Integrated photovoltaic roofing shingles, methods, systems, and kits thereof

Information

  • Patent Grant
  • 12051990
  • Patent Number
    12,051,990
  • Date Filed
    Friday, October 14, 2022
    2 years ago
  • Date Issued
    Tuesday, July 30, 2024
    4 months ago
Abstract
Some embodiments of the present disclosure relate to an integrated photovoltaic (PV) roofing shingle comprising a photovoltaic (PV) module and a roofing shingle. In some embodiments, the roofing shingle is bonded to the PV module. In some embodiments, a bond strength between the roofing shingle and the PV module is from 5 N/mm to 60 N/mm tested according to ASTM D1876. In some embodiments, the integrated PV roofing shingle has a mass per unit area of 0.5 lb per square foot to 5 lbs per square foot. Methods, systems, and kits including the integrated PV roofing shingle are also disclosed.
Description
FIELD

The present disclosure relates to integration of photovoltaic (PV) panels into roofing shingles.


BACKGROUND

Traditional rooftop photovoltaic (PV) systems require a large amount of installation labor, as well as specialized tools and methods. Mechanisms to reduce the amount of labor and limit specific requirements for installing PV by making the installation more similar to that of a rooftop shingle are needed.


SUMMARY

Covered embodiments are defined by the claims, not this summary. This summary is a high-level overview of various aspects and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification, any or all drawings, and each claim.


Some embodiments of the present disclosure relate to an integrated photovoltaic (PV) roofing shingle comprising: a photovoltaic (PV) module; and a roofing shingle, wherein the roofing shingle is bonded to the PV module; wherein a bond strength between the roofing shingle and the PV module is from 5 N/mm to 60 N/mm tested according to ASTM D1876 wherein the integrated PV roofing shingle has a mass per unit area of 0.5 lb per square foot to 5 lbs per square foot.


In some embodiments, the roofing shingle is bonded to the PV module by at least one adhesive.


In some embodiments, the roofing shingle is a polymer-coated shingle, an asphalt-coated shingle, or a combination thereof.


In some embodiments, the polymer-coated shingle comprises thermoplastic polyolefin.


In some embodiments, the PV module comprises at least one of: a substrate, wherein the substrate forms at least a portion of a bottom surface of the PV module; a superstrate, wherein the superstrate forms at least a portion of a top surface of the PV module; or any combination thereof.


In some embodiments, the roofing shingle is bonded to at least one of: the substrate, the superstrate, or any combination thereof.


In some embodiments, the top surface of the PV module comprises: a first portion, wherein the first portion of the top surface of the PV module comprises the superstrate; and a second portion, wherein the second portion of the top surface of the PV module does not comprise the superstrate; wherein the roofing shingle is bonded to the second portion of the top surface of the PV module; and wherein the second portion of the top surface of the PV module is adjacent to the first portion of the top surface of the PV module.


In some embodiments, the bottom surface of the PV module does not comprise a substrate, and wherein the roofing shingle is bonded to the bottom surface.


Some embodiments of the present disclosure relate to a method comprising: obtaining a photovoltaic (PV) module and a roofing shingle; bonding the PV module to the roofing shingle, so as to form an integrated PV roofing shingle having a bond strength, between the roofing shingle and the PV module of from 5 N/mm to 60 N/mm tested according to ASTM D1876; and wherein the integrated PV roofing shingle has a mass per unit area of 0.5 lb per square foot to 5 lbs per square foot.


In some embodiments, the bonding step comprises laminating the PV module to the roofing shingle.


In some embodiments, the bonding step comprises bonding the PV module to the roofing shingle with a sufficient amount of bonding material.


Some embodiments of the present disclosure relate to a method comprising: obtaining an integrated PV roofing shingle comprising: a photovoltaic (PV) module; and a roofing shingle, wherein the roofing shingle is bonded to the PV module; wherein a bond strength between the roofing shingle and the PV module is from 5 N/mm to 60 N/mm tested according to ASTM D1876; wherein the integrated PV roofing shingle has a mass per unit area of 0.5 lb per square foot to 5 lbs per square foot; and affixing the integrated PV roofing shingle to a roof.


In some embodiments, the affixing step comprises affixing the integrated PV roofing shingle to the roof using at least one fastener.


In some embodiments, the at least one fastener is chosen from at least one nail, at least one screw, at least one staple, or any combination thereof.


In some embodiments, the integrated PV roofing shingle has 1 fastener to 5 fasteners per square foot of the integrated PV roofing shingle after the affixing step.


In some embodiments, the fastener is affixed to the roof by driving the fastener through an overlapping area of the integrated PV roofing shingle and into the roof.


Some embodiments of the present disclosure relate to a roofing kit comprising: a plurality of integrated PV roofing shingles, wherein each integrated PV roofing shingle of the plurality of integrated PV roofing shingles comprises: a photovoltaic (PV) module; and a roofing shingle, wherein each roofing shingle of the plurality is bonded to a corresponding PV module; wherein a bond strength between each roofing shingle and each corresponding PV module of the plurality is from 5 N/mm to 60 N/mm tested according to ASTM D1876; wherein each integrated PV roofing shingle of the plurality has a mass per unit area of 0.5 lb per square foot to 5 lbs per square foot; and wherein each integrated PV roofing shingle of the plurality is configured to be affixed to a roof by at least one fastener.





DRAWINGS

Some embodiments of the disclosure are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the embodiments shown are by way of example and for purposes of illustrative discussion of embodiments of the disclosure. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the disclosure may be practiced.



FIGS. 1-4 are non-limiting embodiments, in cross sectional views, of exemplary integrated PV roofing shingles according to the present disclosure.



FIG. 5 is a top view of an illustrative non-limiting exemplary embodiment of an integrated PV roofing shingle according to the present disclosure.





DETAILED DESCRIPTION

Among those benefits and improvements that have been disclosed, other objects and advantages of this disclosure will become apparent from the following description taken in conjunction with the accompanying figures. Detailed embodiments of the present disclosure are disclosed herein; however, it is to be understood that the disclosed embodiments are merely illustrative of the disclosure that may be embodied in various forms. In addition, each of the examples given regarding the various embodiments of the disclosure which are intended to be illustrative, and not restrictive.


Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise. The phrases “in one embodiment,” “in an embodiment,” and “in some embodiments” as used herein do not necessarily refer to the same embodiment(s), though it may. Furthermore, the phrases “in another embodiment” and “in some other embodiments” as used herein do not necessarily refer to a different embodiment, although it may. All embodiments of the disclosure are intended to be combinable without departing from the scope or spirit of the disclosure.


As used herein, the term “based on” is not exclusive and allows for being based on additional factors not described, unless the context clearly dictates otherwise. In addition, throughout the specification, the meaning of “a,” “an,” and “the” include plural references. The meaning of “in” includes “in” and “on.”


As used herein, terms such as “comprising” “including,” and “having” do not limit the scope of a specific claim to the materials or steps recited by the claim.


As used herein, the term “consisting essentially of” limits the scope of a specific claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic or characteristics of the specific claim.


As used herein, terms such as “consisting of” and “composed of” limit the scope of a specific claim to the materials and steps recited by the claim.


All prior patents, publications, and test methods referenced herein are incorporated by reference in their entireties.


As used herein, the term photovoltaic (“PV”) module refers to any device that is configured to convert light (e.g., sunlight) into electric power. A non-limiting example of a PV module is a solar panel.


As used herein, the term “integrated PV roofing shingle” or “integrated photovoltaic roofing shingle” refers to a roofing shingle that includes a PV module and a roofing shingle, where the PV module and roofing shingle collectively function a single, stand-alone unit. In some embodiments, the “integrated PV roofing shingle” functions as a single, stand-alone unit regardless of whether the “integrated PV roofing shingle” is installed on a roof. While a single integrated PV roofing shingle may function as a stand-alone unit, this does not preclude, for example, some embodiments where multiple integrated PV roofing shingles function together as a system.


As used herein, the term “bonded” means that two surfaces (e.g., a surface of a PV module and a surface of a roofing shingle) are in sufficient contact with each other to provide any bond strength or range of bond strengths described herein.


As used herein, the term “superstrate” refers to a layer of a material disposed on a top (i.e., sun-facing) portion of a PV module.


As used herein, the term “substrate” refers to a layer of a material disposed on a bottom (i.e., ground-facing) portion of a PV module.


In some embodiments, the layer of material of the substrate, the superstrate, or any combination thereof comprises an insulating moisture resistant polymer, such as, but not limited to thermoplastic polyolefin (TPO), Ethylene tetrafluoroethylene (ETFE), polyolefin encapsulant (POE), ethylene vinyl acetate encapsulant (EVA), and acrylics. In some embodiments, the layer of material of the substrate, the superstrate, or any combination thereof comprises glass.


As used herein, the term “overlapping area” is defined as the multi-layered section of a shingle where a portion of the headlap section of the shingle overlaps and contacts a portion of the lower layer of the shingle. In embodiments, the overlapping portion of the headlap section of the shingle is bonded to the corresponding portion of the lower layer of the shingle. In embodiments, the overlapping portion of the headlap section of the shingle is bonded to the corresponding portion of the lower layer of the shingle using an adhesive, fastener or combination thereof. In some embodiments, the overlapping portion of the headlap section of the shingle is bonded to the corresponding portion of the lower layer of the shingle as detailed in U.S. Pat. No. 8,127,514, which is incorporated by reference in its entirety.


Some embodiments of the present disclosure relate to an integrated PV roofing shingle. In some embodiments, the integrated PV roofing shingle comprises a PV module and a roofing shingle.


In some embodiments, the roofing shingle is bonded to the PV module. In some embodiments, the roofing shingle is bonded to the PV module by laminating the PV module to the roofing shingle. In some embodiments, the roofing shingle is bonded to the PV module by at least one bonding material. In some embodiments, the at least one bonding material comprises at least one adhesive. In embodiments, the at least one adhesive includes at least one of: asphaltic adhesives such as rubber polymer modified asphalt, acrylic adhesives, polyurethane adhesives, silicone adhesives, rubber polymer based adhesives, e.g. SBS, SBR, SEBS and SIS, or any combination thereof.


In some embodiments, a bond strength between the roofing shingle and the PV module is from 5 N/mm to 60 N/mm tested according to ASTM D1876, from 10 N/mm to 60 N/mm according to ASTM D1876, from 15 N/mm to 60 N/mm according to ASTM D1876, from 20 N/mm to 60 N/mm according to ASTM D1876, from 25 N/mm to 60 N/mm according to ASTM D1876, from 30 N/mm to 60 N/mm according to ASTM D1876, from 35 N/mm to 60 N/mm according to ASTM D1876, from 40 N/mm to 60 N/mm according to ASTM D1876, from 45 N/mm to 60 N/mm according to ASTM D1876, from 50 N/mm to 60 N/mm according to ASTM D1876, or from 55 N/mm to 60 N/mm according to ASTM D1876.


In some embodiments, a bond strength between the roofing shingle and the PV module is from 5 N/mm to 55 N/mm tested according to ASTM D1876, from 5 N/mm to 50 N/mm according to ASTM D1876, from 5 N/mm to 45 N/mm according to ASTM D1876, from 5 N/mm to 40 N/mm according to ASTM D1876, from 5 N/mm to 35 N/mm according to ASTM D1876, from 5 N/mm to 30 N/mm according to ASTM D1876, from 5 N/mm to 25 N/mm according to ASTM D1876, from 5 N/mm to 20 N/mm according to ASTM D1876, from 5 N/mm to 15 N/mm according to ASTM D1876, or from 5 N/mm to 10 N/mm according to ASTM D1876.


In some embodiments, a bond strength between the roofing shingle and the PV module is from 10 N/mm to 55 N/mm tested according to ASTM D1876, from 15 N/mm to 50 N/mm according to ASTM D1876, from 20 N/mm to 45 N/mm according to ASTM D1876, from 25 N/mm to 40 N/mm according to ASTM D1876, or from 30 N/mm to 35 N/mm according to ASTM D1876.


In some embodiments, the roofing shingle is an asphalt-coated shingle, a polymer-coated shingle or any combination/mixture thereof. Non-limiting examples of the polymer coatings include, thermoplastic polyolefin (TPO), polyvinyl butyral (rPVB), polytransoctenamer rubber (TOR), ground tire rubber (GTR), wood plastic, poly(methyl methacrylate) (PMMA), polyvinyl chloride (PVC), low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), polyethylene terephthalate (PET). Non-limiting examples of asphalt coatings include oxidized asphalt coatings and polymer modified asphalt coatings. Non-limiting examples of polymer modified asphalt coated shingles are described in U.S. Pat. No. 9,493,654, which is incorporated by reference herein in its entirety.


In some embodiments, the integrated PV roofing shingle has a mass per unit area from 0.5 lb per square foot to 5 lbs per square foot, from 0.5 lb per square foot to 4.5 lbs per square foot, 0.5 lb per square foot to 4 lbs per square foot, from 0.5 lb per square foot to 3.5 lbs per square foot, from 0.5 lb per square foot to 3 lbs per square foot, from 0.5 lb per square foot to 2.5 lbs per square foot, from 0.5 lb per square foot to 2 lbs per square foot, from 0.5 lb per square foot to 1.5 lbs per square foot, or from 0.5 lb per square foot to 1 lbs per square foot.


In some embodiments, the integrated PV roofing shingle has a mass per unit area from 1 lb per square foot to 5 lbs per square foot, from 1.5 lb per square foot to 5 lbs per square foot, from 2 lb per square foot to 5 lbs per square foot, from 2.5 lb per square foot to 5 lbs per square foot, from 3 lb per square foot to 5 lbs per square foot, from 3.5 lb per square foot to 5 lbs per square foot, from 4 lb per square foot to 5 lbs per square foot, or from 4.5 lb per square foot to 5 lbs per square foot.


In some embodiments, the integrated PV roofing shingle has a mass per unit area of 1 lbs per square foot to 4.5 lbs per square foot, from 1.5 lb per square foot to 4 lbs per square foot, from 2 lb per square foot to 3.5 lbs per square foot, or from 2.5 lb per square foot to 3 lbs per square foot.


In some embodiments, the PV module comprises at least one of: a substrate, a superstrate, or any combination thereof. In some embodiments, the roofing shingle is bonded to at least one of: the substrate, the superstrate, or any combination thereof.


In some embodiments, the substrate forms at least a portion of a bottom surface of the PV module. In some embodiments, the substrate forms the entire bottom surface of the PV module. In some embodiments, the superstrate forms at least a portion of a top surface of the PV module. In some embodiments, the superstrate forms the entire top surface of the PV module.


In some embodiments, the bottom surface of the PV module does not comprise a substrate. In some embodiments, the roofing shingle is bonded to the bottom surface of the PV module, such that the roofing shingle replaces the substrate of the PV module. A non-limiting example of an embodiment where a roofing shingle replaces the substrate of a PV module is shown in FIG. 3 and described in more detail below.


In some embodiments, the top surface of the PV module does not comprise a substrate. In some embodiments, the roofing shingle is bonded to the top surface of the PV module, such that the roofing shingle replaces the superstrate of the PV module.


In some embodiments, the top surface of the PV module comprises a first portion and a second portion. In some embodiments, the second portion of the top surface of the PV module is adjacent to the first portion of the top surface. In some embodiments, the first portion of the top surface of the PV module comprises the superstrate. In some embodiments, the second portion of the top surface of the PV module does not comprise the superstrate. In some embodiments, the roofing shingle is bonded to the second portion of the top surface of the PV module, such that the roofing shingle replaces the superstrate on the second portion of the top surface of the PV module. A non-limiting example of an embodiment where a roofing shingle replaces the superstrate on the second portion of the top surface of the PV module is shown in FIG. 4 and described in more detail below.


In some embodiments, the bottom surface of the PV module comprises a first portion and a second portion. In some embodiments, the second portion of the bottom surface of the PV module is adjacent to the first portion of the bottom surface. In some embodiments, the first portion of the bottom surface of the PV module comprises the substrate. In some embodiments, the second portion of the bottom surface of the PV module does not comprise the substrate. In some embodiments, the roofing shingle is bonded to the second portion of the bottom surface of the PV module, such that the roofing shingle replaces the substrate on the second portion of the bottom surface of the PV module.


Some embodiments of the present disclosure relate to a method of manufacturing an integrated PV roofing shingle described herein. In some embodiments, the method comprises obtaining a PV module and a roofing shingle. In some embodiments, the method comprises bonding the PV module to the roofing shingle, so as to form an integrated PV roofing shingle having a bond strength, between the roofing shingle and the PV module, described herein.


In some embodiments, bonding the PV module to the roofing shingle comprises bonding the PV module to the roofing shingle with a sufficient amount of bonding material, including for example, an adhesive, described herein. In some embodiments, the bonding the PV module to the roofing shingle comprises laminating the PV module to the roofing shingle.


Some embodiments of the present disclosure relate to a method of installing an integrated PV roofing shingle described herein onto a roof. In some embodiments, the method comprises obtaining an integrated PV roofing shingle described herein and affixing the integrated PV roofing shingle to a roof. In some embodiments, the integrated PV roofing shingle described herein is affixed to a specific portion of a roof. In some embodiments, the specific portion of the roof where the integrating roofing shingle is affixed is a roof deck.


In some embodiments, affixing comprises affixing the integrated PV roofing shingle to the roof using at least one fastener. In some embodiments, the at least one fastener is chosen from at least one nail, at least one screw, at least one staple, or any combination thereof. In some embodiments, the fastener is affixed to the roof by driving the fastener through an overlapping area (as defined herein) of the integrated PV roofing shingle and into the roof.


In some embodiments, affixing comprises affixing the integrated PV roofing shingle to the roof using an adhesive. In embodiments, the adhesive may include at least one of: asphaltic adhesives such as rubber polymer modified asphalt, acrylic adhesives, polyurethane adhesives, silicone adhesives, rubber polymer based adhesives, e.g. SBS, SBR, SEBS and SIS, or any combination thereof.


In some embodiments, the integrated PV roofing shingle has from 1 fastener to 5 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof. In some embodiments, the integrated PV roofing shingle has from 2 fasteners to 5 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof. In some embodiments, the integrated PV roofing shingle has from 3 fasteners to 5 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof. In some embodiments, the integrated PV roofing shingle has from 4 fasteners to 5 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof.


In some embodiments, the integrated PV roofing shingle has from 1 fastener to 4 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof. In some embodiments, the integrated PV roofing shingle has from 1 fastener to 3 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof. In some embodiments, the integrated PV roofing shingle has from 1 fastener to 2 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof.


In some embodiments, the integrated PV roofing shingle has from 2 fasteners to 3 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof. In some embodiments, the integrated PV roofing shingle has from 2 fasteners to 4 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof. In some embodiments, the integrated PV roofing shingle has from 3 fasteners to 4 fasteners per square foot of the integrated PV roofing shingle when the integrated PV roofing shingle is installed on a roof.


Some embodiments of the present disclosure relate to a roofing kit. In some embodiments, the roofing kit comprises a plurality of integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises two integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises three integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises four integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises five integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises six integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises seven integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises eight integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises nine integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises ten integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises twenty integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises thirty integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises forty integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises fifty integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises one-hundred integrated PV roofing shingles described herein. In some embodiments, the roofing kit comprises five-hundred integrated PV roofing shingles described herein.


In some embodiments, each integrated PV roofing shingle of the roofing kit is configured to be affixed to a roof by at least one fastener described herein.


The present disclosure will now be described with reference to several non-limiting exemplary embodiments.



FIG. 1 depicts an illustrative non-limiting exemplary embodiment of an integrated PV roofing shingle according to the present disclosure shown in cross-section. As shown in FIG. 1, an integrated PV roofing shingle 100 may comprise a PV module 101 bonded to a roofing shingle 102. In some embodiments, the integrated PV roofing shingle 100 may comprise a bonding material 103 between the roofing shingle 102 and the PV module 101. In some embodiments, the PV module 101 of the integrated PV roofing shingle 100 may comprise a superstrate 104 and a substrate 105.



FIG. 2 depicts an illustrative non-limiting exemplary embodiment of an integrated PV roofing shingle according to the present disclosure, also shown in cross-section. As shown in FIG. 2, integrated PV roofing shingle 200 may comprise a PV module 201 bonded to a roofing shingle 202. Roofing shingle 202 may, in some embodiments, comprise two portions-first portion 202a and second portion 202b. In some embodiments, first portion 202a is a top portion as shown. In some embodiments, second portion 202b is a bottom portion as shown. However, this configuration is not limiting. The first portion 202a and second portion 202b of the roofing shingle 202 may, in some embodiments, be in contact at overlapping area 202c. In some embodiments, at least one fastener (not shown) may be driven into overlapping area 202c, so as to affix integrated PV roofing shingle 200 to a roof (not shown). In some embodiments, the integrated PV roofing shingle 200 may comprise a first bonding material 203a and a second bonding material 203b. In some embodiments, first bonding material 203a and second bonding material 203b are the same. In some embodiments, first bonding material 203a and second bonding material 203b are different. In some embodiments, the PV module 201 of the integrated PV roofing shingle 200 may comprise a superstrate 204 and a substrate 205. In some embodiments, first bonding material 203a is disposed between the superstrate 204 and the first portion 202a of the roofing shingle 202. In some embodiments, second bonding material 203b is disposed between the substrate 205 and the first portion 202b of the roofing shingle 202.



FIG. 3 depicts an illustrative non-limiting exemplary embodiment of an integrated PV roofing shingle according to the present disclosure, also in cross-section. As shown in FIG. 3, integrated PV roofing shingle 300 may comprise a PV module 301 bonded to a roofing shingle 302. In some embodiments, the PV module 301 of the integrated PV roofing shingle 300 may comprise a superstrate 304. In some embodiments, the PV module 301 of the integrated PV roofing shingle 300 may not include a substrate, such that the roofing shingle 302 replaces the substrate, as shown.



FIG. 4 depicts an illustrative non-limiting exemplary embodiment of an integrated PV roofing shingle according to the present disclosure in cross-section. Roofing shingle 402 may, in some embodiments, comprise two portions—first portion 402a and second portion 402b. The first portion 402a and second portion 402b of the roofing shingle 402 may, in some embodiments, be in contact at overlapping area 402c. In some embodiments, a fastener (not shown) may be driven into overlapping area 402c, so as to affix integrated PV roofing shingle 400 to a roof (not shown). In some embodiments, the PV module 401 of the integrated PV roofing shingle 400 may comprise a superstrate 404. In some embodiments, a top portion 401a of the PV module 401 does not comprise the superstrate 404. In some such embodiments, a portion of the superstrate 404 is replaced with portion 402d of the roofing shingle 402 on top portion 401a of the PV module as shown. In some embodiments, the portion 402d of the roofing shingle 402 that is disposed on top portion 401a of the PV module 401 is adjacent to the superstrate 404 as shown.



FIG. 5 depicts a top view of an illustrative non-limiting exemplary embodiment of an integrated PV roofing shingle according to the present disclosure. As shown in FIG. 5, integrated PV roofing shingle 500 may comprise a PV module 501 bonded to a roofing shingle 502. In some embodiments, integrated PV roofing shingle 500 may comprise a fastener application area 507.


Variations, modifications and alterations to embodiments of the present disclosure described above will make themselves apparent to those skilled in the art. All such variations, modifications, alterations and the like are intended to fall within the spirit and scope of the present disclosure, limited solely by the appended claims.


While several embodiments of the present disclosure have been described, it is understood that these embodiments are illustrative only, and not restrictive, and that many modifications may become apparent to those of ordinary skill in the art. For example, all dimensions discussed herein are provided as examples only, and are intended to be illustrative and not restrictive.


Any feature or element that is positively identified in this description may also be specifically excluded as a feature or element of an embodiment of the present as defined in the claims.


The disclosure described herein may be practiced in the absence of any element or elements, limitation or limitations, which is not specifically disclosed herein. Thus, for example, in each instance herein, any of the terms “comprising,” “consisting essentially of and “consisting of” may be replaced with either of the other two terms, without altering their respective meanings as defined herein. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the disclosure.

Claims
  • 1. A system, comprising: a plurality of photovoltaic (PV) roofing shingles installed on a roof deck, wherein the plurality of PV roofing shingles comprises at least a first PV roofing shingle and a second PV roofing shingle,wherein each of the plurality of PV roofing shingles comprises: a PV module; wherein the PV module comprises: a superstrate, a first layer, and a substrate, wherein the first layer is between the superstrate and the substrate, wherein each of the superstrate and the substrate comprises at least one material from the group consisting of a thermoplastic polyolefin, ethylene tetrafluoroethylene, polyolefin encapsulant, ethylene vinyl acetate encapsulant, and acrylics; anda roofing layer comprising a first end, a second end opposite to the first end, a first edge extending between the first end and the second end, a second edge opposite to the first edge and extending between the first end and the second end, a substantially flat top surface, and a substantially flat bottom surface opposite the substantially flat top surface, wherein the substantially flat top surface defines a fastener application area, wherein the fastener application area is spaced apart from the first edge and from the second edge, wherein the fastener application area extends from the first end of the roofing layer to the second end of the roofing layer,wherein the substantially flat bottom surface of the first PV roofing shingle overlaps and defines an interface with the substantially flat top surface of the second PV roofing shingle, andat least one fastener, wherein the at least one fastener penetrates the fastener application area of at least one of the first PV roofing shingle or the second PV roofing shingle, thereby to fasten the first PV roofing shingle or the second PV roofing shingle to the roof deck,wherein the roofing layer of the first PV roofing shingle partially overlaps and is in contact with the roofing layer of the second PV roofing shingle.
  • 2. The system of claim 1, wherein each of the plurality of PV roofing shingles further comprises: a bonding material, wherein the bonding material is between the substantially flat top surface of the roofing layer and a bottom surface of the substrate of the PV module.
  • 3. The system of claim 1, wherein the roofing layer of each of the plurality of PV roofing shingles comprises a roofing shingle.
  • 4. The system of claim 1, wherein in each of the plurality of PV roofing shingles the PV module is laminated to the roofing layer.
  • 5. The system of claim 1, wherein the roofing layer of each of the plurality of PV roofing shingles comprises TPO.
  • 6. The system of claim 1, wherein each of the plurality of PV roofing shingles further comprises: an adhesive on a bottom surface of the roofing layer.
  • 7. The system of claim 1, wherein an entirety of the fastener application area is configured to receive a fastener.
  • 8. The system of claim 1, wherein the roofing layer has a substantially constant thickness.
  • 9. The system of claim 1, wherein the roofing layer has a substantially constant thickness from the first end to the second end, and from the first edge to the second edge.
  • 10. A system, comprising: a plurality of photovoltaic (PV) roofing shingles installed on a roof deck, wherein the plurality of PV roofing shingles comprises at least a first PV roofing shingle and a second PV roofing shingle,wherein each of the plurality of PV roofing shingles comprises: a PV module; wherein the PV module comprises: a superstrate, a first layer, and a substrate, wherein a surface of the superstrate is juxtaposed with a surface of the first layer, wherein another surface of the first layer is juxtaposed with a surface of the substrate, wherein each of the superstrate and the substrate comprises at least one material from the group consisting of a thermoplastic polyolefin, ethylene tetrafluoroethylene, polyolefin encapsulant, ethylene vinyl acetate encapsulant, and acrylics; anda roofing layer comprising a first end, a second end opposite to the first end, a first edge extending between the first end and the second end, a second edge opposite to the first edge and extending between the first end and the second end, a substantially flat top surface, and a substantially flat bottom surface opposite the substantially flat top surface, wherein the substantially flat top surface of the roofing layer is juxtaposed with the substrate of the PV module, wherein the substantially flat top surface defines a fastener application area, wherein the fastener application area is spaced apart from the first edge and from the second edge, wherein the fastener application area extends from the first end of the roofing layer to the second end of the roofing layer,wherein the substantially flat bottom surface of the first PV roofing shingle overlaps and defines an interface with the substantially flat top surface of the second PV roofing shingle, andat least one fastener, wherein the at least one fastener penetrates the fastener application area of at least one of the first PV roofing shingle or the second PV roofing shingle, thereby to fasten the first PV roofing shingle or the second PV roofing shingle to the roof deck,wherein the roofing layer of the first PV roofing shingle partially overlaps and is in contact with the roofing layer of the second PV roofing shingle.
  • 11. The system of claim 10, wherein each of the plurality of PV roofing shingles further comprises: a bonding material, wherein the bonding material is between the substantially flat top surface of the roofing layer and a bottom surface of the substrate of the PV module.
  • 12. The system of claim 10, wherein the roofing layer of each of the plurality of PV roofing shingles comprises a roofing shingle.
  • 13. The system of claim 10, wherein in each of the plurality of PV roofing shingles the PV module is laminated to the roofing layer.
  • 14. The system of claim 10, wherein the roofing layer of each of the plurality of PV roofing shingles comprises TPO.
  • 15. The system of claim 10, wherein each of the plurality of PV roofing shingles further comprises: an adhesive on a bottom surface of the roofing layer.
  • 16. The system of claim 10, wherein an entirety of the fastener application area is configured to receive a fastener.
  • 17. The system of claim 11, wherein the roofing layer has a substantially constant thickness.
  • 18. The system of claim 11, wherein the roofing layer has a substantially constant thickness from the first end to the second end, and from the first edge to the second edge.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 17/154,809, filed on Jan. 21, 2021, entitled “INTEGRATED PHOTOVOLTAIC ROOFING SHINGLES, METHODS, SYSTEMS, AND KITS THEREOF,” which claims the benefit of U.S. Provisional Application Ser. No. 62/964,451, filed on Jan. 22, 2020, entitled “INTEGRATED PHOTOVOLTAIC ROOFING SHINGLES, METHODS, SYSTEMS, AND KITS THEREOF,” the contents of which are incorporated herein by reference in their entirety.

US Referenced Citations (272)
Number Name Date Kind
1981467 Radtke Nov 1934 A
3156497 Lessard Nov 1964 A
4258948 Hoffmann Mar 1981 A
4349220 Carroll et al. Sep 1982 A
4499702 Turner Feb 1985 A
4636577 Peterpaul Jan 1987 A
5167579 Rotter Dec 1992 A
5437735 Younan et al. Aug 1995 A
5590495 Bressler et al. Jan 1997 A
5642596 Waddington Jul 1997 A
6008450 Ohtsuka et al. Dec 1999 A
6033270 Stuart Mar 2000 A
6046399 Kapner Apr 2000 A
6320114 Kuechler Nov 2001 B1
6320115 Kataoka et al. Nov 2001 B1
6336304 Mimura et al. Jan 2002 B1
6341454 Koleoglou Jan 2002 B1
6407329 Iino et al. Jun 2002 B1
6576830 Nagao et al. Jun 2003 B2
6928781 Desbois et al. Aug 2005 B2
6972367 Federspiel et al. Dec 2005 B2
7138578 Komamine Nov 2006 B2
7155870 Almy Jan 2007 B2
7178295 Dinwoodie Feb 2007 B2
7487771 Eiffert et al. Feb 2009 B1
7587864 McCaskill et al. Sep 2009 B2
7666491 Yang et al. Feb 2010 B2
7678990 McCaskill et al. Mar 2010 B2
7678991 McCaskill et al. Mar 2010 B2
7748191 Podirsky Jul 2010 B2
7819114 Augenbraun et al. Oct 2010 B2
7824191 Podirsky Nov 2010 B1
7832176 McCaskill et al. Nov 2010 B2
8118109 Hacker Feb 2012 B1
8168880 Jacobs et al. May 2012 B2
8173889 Kalkanoglu et al. May 2012 B2
8210570 Railkar et al. Jul 2012 B1
8276329 Lenox Oct 2012 B2
8312693 Cappelli Nov 2012 B2
8319093 Kalkanoglu et al. Nov 2012 B2
8333040 Shiao et al. Dec 2012 B2
8371076 Jones et al. Feb 2013 B2
8375653 Shiao et al. Feb 2013 B2
8404967 Kalkanoglu et al. Mar 2013 B2
8410349 Kalkanoglu et al. Apr 2013 B2
8418415 Shiao et al. Apr 2013 B2
8438796 Shiao et al. May 2013 B2
8468754 Railkar et al. Jun 2013 B2
8468757 Krause et al. Jun 2013 B2
8505249 Geary Aug 2013 B2
8512866 Taylor Aug 2013 B2
8513517 Kalkanoglu et al. Aug 2013 B2
8586856 Kalkanoglu et al. Nov 2013 B2
8601754 Jenkins et al. Dec 2013 B2
8623499 Viasnoff Jan 2014 B2
8629578 Kurs et al. Jan 2014 B2
8646228 Jenkins Feb 2014 B2
8656657 Livsey et al. Feb 2014 B2
8671630 Lena et al. Mar 2014 B2
8677702 Jenkins Mar 2014 B2
8695289 Koch et al. Apr 2014 B2
8713858 Xie May 2014 B1
8713860 Railkar et al. May 2014 B2
8733038 Kalkanoglu et al. May 2014 B2
8789321 Ishida Jul 2014 B2
8793940 Kalkanoglu et al. Aug 2014 B2
8793941 Bosler et al. Aug 2014 B2
8826607 Shiao et al. Sep 2014 B2
8835751 Kalkanoglu et al. Sep 2014 B2
8863451 Jenkins et al. Oct 2014 B2
8898970 Jenkins et al. Dec 2014 B2
8925262 Railkar et al. Jan 2015 B2
8943766 Gombarick et al. Feb 2015 B2
8946544 Jabos et al. Feb 2015 B2
8950128 Kalkanoglu et al. Feb 2015 B2
8959848 Jenkins et al. Feb 2015 B2
8966838 Jenkins Mar 2015 B2
8966850 Jenkins et al. Mar 2015 B2
8994224 Mehta et al. Mar 2015 B2
9032672 Livsey et al. May 2015 B2
9145498 Ultsch Sep 2015 B2
9166087 Chihlas et al. Oct 2015 B2
9169646 Rodrigues et al. Oct 2015 B2
9170034 Bosler et al. Oct 2015 B2
9178465 Shiao et al. Nov 2015 B2
9202955 Livsey et al. Dec 2015 B2
9212832 Jenkins Dec 2015 B2
9217584 Kalkanoglu et al. Dec 2015 B2
9270221 Zhao Feb 2016 B2
9273885 Rordigues et al. Mar 2016 B2
9276141 Kalkanoglu et al. Mar 2016 B2
9331224 Koch et al. May 2016 B2
9356174 Duarte et al. May 2016 B2
9359014 Yang et al. Jun 2016 B1
9412890 Meyers Aug 2016 B1
9528270 Jenkins et al. Dec 2016 B2
9605432 Robbins Mar 2017 B1
9670353 Peng et al. Jun 2017 B2
9711672 Wang Jul 2017 B2
9711991 Hall et al. Jul 2017 B2
9755573 Livsey et al. Sep 2017 B2
9786802 Shiao et al. Oct 2017 B2
9831818 West Nov 2017 B2
9912284 Svec Mar 2018 B2
9920515 Xing et al. Mar 2018 B2
9923515 Rodrigues et al. Mar 2018 B2
9938729 Coon Apr 2018 B2
9987786 Stolijkovic et al. Jun 2018 B2
9991412 Gonzalez et al. Jun 2018 B2
9998067 Kalkanoglu et al. Jun 2018 B2
10015933 Boldrin Jul 2018 B2
10027273 West et al. Jul 2018 B2
10115850 Rodrigues et al. Oct 2018 B2
10128660 Apte et al. Nov 2018 B1
10156075 McDonough Dec 2018 B1
10179852 Gossi et al. Jan 2019 B2
10187005 Rodrigues et al. Jan 2019 B2
10256765 Rodrigues et al. Apr 2019 B2
10284136 Mayfield et al. May 2019 B1
10454408 Livsey et al. Oct 2019 B2
10480192 Xing et al. Nov 2019 B2
10530292 Cropper et al. Jan 2020 B1
10560048 Fisher et al. Feb 2020 B2
10563406 Kalkanoglu et al. Feb 2020 B2
D879031 Lance et al. Mar 2020 S
10669414 Li et al. Jun 2020 B2
10784813 Kalkanoglu et al. Sep 2020 B2
D904289 Lance et al. Dec 2020 S
10907355 Hubbard et al. Feb 2021 B2
10914063 Lee et al. Feb 2021 B2
RE48555 Cancio et al. May 2021 E
11012026 Kalkanoglu et al. May 2021 B2
11015085 Bruns et al. May 2021 B2
11065849 Ackermann et al. Jul 2021 B2
11177639 Nguyen et al. Nov 2021 B1
11217715 Sharenko et al. Jan 2022 B2
11251744 Bunea et al. Feb 2022 B1
11258399 Kalkanoglu et al. Feb 2022 B2
11283394 Perkins et al. Mar 2022 B2
11424379 Sharenko et al. Aug 2022 B2
11431280 Liu et al. Aug 2022 B2
11431281 Perkins et al. Aug 2022 B2
20010054262 Nath et al. Dec 2001 A1
20020053360 Kinoshita et al. May 2002 A1
20020129849 Heckeroth Sep 2002 A1
20030101662 Ullman Jun 2003 A1
20030132265 Villela et al. Jul 2003 A1
20030217768 Guha Nov 2003 A1
20050030187 Peress et al. Feb 2005 A1
20050115603 Yoshida et al. Jun 2005 A1
20050144870 Dinwoodie Jul 2005 A1
20050178428 Laaly et al. Aug 2005 A1
20060042683 Gangemi Mar 2006 A1
20060046084 Yang et al. Mar 2006 A1
20070181174 Ressler Aug 2007 A1
20070193618 Bressler et al. Aug 2007 A1
20070249194 Liao Oct 2007 A1
20070295385 Sheats et al. Dec 2007 A1
20080006323 Kalkanoglu et al. Jan 2008 A1
20080035140 Placer et al. Feb 2008 A1
20080078440 Lim et al. Apr 2008 A1
20080185748 Kalkanoglu Aug 2008 A1
20080271774 Kalkanoglu et al. Nov 2008 A1
20080302030 Stancel et al. Dec 2008 A1
20080315061 Fath Dec 2008 A1
20090000222 Kalkanoglu et al. Jan 2009 A1
20090014058 Croft et al. Jan 2009 A1
20090019795 Szacsvay et al. Jan 2009 A1
20090044850 Kimberley Feb 2009 A1
20090114261 Stancel et al. May 2009 A1
20090133340 Shiao et al. May 2009 A1
20090159118 Kalkanoglu et al. Jun 2009 A1
20090178350 Kalkanoglu et al. Jul 2009 A1
20090205270 Shaw et al. Aug 2009 A1
20090229652 Mapel et al. Sep 2009 A1
20100019580 Croft et al. Jan 2010 A1
20100095618 Edison et al. Apr 2010 A1
20100101634 Frank et al. Apr 2010 A1
20100116325 Nikoonahad May 2010 A1
20100131108 Meyer May 2010 A1
20100139184 Williams et al. Jun 2010 A1
20100146878 Koch et al. Jun 2010 A1
20100159221 Kourtakis et al. Jun 2010 A1
20100170169 Railkar et al. Jul 2010 A1
20100242381 Jenkins Sep 2010 A1
20100313499 Gangemi Dec 2010 A1
20100326488 Aue et al. Dec 2010 A1
20100326501 Zhao et al. Dec 2010 A1
20110030761 Kalkanoglu et al. Feb 2011 A1
20110036386 Browder Feb 2011 A1
20110036389 Hardikar et al. Feb 2011 A1
20110048507 Livsey et al. Mar 2011 A1
20110058337 Han et al. Mar 2011 A1
20110061326 Jenkins Mar 2011 A1
20110100436 Cleereman et al. May 2011 A1
20110104488 Muessig et al. May 2011 A1
20110132427 Kalkanoglu et al. Jun 2011 A1
20110168238 Metin et al. Jul 2011 A1
20110239555 Cook et al. Oct 2011 A1
20110302859 Crasnianski Dec 2011 A1
20120034799 Hunt Feb 2012 A1
20120060902 Drake Mar 2012 A1
20120137600 Jenkins Jun 2012 A1
20120176077 Oh et al. Jul 2012 A1
20120212065 Cheng et al. Aug 2012 A1
20120233940 Perkins et al. Sep 2012 A1
20120240490 Gangemi Sep 2012 A1
20120260977 Stancel Oct 2012 A1
20120266942 Komatsu et al. Oct 2012 A1
20120279150 Pislkak et al. Nov 2012 A1
20120291848 Sherman et al. Nov 2012 A1
20130008499 Verger et al. Jan 2013 A1
20130014455 Grieco Jan 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130247988 Reese et al. Sep 2013 A1
20130284267 Plug et al. Oct 2013 A1
20130306137 Ko Nov 2013 A1
20140090697 Rodrigues et al. Apr 2014 A1
20140150843 Pearce et al. Jun 2014 A1
20140173997 Jenkins Jun 2014 A1
20140179220 Railkar et al. Jun 2014 A1
20140182222 Kalkanoglu et al. Jul 2014 A1
20140238468 Brounne Aug 2014 A1
20140254776 O'Connor et al. Sep 2014 A1
20140266289 Della Sera et al. Sep 2014 A1
20140311556 Feng et al. Oct 2014 A1
20140352760 Haynes et al. Dec 2014 A1
20140366464 Rodrigues et al. Dec 2014 A1
20150024159 Bess et al. Jan 2015 A1
20150089895 Leitch Apr 2015 A1
20150340516 Kim et al. Nov 2015 A1
20150349173 Morad et al. Dec 2015 A1
20160105144 Haynes et al. Apr 2016 A1
20160142008 Lopez et al. May 2016 A1
20160254776 Rodrigues et al. Sep 2016 A1
20160276508 Huang et al. Sep 2016 A1
20160359451 Mao et al. Dec 2016 A1
20170159292 Chihlas et al. Jun 2017 A1
20170179319 Yamashita et al. Jun 2017 A1
20170179726 Garrity et al. Jun 2017 A1
20170203555 Wang et al. Jul 2017 A1
20170237390 Hudson et al. Aug 2017 A1
20170331415 Koppi et al. Nov 2017 A1
20180094438 Wu et al. Apr 2018 A1
20180094439 Wang et al. Apr 2018 A1
20180097472 Anderson et al. Apr 2018 A1
20180115275 Flanigan et al. Apr 2018 A1
20180219512 Langmaid et al. Aug 2018 A1
20180254738 Yang et al. Sep 2018 A1
20180281347 Gossi Oct 2018 A1
20180351502 Almy et al. Dec 2018 A1
20180367089 Stutterheim et al. Dec 2018 A1
20190030867 Sun et al. Jan 2019 A1
20190081436 Onodi et al. Mar 2019 A1
20190123679 Rodrigues et al. Apr 2019 A1
20190253022 Hardar et al. Aug 2019 A1
20190305717 Allen et al. Oct 2019 A1
20200020819 Farhangi Jan 2020 A1
20200109320 Jiang Apr 2020 A1
20200144958 Rodrigues et al. May 2020 A1
20200220819 Vu et al. Jul 2020 A1
20200224419 Boss et al. Jul 2020 A1
20200343397 Hem-Jensen Oct 2020 A1
20210002898 Knebel et al. Jan 2021 A1
20210095474 Yang et al. Apr 2021 A1
20210113970 Stainer et al. Apr 2021 A1
20210115223 Bonekamp et al. Apr 2021 A1
20210159353 Li et al. May 2021 A1
20210171808 Ackermann et al. Jun 2021 A1
20210172174 Ackermann et al. Jun 2021 A1
20210343886 Sharenko et al. Nov 2021 A1
20220149213 Mensink et al. May 2022 A1
Foreign Referenced Citations (25)
Number Date Country
2829440 May 2019 CA
700095 Jun 2010 CH
202797032 Mar 2013 CN
1958248 Nov 1971 DE
1039361 Sep 2000 EP
1837162 Sep 2007 EP
1774372 Jul 2011 EP
2446481 May 2012 EP
2784241 Oct 2014 EP
3154190 Aug 2019 EP
10046767 Feb 1998 JP
2002-106151 Apr 2002 JP
2001-098703 Oct 2002 JP
2017-027735 Feb 2017 JP
2018053707 Apr 2018 JP
20090084060 Aug 2009 KR
10-2019-0000367 Jan 2019 KR
10-2253483 May 2021 KR
2026856 Jun 2022 NL
WO-2010151777 Dec 2010 WO
2011049944 Apr 2011 WO
2015133632 Sep 2015 WO
2019201416 Oct 2019 WO
2020-159358 Aug 2020 WO
2021-247098 Dec 2021 WO
Non-Patent Literature Citations (4)
Entry
Sunflare, Procducts: “Sunflare Develops Prototype For New Residential Solar Shingles”; 2019 «sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles» retrieved Feb. 2, 2021.
RGS Energy, 3.5kW POWERHOUSE 3.0 system installed in an afternoon; Jun. 7, 2019 «facebook.com/RGSEnergy/» retrieved Feb. 2, 2021.
Tesla, Solar Roof «tesla.com/solarroof» retrieved Feb. 2, 2021.
“Types of Roofing Underlayment”, Owens Corning Roofing; «https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home» retrieved Nov. 1, 2021.
Related Publications (1)
Number Date Country
20230143939 A1 May 2023 US
Provisional Applications (1)
Number Date Country
62964451 Jan 2020 US
Continuations (1)
Number Date Country
Parent 17154809 Jan 2021 US
Child 17966618 US