This invention relates generally to integrated partial oxidation and electrolysis processes, and more particularly to the integration of these process to produce hydrogen and/or power.
Electrolysis-based green hydrogen production systems driven by pure renewable power (i.e., wind, solar, hydro, etc.) require capital costs that are significantly higher than fossil-based blue hydrogen technologies to produce hydrogen and electric power at scale.
It is desirable to bring down the capital expenditures required for electrolysis-based green hydrogen systems by developing an integrated green and blue hydrogen approach such as described herein. This green/blue hydrogen systems integration concept will lower the financial risk for clean hydrogen projects and as such will also attract more capital investments to develop those projects.
The invention generally relates to an integrated partial oxidation and electrolysis process intended to produce hydrogen at scale. The produced hydrogen may be used for power generation or stored for transmission and/or other uses.
The subject invention provides an integrated green and blue hydrogen approach to produce hydrogen and electric power at scale. The subject system preferably combines electrolysis, partial oxidation, and power generation processes.
The invention includes an integrated oxidation and electrolysis system for producing hydrogen and/or power at scale. Embodiments of this invention include a system including a partial oxidation reactor to partially combust a carbonaceous gaseous and/or liquid feed with oxygen to generate heat used to pyrolyze a non-combusted portion of the carbonaceous gaseous and/or liquid feed and create an effluent containing hydrogen, carbon monoxide, carbon dioxide, water, nitrogen, and other trace components. The system further includes an electrolyzer to convert water to hydrogen and oxygen, whereby the oxygen is fully or partially utilized as the oxygen for the partial oxidation reactor. The system further includes an electric power source, preferably renewable, that provides power input to the electrolysis process.
In embodiments of this invention, the system includes or is combined with a power plant that utilizes, fully or partially, a combined hydrogen feed produced collectively by the partial oxidation and electrolyzer, to generate electric power. In addition, heat from the electrolyzer and/or effluent processing can be feed to the power plant.
In embodiments of this invention, the partial oxidation reactor is embodied as or within an auto-thermal reformer.
In embodiments of this invention, an oxygen feed line is configured to transport all of the oxygen from the electrolyzer to the partial oxidation reactor. An oxygen storage apparatus, such as a storage tank, can be used in combination with the oxygen feed to store excess or all produced oxygen until needed. Similarly, one or more hydrogen storage apparatuses can be used at various points in the system.
In embodiments of this invention, a quench water feed is used in combination with the partial oxidation reactor, such as downstream of a partial oxidation reaction zone where the carbonaceous gaseous and/or liquid feed is combusted. The quench water feed is configured to cool the effluent and can then be combined with the effluent to increase a total water content of the effluent.
In embodiments of this invention, the effluent is further processed to produce additional hydrogen from hydrogen-containing components. For example, a water-gas-shift reaction can be used to react carbon monoxide and water in the effluent to produce the additional hydrogen. The heat from this reaction can also be used in the system or the power plant. Any suitable mechanism or process, such as a separator and/or purifier apparatus, can be used to separate hydrogen from the effluent or from effluent components.
The invention further includes a method for producing hydrogen and/or power at scale. The method includes steps of: combusting in a reactor a carbonaceous gaseous and/or liquid feed with an oxygen-containing feed to generate heat; pyrolyzing non-combusted carbonaceous gaseous and/or liquid feed materials to produce an effluent including hydrogen, carbon monoxide, carbon dioxide, water, and nitrogen; converting water to hydrogen and oxygen by electrolysis; and feeding the oxygen from the electrolysis within the oxygen-containing feed to the reactor.
The method desirably further includes feeding the hydrogen to a power generator/plant. Preferably the power plant uses a combined hydrogen produced by both the partial oxidation and electrolysis to generate electric power. Heat from the reactions in the system can also be applied to the power plant.
In embodiments of this invention, the method includes storing at least one of: oxygen from the electrolysis, or hydrogen from the electrolysis and/or the combusting.
In embodiments of this invention, the method includes cooling the effluent with water and/or increasing a total water content of the effluent.
In embodiments of this invention, the method includes reacting the effluent in a water-gas-shift reaction or reactor to produce additional hydrogen. The hydrogen can be separated and/or purified from the effluent or from other effluent components.
As shown and described in more detail below, the subject invention creates a link between an electrolysis process and a partial oxidation process to maximize the production of hydrogen (H2). The link is created by entirely consuming the electrolysis oxygen byproduct in a partial oxidation process that utilizes carbonaceous gaseous and/or liquid feedstocks to produce hydrogen-containing effluent. Ultimately, the hydrogen produced by partial oxidation and electrolysis is combined to feed the power plant process and/or stored for further transmission and/or other uses. When the electrolysis is powered by a renewable energy source, such as biomass, solid waste, wind, solar, wave, hydroelectric, and/or geothermal power systems, the system provides a desirable combined green-blue hydrogen production.
Other objects and advantages will be apparent to those skilled in the art from the following detailed description taken in conjunction with the appended claims and drawings.
The present invention provides an integrated partial oxidation and electrolysis system and process intended to produce hydrogen at scale.
As best shown in
One or more electrolyzer(s) 30 are preferably utilized upstream of the reactor(s) 20 and serve to convert water (H2O) to hydrogen (H2) and oxygen (O2). One or more electric power sources 40 provides power input to the electrolyzer(s) 30 to realize the electrolysis process. Any power source can be used, but in embodiments the power source is or includes a renewable energy source, such as selected from biomass, solid waste, wind, solar, wave, hydroelectric, and/or geothermal power systems, or combinations thereof. Alternatively, or in addition, the electric power source 40 for electrolysis may come from battery storage, and/or nuclear, and/or fossil fuel sources. Alternatively, or in addition, the electric power source 40 for electrolysis may come from the power grid.
Produced hydrogen is preferably passed through a compressor 65 where it may be stored as gaseous or liquified hydrogen in storage facilities 50, and thereafter used as needed or desired. Although shown as a single storage facility 50 in
In a preferable embodiment of the subject invention, the electrolyzer(s) 30 provide(s) the full oxygen feed to the partial oxidation reactor 20. Likewise, all oxygen produced by electrolysis is desirably entirely utilized by the partial oxidation process. In embodiments of the subject system, the heat release from electrolysis is recovered and utilized as heat input to the power plant 60.
Effluent from the partial oxidation reactor 20 may be cooled by injecting quench water 25 directly inside the partial oxidation reactor 20, preferably directly downstream of a partial oxidation reaction zone therein. In addition to cooling, the quench water 25 can be used to increase the overall water content of the partial oxidation effluent.
As shown in the figures, the partial oxidation effluent may pass directly from the partial oxidation reactor 20 through a water-gas-shift reactor 45 to maximize the production of hydrogen by reacting the partial oxidation effluent carbon monoxide and water contents, such as according to the following forward reaction: CO+H2O→CO2+H2. Heat released from this water-gas-shift reaction may be recovered and utilized as heat input to the power plant, as shown in
In the subject system, a separation and/or purification mechanism such as a separator 55 and purifier 60 may be included to separate/remove CO2, CO and other traces from the partial oxidation effluent and/or the resulting hydrogen.
The invention illustratively disclosed herein suitably may be practiced in the absence of any element, part, step, component, or ingredient which is not specifically disclosed herein.
While in the foregoing detailed description this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein can be varied considerably without departing from the basic principles of the invention.
This application claims the benefit of U.S. Provisional Patent Application, Ser. No. 63/311,554, filed on 18 Feb. 2022. The co-pending provisional application is hereby incorporated by reference herein in its entirety and is made a part hereof, including but not limited to those portions which specifically appear hereinafter.
Number | Date | Country | |
---|---|---|---|
63311554 | Feb 2022 | US |