and for actuators.
The engine may incorporate an external input and an actuator input from the controller, and an interconnection output connected to the controller. The external input may have external information pertinent to the engine.
The aftertreatment subsystem may incorporate an interconnection input connected to the interconnection output of the engine and connected to the controller, an external input, an actuator input from the controller, and an interconnection output connected to the controller. The external input may have external information pertinent to the aftertreatment subsystem.
The engine may further incorporate an internal state and an information output. The information output may indicate engine costs as a function of the engine internal state, the external input and/or the actuator input.
The aftertreatment subsystem may further incorporate an internal state and an information output. The information output may indicate aftertreatment costs as a function of the aftertreatment subsystem internal state, the external input, actuator input, and/or the interconnection input.
The information output of the engine may indicate engine constraints as a function of the internal state, the external input and/or the actuator input of the engine. The information output of the aftertreatment subsystem may indicate aftertreatment constraints as a function of the internal state, the external input, the actuator input, and/or the interconnection input of the aftertreatment subsystem. The costs and constraints may be a basis for optimized performance of the engine and the aftertreatment subsystem as one system.
An approach for controlling a combined engine and aftertreatment system may incorporate providing an engine, adding one or more aftertreatment subsystems to result in a combined engine and aftertreatment system, connecting one of the one or more aftertreatment subsystems to an exhaust output of the engine, and manipulating actuators of the engine and the one or more aftertreatment subsystems with one or more controllers to change the properties of the exhaust for optimal operation of the combined engine and aftertreatment system. Optimal operation may incorporate reduction of emissions and improvement of fluid efficiency of the combined engine and aftertreatment system.
To change the properties of the exhaust may incorporate reducing an amount of pollutants in the exhaust to a magnitude equal to or less than a prescribed magnitude. Manipulating the actuators of the engine may increase fuel economy of the engine if the one or more aftertreatment subsystems reduce an amount of pollutants in the exhaust to a magnitude equal to or less than the prescribed magnitude.
The approach may further incorporate providing one or more engine maps as a basis for optimal operation of the combined engine and aftertreatment system, processing the one or more engine maps prescribing setpoints and/or constraints for measured variables and positions of the actuators on the engine for operating points and/or conditions of the engine, and parameterizing the engine maps by variables of the engine and of the one or more aftertreatment subsystems.
The approach may further incorporate parameterizing the engine maps by costs of fuel consumed by the engine and/or urea consumed by the one or more aftertreatment subsystems. The one or more engine maps may incorporate a speed and torque map of the engine. The one or more controllers may be connected to the engine and the one or more aftertreatment subsystems of the combined engine and aftertreatment system. The one or more controllers may ensure realization of the setpoints, and/or ensure satisfaction of the constraints.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.
This application is a continuation of U.S. patent application Ser. No. 13/290,025, filed Nov. 4, 2011. U.S. patent application Ser. No. 13/290,025, filed Nov. 4, 2011, is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3744461 | Davis | Jul 1973 | A |
4005578 | McInerney | Feb 1977 | A |
4055158 | Marsee | Oct 1977 | A |
4206606 | Yamada | Jun 1980 | A |
4252098 | Tomczak et al. | Feb 1981 | A |
4359991 | Stumpp et al. | Nov 1982 | A |
4383441 | Willis et al. | May 1983 | A |
4426982 | Lehner et al. | Jan 1984 | A |
4438497 | Willis et al. | Mar 1984 | A |
4440140 | Kawagoe et al. | Apr 1984 | A |
4456883 | Bullis et al. | Jun 1984 | A |
4485794 | Kimberley et al. | Dec 1984 | A |
4601270 | Kimberley et al. | Jul 1986 | A |
4616308 | Morshedi et al. | Oct 1986 | A |
4653449 | Kamei et al. | Mar 1987 | A |
4671235 | Hosaka | Jun 1987 | A |
4677559 | Van Bruck | Jun 1987 | A |
4735181 | Kaneko et al. | Apr 1988 | A |
4947334 | Massey et al. | Aug 1990 | A |
4962570 | Hosaka et al. | Oct 1990 | A |
5044337 | Williams | Sep 1991 | A |
5076237 | Hartman et al. | Dec 1991 | A |
5089236 | Clerc | Feb 1992 | A |
5094213 | Dudek et al. | Mar 1992 | A |
5095874 | Schnaibel et al. | Mar 1992 | A |
5108716 | Nishizawa | Apr 1992 | A |
5123397 | Richeson | Jun 1992 | A |
5150289 | Badavas | Sep 1992 | A |
5186081 | Richardson et al. | Feb 1993 | A |
5233829 | Komatsu | Aug 1993 | A |
5270935 | Dudek et al. | Dec 1993 | A |
5273019 | Matthews et al. | Dec 1993 | A |
5282449 | Takahashi et al. | Feb 1994 | A |
5293553 | Dudek et al. | Mar 1994 | A |
5349816 | Sanbayashi et al. | Sep 1994 | A |
5365734 | Takeshima | Nov 1994 | A |
5394322 | Hansen | Feb 1995 | A |
5394331 | Dudek et al. | Feb 1995 | A |
5398502 | Watanabe | Mar 1995 | A |
5408406 | Mathur et al. | Apr 1995 | A |
5431139 | Gruffer et al. | Jul 1995 | A |
5452576 | Hamburg et al. | Sep 1995 | A |
5477840 | Neumann | Dec 1995 | A |
5560208 | Halimi et al. | Oct 1996 | A |
5570574 | Yamashita et al. | Nov 1996 | A |
5598825 | Neumann | Feb 1997 | A |
5609139 | Ueda et al. | Mar 1997 | A |
5611198 | Lane et al. | Mar 1997 | A |
5682317 | Keeler et al. | Oct 1997 | A |
5690086 | Kawano et al. | Nov 1997 | A |
5692478 | Nogi et al. | Dec 1997 | A |
5697339 | Esposito | Dec 1997 | A |
5704011 | Hansen et al. | Dec 1997 | A |
5740033 | Wassick et al. | Apr 1998 | A |
5746183 | Parke et al. | May 1998 | A |
5765533 | Nakajima | Jun 1998 | A |
5771867 | Amstutz et al. | Jun 1998 | A |
5785030 | Paas | Jul 1998 | A |
5788004 | Friedmann et al. | Aug 1998 | A |
5842340 | Bush et al. | Dec 1998 | A |
5846157 | Reinke et al. | Dec 1998 | A |
5893092 | Driscoll | Apr 1999 | A |
5924280 | Tarabulski | Jul 1999 | A |
5942195 | Lecea et al. | Aug 1999 | A |
5964199 | Atago et al. | Oct 1999 | A |
5970075 | Wasada | Oct 1999 | A |
5974788 | Hepburn et al. | Nov 1999 | A |
5995895 | Watt et al. | Nov 1999 | A |
6029626 | Bruestle | Feb 2000 | A |
6035640 | Kolmanovsky et al. | Mar 2000 | A |
6048620 | Zhong | Apr 2000 | A |
6048628 | Hillmann et al. | Apr 2000 | A |
6055810 | Borland et al. | May 2000 | A |
6058700 | Yamashita et al. | May 2000 | A |
6067800 | Kolmanovsky et al. | May 2000 | A |
6076353 | Fruedenberg et al. | Jun 2000 | A |
6105365 | Deeba et al. | Aug 2000 | A |
6122555 | Lu | Sep 2000 | A |
6134883 | Kato et al. | Oct 2000 | A |
6153159 | Engeler et al. | Nov 2000 | A |
6161528 | Akao et al. | Dec 2000 | A |
6170259 | Boegner et al. | Jan 2001 | B1 |
6171556 | Burk et al. | Jan 2001 | B1 |
6178743 | Hirota et al. | Jan 2001 | B1 |
6178749 | Kolmanovsky et al. | Jan 2001 | B1 |
6208914 | Ward et al. | Mar 2001 | B1 |
6216083 | Ulyanov et al. | Apr 2001 | B1 |
6233922 | Maloney | May 2001 | B1 |
6236956 | Mantooth et al. | May 2001 | B1 |
6237330 | Takahashi et al. | May 2001 | B1 |
6242873 | Drozdz et al. | Jun 2001 | B1 |
6263672 | Roby et al. | Jul 2001 | B1 |
6273060 | Cullen | Aug 2001 | B1 |
6279551 | Iwano et al. | Aug 2001 | B1 |
6312538 | Latypov et al. | Nov 2001 | B1 |
6314724 | Kakuyama et al. | Nov 2001 | B1 |
6321538 | Hasler | Nov 2001 | B2 |
6327361 | Harshavardhana et al. | Dec 2001 | B1 |
6338245 | Shimoda et al. | Jan 2002 | B1 |
6341487 | Takahashi et al. | Jan 2002 | B1 |
6347619 | Whiting et al. | Feb 2002 | B1 |
6360159 | Miller et al. | Mar 2002 | B1 |
6360541 | Waszkiewicz et al. | Mar 2002 | B2 |
6360732 | Bailey et al. | Mar 2002 | B1 |
6363715 | Bidner et al. | Apr 2002 | B1 |
6363907 | Arai et al. | Apr 2002 | B1 |
6379281 | Collins et al. | Apr 2002 | B1 |
6389803 | Surnilla et al. | May 2002 | B1 |
6425371 | Majima | Jul 2002 | B2 |
6427436 | Allansson et al. | Aug 2002 | B1 |
6431160 | Sugiyama et al. | Aug 2002 | B1 |
6445963 | Blevins et al. | Sep 2002 | B1 |
6446430 | Roth et al. | Sep 2002 | B1 |
6453308 | Zhao et al. | Sep 2002 | B1 |
6463733 | Asik et al. | Oct 2002 | B1 |
6463734 | Tamura et al. | Oct 2002 | B1 |
6466893 | Latwesen et al. | Oct 2002 | B1 |
6470682 | Gray, Jr. | Oct 2002 | B2 |
6470862 | Isobe et al. | Oct 2002 | B2 |
6470886 | Jestrabek-Hart | Oct 2002 | B1 |
6481139 | Weldle | Nov 2002 | B2 |
6494038 | Kobayashi et al. | Dec 2002 | B2 |
6502391 | Hirota et al. | Jan 2003 | B1 |
6502550 | Kotwicki et al. | Jan 2003 | B1 |
6505465 | Kanazawa et al. | Jan 2003 | B2 |
6510351 | Blevins et al. | Jan 2003 | B1 |
6512974 | Houston et al. | Jan 2003 | B2 |
6513495 | Franke et al. | Feb 2003 | B1 |
6532433 | Bharadwaj et al. | Mar 2003 | B2 |
6546329 | Bellinger | Apr 2003 | B2 |
6550307 | Zhang et al. | Apr 2003 | B1 |
6553754 | Meyer et al. | Apr 2003 | B2 |
6560528 | Gitlin et al. | May 2003 | B1 |
6560960 | Nishimura et al. | May 2003 | B2 |
6571191 | York et al. | May 2003 | B1 |
6579206 | Liu et al. | Jun 2003 | B2 |
6591605 | Lewis | Jul 2003 | B2 |
6594990 | Kuenstler et al. | Jul 2003 | B2 |
6601387 | Zurawski et al. | Aug 2003 | B2 |
6612293 | Schweinzer et al. | Sep 2003 | B2 |
6615584 | Ostertag | Sep 2003 | B2 |
6625978 | Eriksson et al. | Sep 2003 | B1 |
6629408 | Murakami et al. | Oct 2003 | B1 |
6637382 | Brehob et al. | Oct 2003 | B1 |
6644017 | Takahashi et al. | Nov 2003 | B2 |
6647710 | Nishiyama et al. | Nov 2003 | B2 |
6647971 | Vaughan et al. | Nov 2003 | B2 |
6651614 | Flamig-Vetter et al. | Nov 2003 | B2 |
6662058 | Sanchez | Dec 2003 | B1 |
6666198 | Mitsutani | Dec 2003 | B2 |
6666410 | Boelitz et al. | Dec 2003 | B2 |
6671603 | Cari et al. | Dec 2003 | B2 |
6672052 | Taga et al. | Jan 2004 | B2 |
6672060 | Buckland et al. | Jan 2004 | B1 |
6679050 | Takahashi et al. | Jan 2004 | B1 |
6687597 | Sulatisky et al. | Feb 2004 | B2 |
6688283 | Jaye | Feb 2004 | B2 |
6694244 | Meyer et al. | Feb 2004 | B2 |
6694724 | Tanaka et al. | Feb 2004 | B2 |
6705084 | Allen et al. | Mar 2004 | B2 |
6718254 | Hashimoto et al. | Apr 2004 | B2 |
6718753 | Bromberg et al. | Apr 2004 | B2 |
6725208 | Hartman et al. | Apr 2004 | B1 |
6736120 | Surnilla | May 2004 | B2 |
6739122 | Kitajima et al. | May 2004 | B2 |
6742330 | Genderen | Jun 2004 | B2 |
6743352 | Ando et al. | Jun 2004 | B2 |
6748936 | Kinomura et al. | Jun 2004 | B2 |
6752131 | Poola et al. | Jun 2004 | B2 |
6752135 | McLaughlin et al. | Jun 2004 | B2 |
6757579 | Pasadyn | Jun 2004 | B1 |
6758037 | Terada et al. | Jul 2004 | B2 |
6760631 | Berkowitz et al. | Jul 2004 | B1 |
6760657 | Katoh | Jul 2004 | B2 |
6760658 | Yasui et al. | Jul 2004 | B2 |
6770009 | Badillo et al. | Aug 2004 | B2 |
6772585 | Iihoshi et al. | Aug 2004 | B2 |
6775623 | Ali et al. | Aug 2004 | B2 |
6779344 | Hartman et al. | Aug 2004 | B2 |
6779512 | Mitsutani | Aug 2004 | B2 |
6788072 | Nagy et al. | Sep 2004 | B2 |
6789533 | Hashimoto et al. | Sep 2004 | B1 |
6792927 | Kobayashi | Sep 2004 | B2 |
6804618 | Junk | Oct 2004 | B2 |
6814062 | Esteghlal et al. | Nov 2004 | B2 |
6817171 | Zhu | Nov 2004 | B2 |
6823667 | Braun et al. | Nov 2004 | B2 |
6823675 | Brunell et al. | Nov 2004 | B2 |
6826903 | Yahata et al. | Dec 2004 | B2 |
6827060 | Huh | Dec 2004 | B2 |
6827061 | Nytomt et al. | Dec 2004 | B2 |
6827070 | Fehl et al. | Dec 2004 | B2 |
6834497 | Miyoshi et al. | Dec 2004 | B2 |
6839637 | Moteki et al. | Jan 2005 | B2 |
6849030 | Yamamoto et al. | Feb 2005 | B2 |
6873675 | Kurady et al. | Mar 2005 | B2 |
6874467 | Hunt et al. | Apr 2005 | B2 |
6879906 | Makki et al. | Apr 2005 | B2 |
6882929 | Liang et al. | Apr 2005 | B2 |
6904751 | Makki et al. | Jun 2005 | B2 |
6911414 | Kimura et al. | Jun 2005 | B2 |
6915779 | Sriprakash | Jul 2005 | B2 |
6920865 | Lyon | Jul 2005 | B2 |
6923902 | Ando et al. | Aug 2005 | B2 |
6925372 | Yasui | Aug 2005 | B2 |
6925796 | Nieuwstadt et al. | Aug 2005 | B2 |
6928362 | Meaney | Aug 2005 | B2 |
6928817 | Ahmad | Aug 2005 | B2 |
6931840 | Strayer et al. | Aug 2005 | B2 |
6934931 | Plumer et al. | Aug 2005 | B2 |
6941744 | Tanaka | Sep 2005 | B2 |
6945033 | Sealy et al. | Sep 2005 | B2 |
6948310 | Roberts, Jr. et al. | Sep 2005 | B2 |
6953024 | Linna et al. | Oct 2005 | B2 |
6965826 | Andres et al. | Nov 2005 | B2 |
6968677 | Tamura | Nov 2005 | B2 |
6971258 | Rhodes et al. | Dec 2005 | B2 |
6973382 | Rodriguez et al. | Dec 2005 | B2 |
6978744 | Yuasa et al. | Dec 2005 | B2 |
6988017 | Pasadyn et al. | Jan 2006 | B2 |
6996975 | Radhamohan et al. | Feb 2006 | B2 |
7000379 | Makki et al. | Feb 2006 | B2 |
7013637 | Yoshida | Mar 2006 | B2 |
7016779 | Bowyer | Mar 2006 | B2 |
7028464 | Rosel et al. | Apr 2006 | B2 |
7039475 | Sayyarrodsari et al. | May 2006 | B2 |
7047938 | Flynn et al. | May 2006 | B2 |
7052434 | Makino et al. | May 2006 | B2 |
7055311 | Beutel et al. | Jun 2006 | B2 |
7059112 | Bidner et al. | Jun 2006 | B2 |
7063080 | Kita et al. | Jun 2006 | B2 |
7069903 | Surnilla et al. | Jul 2006 | B2 |
7082753 | Dalla Betta et al. | Aug 2006 | B2 |
7085615 | Persson et al. | Aug 2006 | B2 |
7106866 | Astorino et al. | Sep 2006 | B2 |
7107978 | Itoyama | Sep 2006 | B2 |
7111450 | Surnilla | Sep 2006 | B2 |
7111455 | Okugawa et al. | Sep 2006 | B2 |
7113835 | Boyden et al. | Sep 2006 | B2 |
7117046 | Boyden et al. | Oct 2006 | B2 |
7124013 | Yasui | Oct 2006 | B2 |
7149590 | Martin et al. | Dec 2006 | B2 |
7151976 | Lin | Dec 2006 | B2 |
7152023 | Das | Dec 2006 | B2 |
7155334 | Stewart et al. | Dec 2006 | B1 |
7165393 | Betta et al. | Jan 2007 | B2 |
7165399 | Stewart | Jan 2007 | B2 |
7168239 | Ingram et al. | Jan 2007 | B2 |
7182075 | Shahed et al. | Feb 2007 | B2 |
7184845 | Sayyarrodsari et al. | Feb 2007 | B2 |
7184992 | Polyak et al. | Feb 2007 | B1 |
7188637 | Dreyer et al. | Mar 2007 | B2 |
7194987 | Mogi | Mar 2007 | B2 |
7197485 | Fuller | Mar 2007 | B2 |
7200988 | Yamashita | Apr 2007 | B2 |
7204079 | Audoin | Apr 2007 | B2 |
7212908 | Li et al. | May 2007 | B2 |
7275374 | Stewart et al. | Oct 2007 | B2 |
7275415 | Rhodes et al. | Oct 2007 | B2 |
7275518 | Gartner et al. | Oct 2007 | B1 |
7281368 | Miyake et al. | Oct 2007 | B2 |
7292926 | Schmidt et al. | Nov 2007 | B2 |
7302937 | Ma et al. | Dec 2007 | B2 |
7321834 | Chu et al. | Jan 2008 | B2 |
7323036 | Boyden et al. | Jan 2008 | B2 |
7328577 | Stewart et al. | Feb 2008 | B2 |
7337022 | Wojsznis et al. | Feb 2008 | B2 |
7349776 | Spillane et al. | Mar 2008 | B2 |
7357125 | Kolavennu | Apr 2008 | B2 |
7375374 | Chen et al. | May 2008 | B2 |
7376471 | Das et al. | May 2008 | B2 |
7380547 | Ruiz | Jun 2008 | B1 |
7383118 | Imai et al. | Jun 2008 | B2 |
7389773 | Stewart et al. | Jun 2008 | B2 |
7392129 | Hill et al. | Jun 2008 | B2 |
7398082 | Schwinke et al. | Jul 2008 | B2 |
7398149 | Ueno et al. | Jul 2008 | B2 |
7400967 | Ueno et al. | Jul 2008 | B2 |
7413583 | Langer et al. | Aug 2008 | B2 |
7415389 | Stewart et al. | Aug 2008 | B2 |
7418372 | Nishira et al. | Aug 2008 | B2 |
7430854 | Yasui et al. | Oct 2008 | B2 |
7433743 | Pistikopoulos et al. | Oct 2008 | B2 |
7444191 | Caldwell et al. | Oct 2008 | B2 |
7444193 | Cutler | Oct 2008 | B2 |
7447554 | Cutler | Nov 2008 | B2 |
7467614 | Stewart et al. | Dec 2008 | B2 |
7469177 | Samad et al. | Dec 2008 | B2 |
7474953 | Hulser et al. | Jan 2009 | B2 |
7493236 | Mock et al. | Feb 2009 | B1 |
7515975 | Stewart | Apr 2009 | B2 |
7522963 | Boyden et al. | Apr 2009 | B2 |
7536232 | Boyden et al. | May 2009 | B2 |
7542842 | Hill et al. | Jun 2009 | B2 |
7577483 | Fan et al. | Aug 2009 | B2 |
7587253 | Rawlings et al. | Sep 2009 | B2 |
7591135 | Stewart | Sep 2009 | B2 |
7599749 | Sayyarrodsari et al. | Oct 2009 | B2 |
7599750 | Piche | Oct 2009 | B2 |
7603226 | Henein | Oct 2009 | B2 |
7627843 | Dozorets et al. | Dec 2009 | B2 |
7630868 | Turner et al. | Dec 2009 | B2 |
7634323 | Vermillion et al. | Dec 2009 | B2 |
7634417 | Boyden et al. | Dec 2009 | B2 |
7650780 | Hall | Jan 2010 | B2 |
7668704 | Perchanok et al. | Feb 2010 | B2 |
7676318 | Allain | Mar 2010 | B2 |
7698004 | Boyden et al. | Apr 2010 | B2 |
7702519 | Boyden et al. | Apr 2010 | B2 |
7725199 | Brackney et al. | May 2010 | B2 |
7734291 | Mazzara, Jr. | Jun 2010 | B2 |
7743606 | Havlena et al. | Jun 2010 | B2 |
7748217 | Muller | Jul 2010 | B2 |
7752840 | Stewart | Jul 2010 | B2 |
7765792 | Rhodes et al. | Aug 2010 | B2 |
7779680 | Sasaki et al. | Aug 2010 | B2 |
7793489 | Wang et al. | Sep 2010 | B2 |
7798938 | Matsubara et al. | Sep 2010 | B2 |
7826909 | Attarwala | Nov 2010 | B2 |
7831318 | Bartee et al. | Nov 2010 | B2 |
7840287 | Wojsznis et al. | Nov 2010 | B2 |
7844351 | Piche | Nov 2010 | B2 |
7844352 | Youzis et al. | Nov 2010 | B2 |
7846299 | Backstrom et al. | Dec 2010 | B2 |
7850104 | Havlena et al. | Dec 2010 | B2 |
7856966 | Saitoh | Dec 2010 | B2 |
7860586 | Boyden et al. | Dec 2010 | B2 |
7862771 | Boyden et al. | Jan 2011 | B2 |
7877239 | Grichnik et al. | Jan 2011 | B2 |
7878178 | Stewart et al. | Feb 2011 | B2 |
7891669 | Araujo et al. | Feb 2011 | B2 |
7904280 | Wood | Mar 2011 | B2 |
7905103 | Larsen et al. | Mar 2011 | B2 |
7907769 | Sammak et al. | Mar 2011 | B2 |
7930044 | Attarwala | Apr 2011 | B2 |
7933849 | Bartee et al. | Apr 2011 | B2 |
7958730 | Stewart | Jun 2011 | B2 |
7970482 | Srinivasan et al. | Jun 2011 | B2 |
7987145 | Baramov | Jul 2011 | B2 |
7996140 | Stewart et al. | Aug 2011 | B2 |
8001767 | Kakuya et al. | Aug 2011 | B2 |
8019911 | Dressler et al. | Sep 2011 | B2 |
8025167 | Schneider et al. | Sep 2011 | B2 |
8032235 | Sayyar-Rodsari | Oct 2011 | B2 |
8060290 | Stewart et al. | Nov 2011 | B2 |
8078291 | Pekar et al. | Dec 2011 | B2 |
8109255 | Stewart et al. | Feb 2012 | B2 |
8121818 | Gorinevsky | Feb 2012 | B2 |
8209963 | Kesse et al. | Jul 2012 | B2 |
8229163 | Coleman et al. | Jul 2012 | B2 |
8265854 | Stewart et al. | Sep 2012 | B2 |
8281572 | Chi et al. | Oct 2012 | B2 |
8311653 | Zhan et al. | Nov 2012 | B2 |
8312860 | Yun et al. | Nov 2012 | B2 |
8360040 | Stewart et al. | Jan 2013 | B2 |
8379267 | Mestha et al. | Feb 2013 | B2 |
8396644 | Kabashima et al. | Mar 2013 | B2 |
8453431 | Wang et al. | Jun 2013 | B2 |
8478506 | Grichnik et al. | Jul 2013 | B2 |
RE44452 | Stewart et al. | Aug 2013 | E |
8505278 | Farrell et al. | Aug 2013 | B2 |
8543170 | Mazzara, Jr. et al. | Sep 2013 | B2 |
8555613 | Wang et al. | Oct 2013 | B2 |
8596045 | Tuomivaara et al. | Dec 2013 | B2 |
8649884 | MacArthur et al. | Feb 2014 | B2 |
8649961 | Hawkins et al. | Feb 2014 | B2 |
8694197 | Rajagopalan et al. | Apr 2014 | B2 |
8700291 | Herrmann | Apr 2014 | B2 |
8751241 | Oesterling et al. | Jun 2014 | B2 |
8762026 | Wolfe et al. | Jun 2014 | B2 |
8763377 | Yacoub | Jul 2014 | B2 |
8813690 | Kumar et al. | Aug 2014 | B2 |
8892221 | Kram et al. | Nov 2014 | B2 |
8904760 | Mital | Dec 2014 | B2 |
9170573 | Kihas | Oct 2015 | B2 |
9223301 | Stewart et al. | Dec 2015 | B2 |
9243576 | Yu et al. | Jan 2016 | B2 |
9253200 | Schwarz et al. | Feb 2016 | B2 |
20020116104 | Kawashima et al. | Aug 2002 | A1 |
20030089102 | Colignon et al. | May 2003 | A1 |
20030150961 | Boelitz et al. | Aug 2003 | A1 |
20040006973 | Makki et al. | Jan 2004 | A1 |
20040034460 | Folkerts et al. | Feb 2004 | A1 |
20040086185 | Sun | May 2004 | A1 |
20040117766 | Mehta et al. | Jun 2004 | A1 |
20040118107 | Ament | Jun 2004 | A1 |
20040144082 | Mianzo et al. | Jul 2004 | A1 |
20040165781 | Sun | Aug 2004 | A1 |
20040199481 | Hartman et al. | Oct 2004 | A1 |
20040221889 | Dreyer et al. | Nov 2004 | A1 |
20040226287 | Edgar et al. | Nov 2004 | A1 |
20050143952 | Tomoyasu et al. | Jun 2005 | A1 |
20050171667 | Morita | Aug 2005 | A1 |
20050187643 | Sayyar-Rodsari et al. | Aug 2005 | A1 |
20050193739 | Brunell et al. | Sep 2005 | A1 |
20050209714 | Rawlings et al. | Sep 2005 | A1 |
20050210868 | Funabashi | Sep 2005 | A1 |
20060047607 | Boyden et al. | Mar 2006 | A1 |
20060111881 | Jackson | May 2006 | A1 |
20060168945 | Samad et al. | Aug 2006 | A1 |
20060265203 | Jenny et al. | Nov 2006 | A1 |
20060282178 | Das et al. | Dec 2006 | A1 |
20060287795 | Samad et al. | Dec 2006 | A1 |
20070142936 | Denison et al. | Jun 2007 | A1 |
20070144149 | Kolavennu et al. | Jun 2007 | A1 |
20070156259 | Baramov et al. | Jul 2007 | A1 |
20070163244 | Federle | Jul 2007 | A1 |
20070235011 | Easley et al. | Oct 2007 | A1 |
20070245714 | Frazier | Oct 2007 | A1 |
20070261654 | Butcher et al. | Nov 2007 | A1 |
20070275471 | Coward | Nov 2007 | A1 |
20080010973 | Gimbres | Jan 2008 | A1 |
20080071395 | Pachner | Mar 2008 | A1 |
20080097625 | Vouzis et al. | Apr 2008 | A1 |
20080103747 | Macharia et al. | May 2008 | A1 |
20080103748 | Axelrud et al. | May 2008 | A1 |
20080104003 | Macharia et al. | May 2008 | A1 |
20080109100 | Macharia et al. | May 2008 | A1 |
20080125875 | Stewart et al. | May 2008 | A1 |
20080132178 | Chatterjee et al. | Jun 2008 | A1 |
20080183311 | MacArthur et al. | Jul 2008 | A1 |
20080208778 | Sayyar-Rodsari et al. | Aug 2008 | A1 |
20080244449 | Morrison et al. | Oct 2008 | A1 |
20080276914 | Bleile | Nov 2008 | A1 |
20090005889 | Sayyar-Rodsari | Jan 2009 | A1 |
20090008351 | Schneider et al. | Jan 2009 | A1 |
20090043546 | Srinivasan et al. | Feb 2009 | A1 |
20090131216 | Matsubara et al. | May 2009 | A1 |
20090182518 | Chu et al. | Jul 2009 | A1 |
20090198350 | Thiele | Aug 2009 | A1 |
20090240480 | Baramov | Sep 2009 | A1 |
20090254202 | Pekar et al. | Oct 2009 | A1 |
20090287320 | MacGregor et al. | Nov 2009 | A1 |
20090312998 | Berckmans et al. | Dec 2009 | A1 |
20100017094 | Stewart et al. | Jan 2010 | A1 |
20100038158 | Whitney et al. | Feb 2010 | A1 |
20100050607 | He et al. | Mar 2010 | A1 |
20100122523 | Vosz | May 2010 | A1 |
20100126481 | Willi et al. | May 2010 | A1 |
20100204808 | Thiele | Aug 2010 | A1 |
20100268353 | Crisalle et al. | Oct 2010 | A1 |
20100300069 | Herrmann et al. | Dec 2010 | A1 |
20100300070 | He et al. | Dec 2010 | A1 |
20100305719 | Pekar et al. | Dec 2010 | A1 |
20100327090 | Havlena et al. | Dec 2010 | A1 |
20110006025 | Schneider et al. | Jan 2011 | A1 |
20110010073 | Stewart et al. | Jan 2011 | A1 |
20110029235 | Berry | Feb 2011 | A1 |
20110046752 | Piche | Feb 2011 | A1 |
20110056265 | Yacoub | Mar 2011 | A1 |
20110060424 | Havlena | Mar 2011 | A1 |
20110066308 | Yang et al. | Mar 2011 | A1 |
20110071653 | Kihas | Mar 2011 | A1 |
20110087420 | Stewart et al. | Apr 2011 | A1 |
20110104015 | Boyden et al. | May 2011 | A1 |
20110125293 | Havlena | May 2011 | A1 |
20110125295 | Bednasch et al. | May 2011 | A1 |
20110131017 | Cheng et al. | Jun 2011 | A1 |
20110167025 | Danai et al. | Jul 2011 | A1 |
20110264353 | Atkinson et al. | Oct 2011 | A1 |
20110270505 | Chaturvedi et al. | Nov 2011 | A1 |
20110301723 | Pekar et al. | Dec 2011 | A1 |
20120024089 | Couey et al. | Feb 2012 | A1 |
20120109620 | Gaikwad et al. | May 2012 | A1 |
20130111905 | Pekar et al. | May 2013 | A1 |
20130131956 | Thibault et al. | May 2013 | A1 |
20130204403 | Zheng et al. | Aug 2013 | A1 |
20130338900 | Ardanese et al. | Dec 2013 | A1 |
20140032189 | Hehle et al. | Jan 2014 | A1 |
20140034460 | Chou | Feb 2014 | A1 |
20140318216 | Singh | Oct 2014 | A1 |
20140343713 | Ziegler et al. | Nov 2014 | A1 |
20140358254 | Chu et al. | Dec 2014 | A1 |
20150121071 | Schwarz et al. | Apr 2015 | A1 |
20150354877 | Burns et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
102063561 | May 2011 | CN |
102331350 | Jan 2012 | CN |
19628796 | Oct 1997 | DE |
19858584 | Jun 2000 | DE |
10219382 | Nov 2002 | DE |
10219832 | Nov 2002 | DE |
102009016509 | Oct 2010 | DE |
102011103346 | Aug 2012 | DE |
0301527 | Feb 1989 | EP |
0950803 | Apr 1999 | EP |
0877309 | Jun 2000 | EP |
1134368 | Mar 2001 | EP |
1180583 | Feb 2002 | EP |
1221544 | Jul 2002 | EP |
1225490 | Jul 2002 | EP |
1245811 | Oct 2002 | EP |
1273337 | Jan 2003 | EP |
1420153 | May 2004 | EP |
1447727 | Aug 2004 | EP |
1498791 | Jan 2005 | EP |
1425642 | Nov 2005 | EP |
1686251 | Aug 2006 | EP |
1399784 | Oct 2007 | EP |
2107439 | Oct 2009 | EP |
2146258 | Jan 2010 | EP |
1794339 | Jul 2011 | EP |
1529941 | Nov 2011 | EP |
2543845 | Jan 2013 | EP |
2551480 | Jan 2013 | EP |
2589779 | May 2013 | EP |
2617975 | Jul 2013 | EP |
2267559 | Jan 2014 | EP |
0144629 | Sep 2015 | EP |
2919079 | Sep 2015 | EP |
59190443 | Oct 1984 | JP |
2010282618 | Dec 2010 | JP |
0232552 | Apr 2002 | WO |
02097540 | Dec 2002 | WO |
WO 02101208 | Dec 2002 | WO |
03023538 | Mar 2003 | WO |
2003048533 | Jun 2003 | WO |
WO 03065135 | Aug 2003 | WO |
WO 03078816 | Sep 2003 | WO |
WO 2004027230 | Apr 2004 | WO |
2006021437 | Mar 2006 | WO |
2007078907 | Jul 2007 | WO |
2008033800 | Mar 2008 | WO |
2008115911 | Sep 2008 | WO |
2011130832 | Oct 2011 | WO |
2012076838 | Jun 2012 | WO |
2013119665 | Aug 2013 | WO |
2014165439 | Oct 2014 | WO |
2016053194 | Apr 2016 | WO |
Entry |
---|
“SCR, 400-csi Coated Catalyst,” Leading NOx Control Technologies Status Summary, 1 page prior to Feb. 2, 2005. |
Advanced Petroleum-Based Fuels-Diesel Emissions Control (APBF-DEC) Project, “Quarterly Update,” No. 7, 6 pages, Fall 2002. |
Allanson, et al., “Optimizing the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter System,” SAE Paper No. 2002-01-0428, 8 pages, Mar. 2002. |
Amstuz, et al., “EGO Sensor Based Robust Output Control of EGR in Diesel Engines,” IEEE TCST, vol. 3, No. 1, 12 pages, Mar. 1995. |
Bemporad, et al., “Explicit Model Predictive Control,” 1 page, prior to Feb. 2, 2005. |
Bertsekas, “On the Goldstein-Levitin-Polyak Gradient Projection Method,” IEEE Transactions on Automatic Control, vol. AC-21, No. 2, pp. 174-184, Apr. 1976. |
Bertsekas, “Projected Newton Methods for Optimization Problems with Simple Constraints*,” SIAM J. Control and Optimization, vol. 20, No. 2, pp. 221-246, Mar. 1982. |
Borrelli, “Constrained Optimal Control of Linear and Hybrid Systems,” Lecture Notes in Control and Information Sciences, vol. 290, 2003. |
Catalytica Energy Systems, “Innovative NOx Reduction Solutions for Diesel Engines,” 13 pages, 3rd Quarter, 2003. |
Chatterjee, et al. “Catalytic Emission Control for Heavy Duty Diesel Engines,” JM, 46 pages, prior to Feb. 2, 2005. |
De Schutter et al., “Model Predictive Control for Max-Min-Plus-Scaling Systems,” Proceedings of the 2001 American Control Conference, Arlington, Va, pp. 319-324, Jun. 2001. |
Delphi, Delphi Diesel NOx Trap (DNT), 3 pages, Feb. 2004. |
Diehl et al., “Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation,” Int. Workshop on Assessment and Future Directions of NMPC, 24 pages, Pavia, Italy, Sep. 5-9, 2008. |
GM “Advanced Diesel Technology and Emissions,” powertrain technologies—engines, 2 pages, prior to Feb. 2, 2005. |
Guerreiro et al., “Trajectory Tracking Nonlinear Model Predictive Control for Autonomous Surface Craft,” Proceedings of the European Control Conference, Budapest, Hungary, 6 pages, Aug. 2009. |
Guzzella, et al., “Control of Diesel Engines,” IEEE Control Systems Magazine, pp. 53-71, Oct. 1998. |
Havelena, “Componentized Architecture for Advanced Process Management,” Honeywell International, 42 pages, 2004. |
Hiranuma, et al., “Development of DPF System for Commercial Vehicle—Basic Characteristic and Active Regeneration Performance,” SAE Paper No. 2003-01-3182, Mar. 2003. |
Honeywell, “Profit Optimizer a Distributed Quadratic Program (DQP) Concepts Reference,” 48 pages, prior to Feb. 2, 2005. |
http://www.not2fast.wryday.com/turbo/glossary/turbo_glossary.shtml, “Not2Fast: Turbo Glossary,” 22 pages, printed Oct. 1, 2004. |
http://www.tai-cwv.com/sbl106.0.html, “Technical Overview—Advanced Control Solutions,” 6 pages, printed Sep. 9, 2004. |
Jonsson, “Fuel Optimized Predictive Following in Low Speed Conditions,” Master's Thesis, 46 pages, Jun. 28, 2003. |
Kelly, et al., “Reducing Soot Emissions from Diesel Engines Using One Atmosphere Uniform Glow Discharge Plasma,” SAE Paper No. 2003-01-1183, Mar. 2003. |
Kolmanovsky, et al., “Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines”, 18th IFIP Conf. System Modeling and Optimization, pp. 436-445, Jul. 1997. |
Kulhavy, et al. “Emerging Technologies for Enterprise Optimization in the Process Industries,” Honeywell, 12 pages, Dec. 2000. |
Locker, et al., “Diesel Particulate Filter Operational Characterization,” Corning Incorporated, 10 pages, prior to Feb. 2, 2005. |
Lu, “Challenging Control Problems and Engineering Technologies in Enterprise Optimization,” Honeywell Hi-Spec Solutions, 30 pages, Jun. 4-6, 2001. |
Mehta, “The Application of Model Predictive Control to Active Automotive Suspensions,” 56 pages, May 17, 1996. |
Moore, “Living with Cooled-EGR Engines,” Prevention Illustrated, 3 pages, Oct. 3, 2004. |
Murayama et al., “Speed Control of Vehicles with Variable Valve Lift Engine by Nonlinear MPC,” ICROS-SICE International Joint Conference, pp. 4128-4133, 2009. |
National Renewable Energy Laboratory (NREL), “Diesel Emissions Control—Sulfur Effects Project (DECSE) Summary of Reports,” U.S. Department of Energy, 19 pages, Feb. 2002. |
Salvat, et al., “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Engine,” SAE Paper No. 2000-01-0473, 14 pages, Feb. 2000. |
Shamma, et al. “Approximate Set-Valued Observers for Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 42, No. 5, May 1997. |
Soltis, “Current Status of NOx Sensor Development,” Workshop on Sensor Needs and Requirements for PEM Fuel Cell Systems and Direct-Injection Engines, 9 pages, Jan. 25-26, 2000. |
Stefanopoulou, et al., “Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions,” IEEE Transactions on Control Systems Technology, vol. 8, No. 4, pp. 733-745, Jul. 2000. |
Storset, et al., “Air Charge Estimation for Turbocharged Diesel Engines,” vol. 1 Proceedings of the American Control Conference, 8 pages, Jun. 28-30, 2000. |
The MathWorks, “Model-Based Calibration Toolbox 2.1 Calibrate complex powertrain systems,” 4 pages, prior to Feb. 2, 2005. |
The MathWorks, “Model-Based Calibration Toolbox 2.1.2,” 2 pages, prior to Feb. 2, 2005. |
Theiss, “Advanced Reciprocating Engine System (ARES) Activities at the Oak Ridge National Lab (ORNL), Oak Ridge National Laboratory,” U.S. Department of Energy, 13 pages, Apr. 14, 2004. |
Van Basshuysen et al., “Lexikon Motorentechnik,” (Dictionary of Automotive Technology) published by Vieweg Verlag, Wiesbaden 039936, p. 518, 2004. (English Translation). |
Van Den Boom et al., “MPC for Max-Plus-Linear Systems: Closed-Loop Behavior and Tuning,” Proceedings of the 2001 American Control Conference, Arlington, Va, pp. 325-330, Jun. 2001. |
Van Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles,” World Electric Vehicle Journal vol. 3, ISSN 2032-6653, pp. 1-11, 2009. |
Wang et al., “Fast Model Predictive Control Using Online Optimization,” Proceedings of the 17th World Congress, the International Federation of Automatic Control, Seoul, Korea, pp. 6974-6979, Jul. 6-11, 2008. |
Wang et al., “PSO-Based Model Predictive Control for Nonlinear Processes,” Advances in Natural Computation, Lecture Notes in Computer Science, vol. 3611/2005, 8 pages, 2005. |
Zavala et al., “The Advance-Step NMPC Controller: Optimality, Stability, and Robustness,” Automatica, vol. 45, pp. 86-93, 2009. |
Zeilinger et al., “Real-Time MPC—Stability Through Robust MPC Design,” Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, pp. 3980-3986, Dec. 16-18, 2009. |
Zelenka, et al., “An Active Regeneration as a Key Element for Safe Particulate Trap Use,” SAE Paper No. 2001-0103199, 13 pages, Feb. 2001. |
Zhu, “Constrained Nonlinear Model Predictive Control for Vehicle Regulation,” Dissertation, Graduate School of the Ohio State University, 125 pages, 2008. |
“Aftertreatment Modeling of RCCI Engine During Transient Operation,” University of Wisconsin—Engine Research Center, 1 page, May 31, 2014. |
“Chapter 14: Pollutant Formation,” Fluent Manual, Release 15.0, Chapter 14, pp. 313-345, prior to Jan. 29, 2016. |
“Chapter 21, Modeling Pollutant Formation,” Fluent Manual, Release 12.0, Chapter 21, pp. 21-1-21-54, Jan. 30, 2009. |
“J1979 E/E Diagnostic Test Modules,” Proposed Regulation, Vehicle E.E. System Diagnostic Standards Committee, 1 page, Sep. 28, 2010. |
“MicroZed Zynq Evaluation and Development and System on Module, Hardware User Guide,” Avnet Electronics Marketing, Version 1.6, Jan. 22, 2015. |
Actron, “Elite AutoScanner Kit—Enhanced OBD I & II Scan Tool, OBD 1300,” Downloaded from https://actron.com/content/elite-autoscanner-kit-enhanced-obd-i-and-obd-ii-scan-tool?utm_ . . . , 5 pages, printed Sep. 27, 2016. |
Andersson et al., “A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE International 2006-01-3329, 10 pages, 2006. |
Andersson et al., “A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE Technical Paper Series 2006-01-0195, 2006 SAE World Congress, 13 pages, Apr. 3-6, 2006. |
Andersson et al., “Fast Physical NOx Prediction in Diesel Engines, The Diesel Engine: The Low CO2 and Emissions Reduction Challenge,” Conference Proceedings, Lyon, 2006. Unable to Obtain a Copy of This Reference. |
Arregle et al., “On Board NOx Prediction in Diesel Engines: A Physical Approach,” Automotive Model Predictive Control, Models Methods and Applications, Chapter 2, 14 pages, 2010. |
Asprion, “Optimal Control of Diesel Engines,” PHD Thesis, Diss ETH No. 21593, 436 pages, 2013. |
Assanis et al., “A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine,” ASME, Journal of Engineering for Gas Turbines and Power, vol. 125, pp. 450-457, Apr. 2003. |
Bako et al., “A Recursive Identification Algorithm for Switched Linear/Affine Models,” Nonlinear Analysis: Hybrid Systems, vol. 5, pp. 242-253, 2011. |
Barba et al., “A Phenomenological Combustion Model for Heat Release Rate Prediction in High-Speed DI Diesel Engines with Common Rail Injection,” SAE Technical Paper Series 2000-01-2933, International Fall Fuels and Lubricants Meeting Exposition, 15 pages, Oct. 16-19, 2000. |
Blanco-Rodriguez, “Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control,” Phd Dissertation, 242 pages, Sep. 2013. |
Blue Streak Electronics Inc., “Ford Modules,” 1 page, May 12, 2010. |
Bourn et al., “Advanced Compressor Engine Controls to Enhance Operation, Reliability and Integrity,” Southwest Research Institute, DOE Award No. DE-FC26-03NT41859, SwRI Project No. 0310198, 60 pages, Mar. 2004. |
Charalampidis et al., “Computationally Efficient Kalman Filtering for a Class of Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 56, No. 3, pp. 483-491, Mar. 2011. |
Chew, “Sensor Validation Scheme with Virtual NOx Sensing for Heavy Duty Diesel Engines,” Master's Thesis, 144 pages, 2007. |
European Search Report for EP Application No. EP 10175270.7-2302419 dated Jan. 16, 2013. |
European Search Report for EP Application No. EP 15152957.5-1807 dated Feb. 10, 2015. |
Extended European Search Report for EP Application No. 15155295.7-1606, dated Aug. 4, 2015. |
Extended European Search Report for EP Application No. 15179435.1, dated Apr. 1, 2016. |
U.S. Appl. No. 15/005,406, filed Jan. 25, 2016. |
U.S. Appl. No. 15/011,445, filed Jan. 29, 2016. |
Desantes et al., “Development of NOx Fast Estimate Using NOx Sensor,” EAEC 2011 Congress, 2011. Unable to obtain a Copy of This Reference. |
Ding, “Characterising Combustion in Diesel Engines, Using Parameterised Finite Stage Cylinder Process Models,” 281 pages, Dec. 21, 2011. |
Docquier et al., “Combustion Control and Sensors: a Review,” Progress in Energy and Combustion Science, vol. 28, pp. 107-150, 2002. |
Egnell, “Combustion Diagnostics by Means of Multizone Heat Release Analysis and NO Calculation,” SAE Technical Paper Series 981424, International Spring Fuels and Lubricants Meeting and Exposition, 22 pages, May 4-6, 1998. |
Ericson, “NOx Modelling of a Complete Diesel Engine/SCR System,” Licentiate Thesis, 57 pages, 2007. |
Finesso et al., “Estimation of the Engine-Out NO2/NOx Ration in a Euro VI Diesel Engine,” SAE International 2013-01-0317, 15 pages, Apr. 8, 2013. |
Fleming, “Overview of Automotive Sensors,” IEEE Sensors Journal, vol. 1, No. 4, pp. 296-308, Dec. 2001. |
Ford Motor Company, “2012 My OBD System Operation Summary for 6.7L Diesel Engines,” 149 pages, Apr. 21, 2011. |
Formentin et al., “NOx Estimation in Diesel Engines Via In-Cylinder Pressure Measurement,” IEEE Transactions on Control Systems Technology, vol. 22, No. 1, pp. 396-403, Jan. 2014. |
Galindo, “An On-Engine Method for Dynamic Characterisation of NOx Concentration Sensors,” Experimental Thermal and Fluid Science, vol. 35, pp. 470-476, 2011. |
Gamma Technologies, “Exhaust Aftertreatment with GT-Suite,” 2 pages, Jul. 17, 2014. |
Goodwin, “Researchers Hack a Corvette's Brakes Via Insurance Black Box,” Downloaded from http://www.cnet.com/roadshow/news/researchers-hack-a-corvettes-brakes-via-insurance-black-box/, 2 pages, Aug. 2015. |
Greenberg, “Hackers Remotely Kill a Jeep on the Highway—With Me In It,” Downloaded from http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/, 24 pages, Jul. 21, 2015. |
Guardiola et al., “A Bias Correction Method for Fast Fuel-to-Air Ratio Estimation in Diesel Engines,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 227, No. 8, pp. 1099-1111, 2013. |
Guardiola et al., “A Computationally Efficient Kalman Filter Based Estimator for Updating Look-Up Tables Applied to NOx Estimation in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1455-1468. |
Guzzella et al., “Introduction to Modeling and Control of Internal Combustion Engine Systems,” 303 pages, 2004. |
Hahlin, “Single Cylinder ICE Exhaust Optimization,” Master's Thesis, retrieved from https://pure.Itu.se/portal/files/44015424/LTU-EX-2013-43970821.pdf, 50 pages, Feb. 1, 2014. |
Hammacher Schlemmer, “The Windshield Heads Up Display,” Catalog, p. 47, prior to Apr. 26, 2016. |
Heywood, “Pollutant Formation and Control,” Internal Combustion Engine Fundamentals, pp. 567-667, 1988. |
Hirsch et al., “Dynamic Engine Emission Models,” Automotive Model Predictive Control, Chapter 5, 18 pages, LNCIS 402, 2012. |
Hirsch et al., “Grey-Box Control Oriented Emissions Models,” The International Federation of Automatic Control (IFAC), Proceedings of the 17th World Congress, pp. 8514-8519, Jul. 6-11, 2008. |
Hockerdal, “EKF-based Adaptation of Look-Up Tables with an Air Mass-Flow Sensor Application,” Control Engineering Practice, vol. 19, 12 pages, 2011. |
http://nexceris.com/news/nextech-materials/, “NEXTECH Materials is Now NEXCERIS,” 7 pages, printed Oct. 4, 2016. |
http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, “Heavy-Duty OBD Regulations and Rulemaking,” 8 pages, printed Oct. 4, 2016. |
https://www.dieselnet.com/standards/us/obd.php, “Emission Standards: USA: On-Board Diagnostics,” 6 pages, printed Oct. 3, 2016. |
International Search Report for Corresponding Application No. EP12191156 dated Feb. 2, 2015. |
https://www.en.wikipedia.org/wiki/Public-key_cryptography, “Public-Key Cryptography,” 14 pages, printed Feb. 26, 2016. |
Ishida et al., “An Analysis of the Added Water Effect on NO Formation in D.I. Diesel Engines,” SAE Technical Paper Series 941691, International Off-Highway and Power-Plant Congress and Exposition, 13 pages, Sep. 12-14, 1994. |
Ishida et al., “Prediction of NOx Reduction Rate Due to Port Water Injection in a DI Diesel Engine,” SAE Technical Paper Series 972961, International Fall Fuels and Lubricants Meeting and Exposition, 13 pages, Oct. 13-16, 1997. |
Jensen, “The 13 Monitors of an OBD System,” http://www.oemoffhighway.com/article/1 0855512/the-13-monito . . . , 3 pages, printed Oct. 3, 2016. |
Khair et al., “Emission Formation in Diesel Engines,” Downloaded from https://www.dieselnet.com/tech/diesel_emiform.php, 33 pages, printed Oct. 14, 2016. |
Kihas et al., “Chapter 14, Diesel Engine SCR Systems: Modeling Measurements and Control,” Catalytic Reduction Technology (book), Part 1, Chapter 14, prior to Jan. 29, 2016. |
Krause et al., “Effect of Inlet Air Humidity and Temperature on Diesel Exhaust Emissions,” SAE International Automotive Engineering Congress, 8 pages, Jan. 8-12, 1973. |
Lavoie et al., “Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines,” Combustion Science and Technology, vol. 1, pp. 313-326, 1970. |
Manchur et al., “Time Resolution Effects on Accuracy of Real-Time NOx Emissions Measurements,” SAE Technical Paper Series 2005-01-0674, 2005 SAE World Congress, 19 pages, Apr. 11-14, 2005. |
Mohammadpour et al., “A Survey on Diagnostics Methods for Automotive Engines,” 2011 American Control Conference, pp. 985-990, Jun. 29-Jul. 1, 2011. |
Moos, “Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment,” http://www.mdpi.com/1424-8220/10/7/6773htm, 10 pages, Jul. 13, 2010. |
Olsen, “Analysis and Simulation of the Rate of Heat Release (ROHR) in Diesel Engines,” MSc-Assignment, 105 pages, Jun. 2013. |
Pipho et al., “NO2 Formation in a Diesel Engine,” SAE Technical Paper Series 910231, International Congress and Exposition, 15 pages, Feb. 25-Mar. 1, 1991. |
Querel et al., “Control of an SCR System Using a Virtual NOx Sensor,” 7th IFAC Symposium on Advances in Automotive Control, The International Federation of Automotive Control, pp. 9-14, Sep. 4-7, 2013. |
Ricardo Software, “Powertrain Design at Your Fingertips,” retrieved from http://www.ricardo.com/PageFiles/864/WaveFlyerA4_4PP.pdf, 2 pages, downloaded Jul. 27, 2015. |
Santin et al., “Combined Gradient/Newton Projection Semi-Explicit QP Solver for Problems with Bound Constraints,” 2 pages, prior to Jan. 29, 2016. |
Schilling et al., “A Real-Time Model for the Prediction of the NOx Emissions in DI Diesel Engines,” Proceedings of the 2006 IEEE International Conference on Control Applications, pp. 2042-2047, Oct. 4-7, 2006. |
Schilling, “Model-Based Detection and Isolation of Faults in the Air and Fuel Paths of Common-Rail DI Diesel Engines Equipped with a Lambda and a Nitrogen Oxides Sensor,” Doctor of Sciences Dissertation, 210 pages, 2008. |
Shahzad et al., “Preconditioners for Inexact Interior Point Methods for Predictive Control,” 2010 American Control Conference, pp. 5714-5719, Jun. 30-Jul. 2010. |
Signer et al., “European Programme on Emissions, Fuels and Engine Technologies (EPEFE)—Heavy Duty Diesel Study,” International Spring Fuels and Lubricants Meeting, SAE 961074, May 6-8, 1996. |
Smith, “Demonstration of a Fast Response On-Board NOx Sensor for Heavy-Duty Diesel Vehicles,” Technical report, Southwest Research Institute Engine and Vehicle Research Division SwRI Project No. 03-02256 Contract No. 98-302, 2000. Unable to Obtain a Copy of This Reference. |
Stradling et al., “The Influene of Fuel Properties and Injection Timing on the Exhaust Emissions and Fuel Consumption of an Iveco Heavy-Duty Diesel Engine,” International Spring Fuels and Lubricants Meeting, SAE 971635, May 5-8, 1997. |
Traver et al., “A Neural Network-Based Virtual NOx Sensor for Diesel Engines,” 7 pages, prior to Jan. 29, 2016. |
Tschanz et al., “Cascaded Multivariable Control of the Combustion in Diesel Engines,” The International Federation of Automatic Control (IFAC), 2012 Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 25-32, Oct. 23-25, 2012. |
Tschanz et al., “Control of Diesel Engines Using NOx-Emission Feedback,” International Journal of Engine Research, vol. 14, No. 1, pp. 45-56, 2013. |
Tschanz et al., “Feedback Control of Particulate Matter and Nitrogen Oxide Emissions in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1809-1820, 2013. |
Turner, “Automotive Sensors, Sensor Technology Series,” Momentum Press, Unable to Obtain the Entire Book, a copy of the Front and Back Covers and Table of Contents are Provided, 2009. |
Van Helden et al., “Optimization of Urea SCR deNOx Systems for HD Diesel Engines,” SAE International 2004-01-0154, 13 pages, 2004. |
VDO, “UniNOx-Sensor Specification,” Continental Trading GmbH, 2 pages, Aug. 2007. |
Vereschaga et al., “Piecewise Affine Modeling of NOx Emission Produced by a Diesel Engine,” 2013 European Control Conference (ECC), pp. 2000-2005, Jul. 17-19, 2013. |
Wahlstrom et al., “Modelling Diesel Engines with a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics,” (Original Publication) Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, vol. 225, No. 7, 28 pages, 2011. |
Wang et al., “Sensing Exhaust NO2 Emissions Using the Mixed Potential Principal,” SAE 2014-01-1487, 7 pages, Apr. 1, 2014. |
Wilhelmsson et al., “A Fast Physical NOx Model Implemented on an Embedded System,” Proceedings of the IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 207-215, Nov. 30-Dec. 2, 2009. |
Wilhemsson et al., “A Physical Two-Zone NOx Model Intended for Embedded Implementation,” SAE 2009-01-1509, 11 pages, 2009. |
Winkler et al., “Incorporating Physical Knowledge About the Formation of Nitric Oxides into Evolutionary System Identification,” Proceedings of the 20th European Modeling and Simulation Symposium (EMSS), 6 pages, 2008. |
Winkler et al., “On-Line Modeling Based on Genetic Programming,” 12 pages, International Journal on Intelligent Systems Technologies and Applications 2, 2007. |
Winkler et al., “Using Genetic Programming in Nonlinear Model Identification,” 99 pages, prior to Jan. 29, 2016. |
Winkler et al., “Virtual Sensors for Emissions of a Diesel Engine Produced by Evolutionary System Identification,” LNCS, vol. 5717, 8 pages, 2009. |
Winkler, “Evolutionary System Identification—Modem Approaches and Practical Applications,” Kepler Universitat Linz, Reihe C: Technik and Naturwissenschaften, Universitatsverlag Rudolf Trauner, 2009. Unable to Obtain a Copy of This Reference. |
Wong, “CARB Heavy-Duty OBD Update,” California Air Resources Board, SAE OBD TOPTEC, Downloaded from http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, 72 pages, Sep. 15, 2005. |
Yao et al., “The Use of Tunnel Concentration Profile Data to Determine the Ratio of NO2/NOx Directly Emitted from Vehicles,” HAL Archives, 19 pages, 2005. |
Zaman, “Lincoln Motor Company: Case study 2015 Lincoln MKC,” Automotive Electronic Design Fundamentals, Chapter 6, 2015. |
Zeldovich, “The Oxidation of Nitrogen in Combustion and Explosions,” ACTA Physiochimica U.R.S.S., vol. XX1, No. 4, 53 pages, 1946. |
Zhuiykov et al., “Development of Zirconia-Based Potentiometric NOx Sensors for Automotive and Energy Industries in the Early 21st Century: What Are the Prospects for Sensors?”, Sensors and Actuators B, vol. 121, pp. 639-651, 2007. |
“Model Predictive Control,” Wikipedia, pp. 1-5, Jan. 22, 2009. http://en.wikipedia.org/w/index.php/title=Special:Book&bookcmd=download&collecton_id=641cdlb5da77cc22&writer=rl&return_to=Model predictive control, retrieved Nov. 20, 2012. |
Axehill et al., “A Dual Gradiant Projection Quadratic Programming Algorithm Tailored for Model Predictive Control,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun Mexico, pp. 3057-3064, Dec. 9-11, 2008. |
Axehill et al., “A Dual Gradient Projection Quadratic Programming Algorithm Tailored for Mixed Integer Predictive Control,” Technical Report from Linkopings Universitet, Report No. Li-Th-ISY-R-2833, 58 pages, Jan. 31, 2008. |
Baffi et al., “Non-Linear Model Based Predictive Control Through Dynamic Non-Linear Partial Least Squares,” Trans IChemE, vol. 80, Part A, pp. 75-86, Jan. 2002. |
Search Report for Corresponding, Application No. 11167549.2 dated Nov. 27, 2012. |
De Oliveira, “Constraint Handling and Stability Properties of Model Predictive Control,” Carnegie Institute of Technology, Department of Chemical Engineering, Paper 197, 64 pages, Jan. 1, 1993. |
Dunbar, “Model Predictive Control: Extension to Coordinated Multi-Vehicle Formations and Real-Time Implementation,” CDS Technical Report 01-016, 64 pages, Dec. 7, 2001. |
Patrinos et al., “A Global Piecewise Smooth Newton Method for Fast Large-Scale Model Predictive Control,” Tech Report TR2010-02, National Technical University of Athens, 23 pages, 2010. |
Rajamani, “Data-based Techniques to Improve State Estimation in Model Predictive Control,” Ph.D. Dissertation, 257 pages, 2007. |
Takacs et al., “Newton-Raphson Based Efficient Model Predictive Control Applied on Active Vibrating Structures,” Proceeding of the European Control Conference 2009, Budapest, Hungary, pp. 2845-2850, Aug. 23-26, 2009. |
Wright, “Applying New Optimization Algorithms to Model Predictive Control,” 5th International Conference on Chemical Process Control, 10 pages, 1997. |
An Examination Report for EP Application Serial No. 12191156.4 dated Nov. 25, 2016. |
Von et al., “Beitrag Zur Automatisierten Steuerkennfeld-Applikation bei Fahrzeug-Dieselmotoren,” 178 pages, dated Aug. 28, 2008, retrieved from the internet at: http://opus.kobv.de/tuberlin/volltexte/2008/1972/pdf/jankov_kristian.pdf on Aug. 29, 2012. |
“Model Predictive Control Toolbox Release Notes,” The Mathworks, 24 pages, Oct. 2008. |
“MPC Implementation Methods for the Optimization of the Response of Control Valves to Reduce Variability,” Advanced Application Note 002, Rev. A, 10 pages, 2007. |
Bemporad et al., “Model Predictive Control Toolbox 3, User's Guide,” Matlab Mathworks, 282 pages, 2008. |
Bemporad et al., “The Explicit Linear Quadratic Regulator for Constrained Systems,” Automatica, 38, pp. 3-20, 2002. |
Bemporad, “Model Predictive Control Based on Linear Programming—The Explicit Solution,” IEEE Transactions on Automatic Control, vol. 47, No. 12, pp. 1974-1984, Dec. 2002. |
Bemporad, “Model Predictive Control Design: New Trends and Tools,” Proceedings of the 45th IEEE Conference on Decision & Control, pp. 6678-6683, Dec. 13-15, 2006. |
Borrelli et al., “An MPC/Hybrid System Approach to Traction Control,” IEEE Transactions on Control Systems Technology, vol. 14, No. 3, pp. 541-553, May 2006. |
Borrelli, “Discrete Time Constrained Optimal Control,” A Dissertation Submitted to the Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 14666, 232 pages, Oct. 9, 2002. |
Bunting, “Increased Urea Dosing Could Cut SCR Truck Running Costs”, http://www.automotiveworld.com/article/85897-increased-urea-dosing-could-cut-scr-truck-running-costs, Automotive World, 3 pages, Feb. 24, 2011, printed Mar. 2, 2011. |
International Application Status Report for WO 2008/033800. |
U.S. Appl. No. 13/236,217. |
U.S. Appl. No. 13/290,012. |
Johansen et al., “Hardware Architecture Design for Explicit Model Predictive Control,” Proceedings of ACC, 6 pages, 2006. |
Johansen et al., “Hardware Synthesis of Explicit Model Predictive Controllers,” IEEE Transactions on Control Systems Technology, vol. 15, No. 1, Jan. 2007. |
Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles”, May 2009, World Electric Journal, vol. 3, ISSN 2032-6653. |
Maciejowski, “Predictive Control with Constraints,” Prentice Hall, Pearson Education Limited, 4 pages, 2002. |
Mariethoz et al., “Sensorless Explicit Model Predictive Control of the DC-DC Buck Converter with Inductor Current Limitation,” IEEE Applied Power Electronics Conference and Exposition, pp. 1710-1715, 2008. |
Marjanovic, “Towards a Simplified Infinite Horizon Model Predictive Controller,” 6 pages, Proceedings of the 5th Asian Control Conference, 6 pages, Jul. 20-23, 2004. |
Mayne et al., “Constrained Model Predictive Control: Stability and Optimality,” Automatica, vol. 36, pp. 789-814, 2000. |
Ortner et al., “MPC for a Diesel Engine Air Path Using an Explicit Approach for Constraint Systems,” Proceedings of the 2006 IEEE Conference on Control Applications, Munich Germany, pp. 2760-2765, Oct. 4-6, 2006. |
Ortner et al., “Predictive Control of a Diesel Engine Air Path,” IEEE Transactions on Control Systems Technology, vol. 15, No. 3, pp. 449-456, May 2007. |
Pannocchia et al., “Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 52, No. 6, 6 pages, 2007. |
Qin et al., “A Survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, 11, pp. 733-764, 2003. |
Rawlings, “Tutorial Overview of Model Predictive Control,” IEEE Control Systems Magazine, pp. 38-52, Jun. 2000. |
Schauffele et al., “Automotive Software Engineering Principles, Processes, Methods, and Tools,” SAE International, 10 pages, 2005. |
Stewart et al., “A Model Predictive Control Framework for Industrial Turbodiesel Engine Control,” Proceedings of the 47th IEEE Conference on Decision and Control, 8 pages, 2008. |
Stewart et al., “A Modular Model Predictive Controller for Turbodiesel Problems,” First Workshop on Automotive Model Predictive Control, Schloss Muhldorf, Feldkirchen, Johannes Kepler University, Linz, 3 pages, 2009. |
Tondel et al., “An Algorithm for Multi-Parametric Quadratic Programming and Explicit MPC Solutions,” Automatica, 39, pp. 489-497, 2003. |
Number | Date | Country | |
---|---|---|---|
20190277216 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13290025 | Nov 2011 | US |
Child | 16424362 | US |