Certain installations require, by statute, code, or for some other reason, that built in fire suppression systems be provided. In some cases, these systems comprise a simple water sprinkler system that is activated via some environmental trigger (e.g. heat, smoke, and the like). In other cases, more complex systems are required that must meet certain standards for performance and must also pass certain standards of construction and installation. In some cases, there may be regulations for any and all equipment, whether related to the fire suppression system or not.
In the prior art, certain complex fire suppression systems have typically been component based, where each component of the system is installed separately and combined with other components to provide the required fire suppression capability. There are a number of disadvantages of such an approach.
In cases where all materials have to be graded and approved, each separate component must pass the review process prior to installation. This can take a significant amount of time, severely delaying installation of original systems, or repair of existing systems. Often the sources of the components in the prior art are separate and independent companies, adding to the expense and delay of installation.
One particular environment where such prior art systems suffer from sever disadvantages is the nuclear industry. There are strict requirements (e.g. Nuclear Quality Assurance level 1, “NQA-1) that each component must meet. With each component being installed by a different team, the man-hours required for installation, maintenance, and repair are multiplied. Any work at a nuclear site must be supervised by a security team. The component system requires a large security team working many hours during all processes. This adds overhead, cost, and scheduling complexity to the process.
Even in non-nuclear environments, building and safety codes may require inspection, certification, UL approval, and/or other conditions to be satisfied prior to installation and operation of the system.
The present system provides an integrated fire suppression system that includes all components in a single integrated panel. The system allows the entire panel to be inspected and analyzed, and installed, repaired, or maintained in a single operation, dramatically reducing time spent on site and reducing the qualifying process as well. The assembly of the panel is off-site, typically under the inspection of any qualifying agencies. Once assembled, the system can remain qualified for rapid installation at any future time, allowing easy replacement of faulty panels or consumables. The system allows plug and play capability during installation and/or replacement operations. The panel includes a surrounding cabinet, with lockable doors to restrict access to the interior of the cabinet to qualified personnel. Inside, the cabinet defines a plurality of spaces that are designed to provide stability, easy operation and repair, and containment of many errors and failures to specific compartments, protecting other components. The design of the overall system is such to provide a low center of gravity to increase the stability of the cabinet even in the absence or failure of mounting straps. The design is such that even when mounted, the pressures on the mounts are reduced due to the natural stability of the cabinet.
The system provides a unitized, compact, modular scalable set of cabinetry for containing fire suppression equipment. An example of an embodiment of the system is illustrated in
In one embodiment the cabinet is comprised of steel with welded seams in addition to provide isolation of the interior components. The cabinet itself may be a UL approved cabinet for containing electronic components. The cabinet in one embodiment includes a first section that is 72H by 96W by 34D. A second section may be 72H, by 24W or wider by 34D and is scalable. The design of the cabinet 201 serves a number of functions. One function is to isolate and contain fire suppression equipment in a single integrated location. This allows the system to be assembled and certified off site, and then moved to the installation site while retaining all or most of the certification qualifications. Another function is to reduce the impact of various system failures from impacting the remainder of the system and causing additional damage. Another function is to allow for easy maintenance and repair of the system in place.
The separation of regions of the cabinet into compartments adds to the effectiveness of the cabinet. Compartments 202 and 203 provide locations for various subsystems of the fire suppression system. Compartments 202 and 203 are separated by a wall 204 that includes openings 205 for the heads of the high pressure gas tanks 206 to extend into region 203. This unique design separates potential fluid leaks of the water tank and/or nozzles from sensitive instruments and controllers in region 202. Should the nozzles 215 on the gas tanks 206 fail, and/or should the water tank 207 leak, the fluid will be isolated and contained in region 203, protecting other equipment in the cabinet. The openings 205 that permit the tops of the tanks 206 to extend into region 203 can include gasket, grommets, and/or other sealing mechanisms to provide isolation between he compartments. The gas tanks 206 may be nitrogen tanks for use in a water/nitrogen fire suppression system or other chemical or inerting gases.
Another advantage of the design of the cabinet is natural stability. The cabinet is designed for heavier components to be at the bottom of the cabinet and for those components themselves to be in their most stable configuration. For example, the gas tanks 204 are located in a more stable arrangement than typical vertical wall racks (such as shown in
The system includes valves and solenoids in compartment 208, also in a defined space with walls around the region. This area is another area of potential leaks, so by keeping it separated from other electrical components with the physical barrier of compartment 208, robust protection is provided to the system. In one embodiment, compartment 208 may have its own door to provide further isolation of the components. In one embodiment, compartment 208 is located within compartment 203 to isolate fluid related components in a single location. In one embodiment, enclosure 203 contains a control system for an emitter based system such as the Vortex system manufactured by Victaulic. Such systems provide a water-sparse solution for fire suppression, using high velocity, low pressure discharge. It should be noted that the system may be implemented with any manufacturer's components.
Electrical control components 209-213 are provided in the remainder of the cabinet 201, mounted securely per IBC or NQA-1 requirements in compartment 202. All connections between the components in the panel are already made at the manufacturing location. In one embodiment, the panel communicates with the remainder of the system through a minimum of connection points. For example, the system includes a power interconnect, plumbing interconnect for integration with the fire suppression piping system, and a communications port (in addition to available wireless control as desired) and a BACnet gateway. These interconnects may be at the top, sides, and/or back of the cabinet as desired. In one embodiment, the connections are situated so as to be easily accessible during installation, operation, and maintenance of the system.
In one embodiment, the fittings of the cabinet connect to a piping system where nozzles may be distributed throughout the protected space. In another embodiment, the cabinet will include two phase fluid nozzles or emitters mounted on top of the cabinet itself, without the need for additional piping and plumbing. In this embodiment, the system is self contained and no additional piping is required. The cabinet can be in wired or wireless communication with sensors and activate upon detection of an alarm condition.
In one embodiment, fluid connections are black steel, stainless steel, and fittings may be via malleable iron fittings (black or galvanized). All piping includes pipe hangers and support bracket to support the dead load of the piping system. Rigid support is provided at all direction changes as needed per local codes and authorities having jurisdiction.
In one embodiment, the panel includes double doors 301 as shown in
As show in
The system is scalable, and it is contemplated that additional cabinets and compartments can be attached and integrated into the system as needed, both at the assembly location or the installation location.
When the detection devices detect an event, there is a set of contact closures that will start off a chain of events. Remote alarms in local and off site or manned supervisory points will receive annunciation from the panel. The panel will energize a solenoid to allow high pressure gas to open the pilot bottle valves to allow gas to flow to the panel. At that time the control system will signal an end drive to rotate and control a needle valve or a pressure reducing device to maintain and to adjust the amount of gas to be delivered as appropriate. At the same time the water solenoid opens and pressurized water lows to the emitter with the gas and is educted, emulsified and a fine mist is created to suppress the alarmed event.
This patent application is a continuation of U.S. patent application Ser. No. 13/873,143 entitled “INTEGRATED PANEL FOR FIRE SUPPRESSION SYSTEM,” and filed Apr. 29, 2013 which claims the benefit of priority of U.S. Provisional Patent Application No. 61/639,844 with the same title, and filed Apr. 27, 2012 each of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2287873 | Geertz | Jun 1942 | A |
3878896 | White et al. | Apr 1975 | A |
3977474 | Boegli | Aug 1976 | A |
4356870 | Gaylord et al. | Nov 1982 | A |
4819732 | Laumeister | Apr 1989 | A |
5560693 | Musser | Oct 1996 | A |
5808541 | Golden | Sep 1998 | A |
5850876 | Allison et al. | Dec 1998 | A |
7264178 | Hugg | Sep 2007 | B1 |
7775292 | Romanco | Aug 2010 | B1 |
8230939 | Renolds | Jul 2012 | B1 |
8973670 | Enk, Sr. | Mar 2015 | B2 |
20070103325 | Wagner | May 2007 | A1 |
20110121034 | Swab | May 2011 | A1 |
Entry |
---|
“Compartment.” Google Dictionary. 2018. https://www.google.com/search?rlz=1C1GGRV_enUS768US768&q=Dictionary#dobs=compartment (Apr. 19, 2018). |
Number | Date | Country | |
---|---|---|---|
20160296777 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61639844 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13873143 | Apr 2013 | US |
Child | 15183734 | US |