The present invention relates to an integrated motor and blower. According to an embodiment, an integrated permanent magnet motor and blower is provided.
Conventional motorized blowers use an arrangement with a central shaft that supports a fan assembly. The motor includes a stator that is attached to the central shaft and an outer rotor that is attached to the fan assembly. The stator is disposed within a central bore of the rotor so that the stator is disposed in an inward radial direction in relation to the rotor, with the rotor and stator being disposed concentrically in relation to one another.
U.S. Pat. No. 5,591,017 discloses a motorized impeller assembly with a motor mounting base 11, motor shaft 16, stator member 12, rotor member 14, and rotating impeller member 15. The motor shaft 16 fits within the motor mounting base 11 and the stator member 12 engages the motor mounting base 11. The rotor member 14 is integrated and fixed with the impeller 15 so that the rotor member 14 and impeller 15 may freely rotate on the shaft 16.
U.S. Pat. No. 6,132,132 discloses a fan subassembly 22 that is mounted to and supported by an elongate main mounting member 30. A stator 34 is secured to the main mounting member 30. The fan subassembly 22 includes a rotor 40 and is mounted to the main mounting member 30 so that the fan subassembly 22 is rotatable relative to the main mounting member 30. The stator 34 is located within the bore of the rotor and is concentric with respect to the rotor 40.
These and other features, aspects, and advantages will become apparent from the following description, appended claims, and the accompanying exemplary embodiments shown in the drawings, which are briefly described below.
Embodiments will be described below with reference to the drawings.
Conventional blower arrangements in which the stator is arranged in an inner radial direction in relation to the rotor are relatively large and require an unnecessary amount of space.
An object of the embodiments described herein is to provide an integrated motor and blower. Such an integrated motor and blower can be used in midsize air conditioning units, such as those used in, for example, trucks, boats, and other transportation units.
A further object of the embodiments described herein is to provide an integrated motor and blower that requires less space. An integrated motor and blower can be used to provide fluid flow, such as the movement of air.
A blower 10 is shown in
The motor 25 includes a stator 30, which can be provided and attached to the motor case 40 so that the stator 30 is integrated with the motor case 40. A shaft 50 can be provided in a central portion of the motor case 40, with the shaft extending through a central bore of the stator 30. A shaft 50 can be connected to a fan 20, such as to provide rotational movement of the fan.
A bearing 60 can be provided to rotatably support the shaft 50 in relation to the motor case 40. The bearing 60 can be arranged at an end of the shaft 50. For example, the bearing 60 can be arranged at the end of the shaft 50 to support the shaft 50 within the motor housing 40, as shown in the example of
The motor 25 further includes a rotor 90, which is disposed within a central bore of the stator 30. The rotor 90 and stator 30 can be positioned so that they are concentric to one another. According to an embodiment, the rotor 90 is disposed closer to the shaft 50 than the stator 30 so that the rotor 90 is positioned internally to the stator 30. According to an embodiment, the shaft 50 is disposed within a central bore of the rotor 90, and the rotor 90 is disposed within a central bore of the stator 30.
The rotor 90 can be positioned in relation to the fan 20 by a spacer 100, washer, or other device known in the art that can be disposed between the rotor 90 and the fan 20. Screws 130, bolts, or other fastening devices known in the art can be used to join the rotor 90 to the fan 20. The spacer 100 can be fixed between the fan 20 and the rotor 90, as shown in the example of
According to an embodiment, the rotor 90 is directly attached to the fan 20. As shown in the example of
The shaft 50 can be positioned in relation to the fan 20 by providing a nut 120 or other device known in the art. A lock washer 110, spacer, or other device known in the art may also be provided to position the nut 120, rotor 90, and shaft 50 in relation to one another.
According to an embodiment, the rotor 90 can be fixed to the shaft 50 so that the shaft 50 also turns when the rotor 90 is turned by the function of the motor 25. According to another embodiment, the rotor 90 can be rotatably supported by the shaft 50 so that the rotor 90 turns freely upon the shaft 50.
According to an embodiment, a shaft can be configured to extend outward from a surface of a motor. The shaft can be configured to extend outward from a surface of a motor in a direction that is opposite of a blower fan. In the example shown in
The function of an integrated blower and motor will now be described in relation to the example shown in
According to a further embodiment, an integrated blower and motor is provided that includes a fan 20 and a motor 25. The motor includes a stator 30 and a rotor 90, wherein the rotor 90 includes permanent magnets retained within the rotor 90.
According to a further embodiment, a rotor 200 can be formed by stacking a series of plates or laminations having the shape of the rotor. Such a stack of plates or laminations would be stacked in a direction going into the page of
According to an embodiment, a rotor 200 can include a plurality of recesses 220 for retaining permanent magnets in the rotor 200. As shown in the example of
A rotor 200 can include retention structures 250 for retaining magnets in the rotor 200. Such retention structures are designed to maintain retention of magnets within a rotor during high rotational speeds and at high temperatures that cause thermal expansion of rotor parts.
According to a further embodiment, the retention structures 250 can include angled surfaces 255 that are designed to form angles so that the outer radial opening of a recess 220 has a smaller width X than the width Y of the base of the recess 220, as shown in the example of
Given the present disclosure, one versed in the art would appreciate that there may be other embodiments and modifications within the scope and spirit of the invention. Accordingly, all modifications attainable by one versed in the art from the present disclosure within the scope and spirit of the present invention are to be included as further embodiments. For example, the arrangement shown in the example of
Number | Name | Date | Kind |
---|---|---|---|
4654551 | Farr | Mar 1987 | A |
4758751 | Hosoya et al. | Jul 1988 | A |
5591017 | Dwyer | Jan 1997 | A |
6132182 | Khan et al. | Oct 2000 | A |
6246133 | Embree et al. | Jun 2001 | B1 |
6351102 | Troy | Feb 2002 | B1 |
RE37576 | Stephens et al. | Mar 2002 | E |
6488475 | Murata et al. | Dec 2002 | B2 |
6867527 | Moore | Mar 2005 | B2 |
6911756 | Chang | Jun 2005 | B1 |
6940200 | Lopatinsky et al. | Sep 2005 | B2 |
20050046294 | Rinholm et al. | Mar 2005 | A1 |
20050110356 | Imamura et al. | May 2005 | A1 |
20050140233 | Kojima et al. | Jun 2005 | A1 |
20050184611 | Rinholm et al. | Aug 2005 | A1 |
20060017342 | Park | Jan 2006 | A1 |
20060138894 | Harada et al. | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080100165 A1 | May 2008 | US |