Embodiments of the subject disclosure relate generally to micro electro-mechanical system (MEMS) microphones, and particularly to wide sense gap MEMS microphones.
With current microphone technology, frequency response of the microphone is often problematic. The signal to noise ratio (SNR) of the microphone is defined by the noise integrated in the area under the frequency response curve, and therefore it is desirable that the resonant peak frequency is not in the range of audible frequencies of interest. MEMS microphones typically have a resonant peak frequency around 20 kilohertz (kHz) in an integrated package. However, it is desirable to push the resonant peak frequency out to a higher value.
Another problem associated with conventional MEMS microphones is that the sound pressure level at which final mechanical clipping occurs is not as high as would be desired. As such, the highest sound pressure level (SPL) that can be received by a diaphragm of a microphone and properly converted into an electrical signal without distortion is less than desired. Specifically, in conventional MEMS microphones, distortion will be experienced at a SPL of 135 decibels dB SPL, which means that 135 dB SPL is the final mechanical clipping point of the microphone. A MEMS microphone with a higher final mechanical clipping point (in terms of SPL value) would be desirable.
Yet another problem associated with conventional MEMS microphones is percent distortion for a defined SPL. For example, approximately 1% of distortion is obtained for sound pressure that reaches the 120 dB SPL mark. It is desirable to have a higher sound pressure level before such distortion is experienced. Increasing the final mechanical clipping point would also reduce the distortion levels at SPL levels that are below the final clipping point.
In one embodiment, a MEMS microphone is provided. The MEMS microphone includes a package substrate having a port disposed through the package substrate, wherein the port is configured to receive acoustic waves; a lid mounted to the package substrate and forming a package. The MEMS microphone also includes an acoustic sensor disposed in the package and coupled to the package substrate, wherein the MEMS acoustic sensor is positioned such that the acoustic waves receivable at the port are incident on the MEMS acoustic sensor. The MEMS acoustic sensor includes: a back plate positioned over the port at a first location within the package; and a diaphragm positioned at a second location within the package, wherein a distance between the first location and the second location forms a defined sense gap, and wherein the MEMS microphone is designed to withstand a bias voltage between the diaphragm and the back plate greater than or equal to about 15 volts.
In another embodiment, another MEMS microphone is provided. The MEMS microphone has a resonant frequency between about 20 kilohertz and about 40 kilohertz and has a sensitivity factor within a range from about −38 dB volts per pascal to about −42 dB volts per pascal. In some embodiments, the MEMS microphone has sensitivity greater than or equal to about −38 dB volts per pascal. In various embodiments, the sensitivity of the MEMS microphone can be the number of volts of signal generated per one pascal of sound pressure, and therefore is the signal generated at a given sound pressure.
In yet another embodiment, another MEMS microphone is provided. This embodiment of the MEMS microphone includes: a package substrate having a port disposed through the package substrate, wherein the port is configured to receive acoustic waves; and a lid mounted to the package substrate and forming a package. The MEMS microphone also includes a MEMS acoustic sensor disposed in the package and coupled to the package substrate, wherein the MEMS acoustic sensor is positioned such that the acoustic waves receivable at the port are incident on the MEMS acoustic sensor. The MEMS acoustic sensor includes: a diaphragm; and a back plate, wherein a distance between the diaphragm and the back plate forms a defined sense gap, and wherein the diaphragm is configured to displace less than or equal to about 1/10 of a width of defined sense gap at a defined sound pressure level applied to the MEMS microphone. The distance between the diaphragm and the back plate forms a defined sense gap.
In yet another embodiment, another MEMS microphone is provided. This embodiment of the MEMS microphone includes a package substrate having a port disposed through the package substrate, wherein the port is configured to receive acoustic waves; and a lid mounted to the package substrate and forming a package. The MEMS microphone also includes a MEMS acoustic sensor disposed in the package and coupled to the package substrate, wherein the MEMS acoustic sensor is positioned such that the acoustic waves receivable at the port are incident on the MEMS acoustic sensor. The MEMS acoustic sensor includes: a variable capacitor formed by a combination of a back plate and a diaphragm having at least a portion that is substantially parallel to at least a portion of the back plate. The variable capacitor causes less than about one percent distortion error during conversion of a sound pressure signal to an electrical signal for a sound pressure signal having a level of or less than about 130 dB SPL.
In yet another embodiment, a method for making a MEMS microphone is provided. The method includes forming a package substrate having a port through the package substrate; and forming a capacitor on the package substrate, wherein the forming the capacitor includes: forming a back plate at a first location, wherein the back plate extends over the port; and forming a diaphragm at a second location. Forming the diaphragm includes: aligning the diaphragm over the port at the second location, wherein at least a portion of the back plate is aligned substantially parallel to the diaphragm, wherein a distance between the first location and the second location forms a defined sense gap, and wherein the MEMS microphone is designed to withstand a bias voltage between the diaphragm and the back plate greater than or equal to about 15 volts. The method can also include forming a lid from a first side of the package substrate to a second side of the package substrate, and around the back plate and the diaphragm.
A further understanding of the nature and the advantages of particular embodiments disclosed herein can be realized by reference of the remaining portions of the specification and the attached drawings.
A microphone is a device that converts sound pressure from acoustic waves received at a sensor to electrical signals. Microphones are used in numerous different applications including, but not limited to, hearing aids, voice recordation systems, speech recognition systems, audio recording and engineering, public and private amplification systems and the like.
MEMS microphones have numerous advantages including low power consumption and high performance. Additionally, MEMS microphones are available in small packages and facilitate use in a wide variety of applications that require a device with a small footprint. A MEMS microphone typically functions as a capacitive-sensing device, or acoustic sensor, that includes a pressure-sensitive diaphragm that vibrates in response to sound pressure resultant from an acoustic wave incident on the diaphragm. The acoustic sensors are often fabricated employing silicon wafers in highly-automated production processes that deposit layers of different materials on the silicon wafer and then employ etching processes to create the diaphragm and a back plate. The air moves through the back plate to the diaphragm, which deflects in response to the sound pressure associated with the air.
The sensed phenomenon is converted into an electrical signal. The electrical signal can be processed by an application specific integrated circuit (ASIC) for performing any number of functions of the MEMS microphone.
Embodiments described herein are MEMS microphones that include MEMS acoustic sensors that have wide sense gaps between the diaphragm and back plate of the acoustic sensors. The acoustic sensors act as capacitors and operate to facilitate sensing of the acoustic waves provided at the MEMS microphone. The embodiments advantageously have low distortion error relative to various sound pressure levels and are able to withstand high bias voltage.
Turning now to the drawings,
Shown in
In some embodiments, although not shown, acoustic sensor 102 as shown, described and/or claimed herein can be considered the combination of the diaphragm 103 (or, as shown in
The diaphragm 103 (or, as shown in
In some embodiments, the back plate 202 and the sensor substrate 110 are part of the same layer. For example, the sensor substrate 110 can initially be one solid substrate from end A to end B and insulation material 111 can then be embedded in sensor substrate 110 to define the ends of back plate 202. As shown in
As described, the acoustic sensor 102 can be composed of the diaphragm (e.g., diaphragm 103 or diaphragm 105 in
The port 104 can be any size suitable for receiving and/or detecting the acoustic waves 128 intended to enter the MEMS microphone integrated package 100. Specifically, the port 104 can provide a recess/opening to an external environment outside of the MEMS microphone integrated package 100 such that sound generated external to the MEMS microphone integrated package 100 is received by the port 104. Accordingly, the port 104 can be positioned at any number of different locations within package substrate 108 in suitable proximity to the back plate 202 and diaphragm 103 (or diaphragm 105) that allows the diaphragm 103 (or diaphragm 105) to detect the sound waves corresponding to the sound generated external to the MEMS microphone integrated package 100.
As described, acoustic waves 128 enter the MEMS microphone integrated package 100 via the port 104 provided through the package substrate 108, pass through the perforated region of the back plate 202 and are incident on the diaphragm 103 (or diaphragm 105). The diaphragm 103 (or diaphragm 105) deflects as a result of the sound pressure associated with the acoustic waves 128, and a capacitance results between the diaphragm 103 (or diaphragm 105) and the back plate 202 based on the deflection. The ASIC 120 measures the variation in voltage that results when the capacitance changes.
In some embodiments, the ASIC 120 can further process the information at the ASIC for any number of different functions. For example, the variation in capacitance can be amplified to produce an output signal. In various embodiments, the ASIC 120 can include circuitry/components for performing any number of different functions.
A portion 126 of the MEMS microphone integrated package 100 will be described in further detail with reference to
In one embodiment, the diaphragm layer 112 and the diaphragm center portion 200 are formed initially from a single, continuous solid substrate. The diaphragm center portion 200 is removed and one or more of springs 208 are embedded between the diaphragm center portion 200 and the diaphragm layer 112 coupling the diaphragm center portion 200 and the diaphragm layer 112 to one another while suspending the diaphragm center portion 200 above the back plate 202. In this embodiment, the diaphragm 103 is formed of the diaphragm center portion 200, diaphragm layer 112 (on each side of diaphragm center portion 200) and one or more springs 208. The springs 208 can be a 24-spring suspension device in some embodiments.
While the one or more springs 208 are employed in
In either embodiment shown in
The back plate 202 can be a layer of material (including a perforated portion and, in some embodiments, also including a solid, continuous portion) used as an electrode to electrically sense the diaphragm 103 (or diaphragm 105). In the described embodiments, the perforations can be acoustic openings for reducing air damping in moving portions of the back plate 200.
The width 210, or distance, between the at rest position of the diaphragm 103 (or diaphragm 105) and the back plate 202 can be the sense gap 204. In some embodiments, the sense gap 204 can be a wide sense gap that has a width 210 of approximately six microns in some embodiments. In other embodiments, the width 210 of the sense gap 204 can be between three microns and six microns. As such, notwithstanding conventional wisdom is to decrease the size of components in order to facilitate MEMS devices, in the embodiments described herein, the sense gap 204 is wide relative to conventional sense gaps, and therefore the design is contrary to the conventional trend in reducing the size of components, gaps and overall MEMS structures. The wide sense gap 204 advantageously enables a higher voltage to be applied to the MEMS microphone than conventional systems that do not include the wide sense gap 204.
A center post 206 is a substantially hard contact joining the diaphragm 103 (or diaphragm 105) and the back plate 202 that is formed and positioned such that when the sound pressure is incident on the back plate 202 and the diaphragm 103 (or diaphragm 105), only the diaphragm center portion 200 (or diaphragm 105) (or, in some embodiments, primarily the diaphragm center portion 200 (or diaphragm 105)) deflects.
The bias voltage between the diaphragm 103 (or diaphragm 105) and the back plate 202 is substantially higher than conventional bias voltages and can be approximately 36 volts in some embodiments. Significantly, the bias voltage is approximately three times the amount of the bias voltage in traditional systems. The wide width 210 of the sense gap 204 facilitates the high bias voltage. The extremely high bias voltage for which this combination acoustic sensor 102 is designed enables the MEMS microphone integrated package of
As such, in some embodiments, the acoustic sensor 102 includes a relatively large sense gap 204 with a high voltage ASIC (e.g., ASIC 120 of
In some embodiments, an acoustic wave 128 travels through the perforations of the back plate 202 to the diaphragm 103 (or diaphragm 105). The diaphragm center portion 200 (or diaphragm 105) moves up and down and/or deflects in response to the sound pressure associated with the acoustic wave 128.
The resonant frequency of the MEMS microphone can differ from the resonant frequency of the diaphragm 103 (or diaphragm 105) and is typically a few kilohertz (kHz) less than the resonant frequency of the diaphragm 103 (or diaphragm 105). As an example, the diaphragm 103 (or diaphragm 105) can resonate at a frequency that is greater than or equal to about 32 kHz (as measured in a vacuum). By contrast, the MEMS microphone built with the acoustic sensor 102 can resonate at about 20 kHz to about 40 kHz, depending on the various aspects of the MEMS microphone integrated package (e.g., MEMS microphone integrated package 100 of
In one embodiment, the material from which the diaphragm center portion 200 (or diaphragm 105) is formed can be a substantially stiff material resulting in a flatter frequency response due to an increased resonant frequency. In embodiments in which the diaphragm is composed of silicon nitride, higher resonant frequencies and flatter frequency response can result. As used herein, the term “flatter frequency response” implies the resonant frequency, which occurs at frequency greater than 20 kHz. Flatness of frequency response can be important in the audio band of 20 Hz to 20 kHz and is measured relative to 1 kHz value. As such, over this range (e.g., 20 Hz to 20 kHz), sensitivity is ±3 dB of the value of 1 kHz. Diaphragms composed of polymer materials can result in a less flat frequency response. Diaphragms that are thinner can result in a less flat frequency response than the frequency response of thicker diaphragms.
In some embodiments, to limit distortion, it is useful to limit the amount of deflection of the diaphragm center portion 200 (or diaphragm 105) as a function of the applied sound pressure level at the diaphragm center portion 200. For example, in one embodiment, for acoustic waves at a sound pressure level of 130 dB, the acoustic sensor 102 is designed such that the diaphragm center portion 200 (or diaphragm 105) deflects less than 1/10 the width 210 of the sense gap 204. As used herein, the value of 1/10 is a rule of thumb and in other embodiments, higher values (e.g., ⅛ the width 210 or ⅕ the width 210) can be acceptable. The wide sense gap 204 is employed to enable increased a flatter frequency response, withstanding of increased bias voltage and reduced distortion value.
Currently, microphones have about one percent distortion at 120 dB SPL. However, it is desirable to push out the sound pressure level (SPL) at which the one percent distortion is experienced. One or more embodiments described herein can achieve a sound pressure level of 130 dB SPL at one percent distortion. The embodiments described herein, which employ a wide gap acoustic sensor and high bias for a MEMS microphone can accomplish the goals described herein. For example, when the sense gap of the acoustic sensor is increased, higher sound pressure level must be experienced (and 130 dB SPL might be achieved) before the diaphragm center portion 200 (or diaphragm 105) contacts the back plate 202. When the wide sense gap 204 is increased, the diaphragm center portion 200 (or diaphragm 105) can be made to be stiffer and correspondingly increase the bias voltage between the diaphragm center portion 200 (or diaphragm 105) and the back plate 202.
In various embodiments, the variable capacitor formed by the particular diaphragm 103 (or diaphragm 105) and back plate 202 along with the wide sense gap 204 causes less than about one percent distortion error during conversion of a sound pressure signal to an electrical signal for a sound pressure signal having a level of or less than about 130 dB SPL.
In yet another embodiment, the sense gap 204 can be increased and the diaphragm center portion 200 (or diaphragm 105) can be made stiffer to require an increase in the bias voltage between the diaphragm 103 (or diaphragm 105) and the back plate 202. The higher bias would allow the acoustic sensor 102 to retain the sensitivity that would otherwise be lost because of the stiffer diaphragm center portion 200 and the increased sense gap 204. As the width of the sense gap 204 increases, sensitivity tends to drop at the ratio of 1/(width of the sense gap 204).
In one or more embodiments, the bias voltage is increased by 1/(width of the sense gap)1.5 to more than adequately compensate for the increased sense gap 204 and the resultant loss of sensitivity. As such, the acoustic sensor 102 can also have a sensitivity factor within a range from about −38 dB volts per pascal to about −42 dB volts per pascal. In some embodiments, the range can be adjusted by +/−3 dB volts per pascal.
Turning back to
As shown, a back cavity 122 is formed in an area in which no components of the MEMS microphone integrated package 100 are located upon mounting the lid 106 to the package substrate 108. In some embodiments, the back cavity 122 can be a partial enclosed cavity equalized to ambient pressure via Pressure Equalization Channels (PEC). In various aspects of the embodiments described herein, the back cavity 122 can provide an acoustic sealing for waves entering the integrated package 100.
Solder 124 connects the MEMS microphone integrated package 100 to an external substrate. The solder 124 can be utilized to join/couple the MEMS microphone integrated package 100 to different systems. As such, the embodiments of the MEMS microphone integrated package 100 described herein can be employed in any number of different systems including, but not limited to, mobile telephones, smart watches and/or wearable exercise devices.
While the components are shown in the particular arrangement illustrated in
As described, the MEMS microphone integrated package 100 to different systems can be coupled to and/or employed within any number of different types of systems that utilize microphone technology. As such, the embodiments of the MEMS microphone integrated package 100 described herein can be employed in different systems including, but not limited to, mobile telephones, smart watches and/or wearable exercise devices. In one example embodiment, for instance, a system including the MEMS microphone integrated package 100 can be a smart watch designed to perform one or more functions (e.g., display time, date, navigation information, update time and data information) as a result of a audio command (and corresponding acoustic sound waves) received at the system and processed by the MEMS microphone integrated package 100 within the system. Although particular types of systems in which the MEMS microphone integrated package 100 can be employed have been referenced, the description has provided only examples and thus the description is not limited to these particular embodiments. Other systems that employ the functionality that can be provided by the MEMS microphone integrated package 100 can also include the MEMS microphone integrated package 100 and are envisaged herein.
At 404, method 400 can include forming a capacitor on the wafer, wherein the forming the capacitor includes: forming a back plate at a first location, wherein the back plate extends over the port; and forming a diaphragm at a second location. The forming the diaphragm includes: aligning the diaphragm over the port at the second location, wherein at least a portion of the back plate is aligned substantially parallel to the diaphragm. The distance between the first location and the second location forms a defined sense gap, and the MEMS microphone is designed to withstand a bias voltage between the diaphragm and the back plate greater than or equal to about 15 volts. In some embodiments, non-MEMS microphones could withstand a bias voltage of about 200 volts.
At 406, method 400 can include forming a lid from a first side of the wafer to a second side of the wafer, and around the back plate and the diaphragm. In some embodiments, the lid can be hermetically sealed to the wafer in some embodiments to provide an airtight seal protecting the components of the integrated package.
The ASIC (e.g., ASIC 120 of
Turning now to
At 504, method 500 can include forming a MEMS acoustic sensor, wherein the forming the MEMS acoustic sensor includes: forming a diaphragm at a first location; and forming a back plate positioned at a second location, wherein a distance between the first location and the second location forms a defined sense gap that is greater than or equal to about three microns. In some embodiments, the defined sense gap can be any width between three microns and six microns.
At 506, method 500 can include forming a lid around the MEMS acoustic sensor and coupled to the wafer. In some embodiments, the lid can be hermetically sealed to the wafer in some embodiments to provide an airtight seal protecting the components of the integrated package.
Turning now to
In some embodiments, the displacement of the diaphragm indicates a deflection of a portion of the diaphragm. The defined sense gap can have a width indicated by reference numeral 210 of
At 606, method 600 can include forming a lid around the MEMS acoustic sensor and coupled to the wafer. In some embodiments, the lid can be hermetically sealed to the wafer in some embodiments to provide an airtight seal protecting the components of the integrated package.
As used in the description herein and throughout the claims that follow, “a”, “an”, and “the” includes plural references unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
Thus, while particular embodiments have been described herein, latitudes of modification, various changes, and substitutions are intended in the foregoing disclosures, and it will be appreciated that in some instances some features of particular embodiments will be employed without a corresponding use of other features without departing from the scope and spirit as set forth. Therefore, many modifications can be made to adapt a particular situation or material to the essential scope and spirit.
Number | Name | Date | Kind |
---|---|---|---|
20070003082 | Pedersen | Jan 2007 | A1 |
20090208037 | Zhe | Aug 2009 | A1 |
20100276766 | Tang | Nov 2010 | A1 |
20130177180 | Bharatan et al. | Jul 2013 | A1 |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2015/059745 mailed on Mar. 22, 2016, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20160142829 A1 | May 2016 | US |