Integrated power, cooling, and heating apparatus utilizing waste heat recovery

Abstract
The present invention provides an apparatus for utilizing waste heat to power a reconfigurable thermodynamic cycle that can be used to selectively cool or heat an environmentally controlled space, such as a room, building, or vehicle. The present invention also integrates an electric machine, which may operate as a motor or generator, or both, and an additional prime mover, such as an internal combustion engine. Different combinations of these components are preferable for different applications. The system provides a design which reasonably balances the need to maximize efficiency, while also keeping the design cost-effective.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

None.


FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

Not applicable.


BACKGROUND OF THE INVENTION

This invention relates to a method of integrating an electrical power generator and/or an electrical motor with a heat driven air conditioning and heating system to provide power, cooling, and heating to an environmentally controlled space, such as a building, vehicle, or shelter.


Many industrial processes produce waste heat of low temperature, such that little useful work is generally accomplished with this waste heat. It is well known that certain thermodynamic cycles, such as absorption cooling, can provide environmental cooling even from low grade heat sources, such as thermal solar, engine exhaust, and bottoming cycles for industrial steam generators, but absorption cooling suffers from low efficiencies. In addition, cycles, such as absorption cooling, cannot easily integrate electrical power generation.


Prior art has not completely integrated heating and cooling with electrical power generation, or alternatively with an electric motor/generator to supplement the thermodynamic cycle with the electric motor during periods of low thermal energy availability. Furthermore, a self-contained system that includes a prime mover, such as an internal combustion engine, combined with power generation and heat and cooling functions, which are further supplemented by waste heat recovery from the engine exhaust have not been described. In the prior art, some systems use refrigerant as the working fluid to generate electrical power (Edwards, U.S. Pat. No. 4,738,111), commonly referred to as an Organic Rankine Cycle. Other systems provide for power and cooling, but use an external combustor, instead of an internal combustion engine (McCullough, U.S. Pat. No. 5,228,309). Many do not consider the need for recuperation, which transfers the remaining usable heat at the output of the Rankine expander to pre-heat fluid entering the heater or boiler.


Prior art for the apparatus that provides the heating and cooling functions have been well described elsewhere (Benson, U.S. Pat. No. 6,581,384). It can be summarized that none have maximized the efficiency achievable with a combined Rankine and refrigeration cycle. Some approaches either do not recuperate heat from the working fluid (Steuart, U.S. Pat. No. 1,871,244) or do not recuperate heat in a fashion that maximizes the temperature of the working fluid entering the heating device (Brola, U.S. Pat. No. 4,118,934). Some systems attempt to only provide heating (Schafer, U.S. Pat. No. 4,271,679) or cooling (Horn, U.S. Pat. No. 2,875,589) but not both. Some add complexity by using separate working fluids for the power and heat pump cycles (Silvern, U.S. Pat. No. 3,153,442) (Schafer, U.S. Pat. No. 4,271,679).


Hence, there is a need for a single system of sufficient efficiency and simplicity to make the manufacture and operation economically attractive. Since the intent of the system is to operate from external heat source, or be supplemented by recovery of heat from an integrated prime mover, the integrated power, heating and cooling system must be flexible enough to accommodate variable electrical and air conditioning loads and allow simple controls with a minimum of sensors and actuators.



FIG. 1 shows the basic heat driven cooling cycle as described in prior art (Benson, U.S. Pat. No. 6,581,348). As illustrated in FIG. 1, the apparatus is configured for the cooling mode and consists of a working fluid which has a low critical pressure and temperature, such as a common refrigerant, and a liquid pump 47, which pressurizes the refrigerant from an intermediate pressure liquid to a high pressure liquid. The high pressure liquid passes through one or more recuperators, 17 and 14, to become preheated prior to passing to the heater 2, where a heat source 1 heats the working fluid. The working fluid passes through the expander start-up and overspeed control valve 8 to the expander 9. The working fluid is expanded through the expander 9, which may be a turbine, piston motor, or some other device which can extract work from the working fluid. While passing through the expander 9, work is extracted from the working fluid. The expander 9 drives a compressor 13 through a common shaft, where a speed sensor 11 transmits the speed of the expander 9 and compressor 13 rotating group back to the controller to use in the speed control logic.


The expander 9 exhaust passes through the recuperator 14 and 17, where much of the heat is transferred from the expander exhaust gas to the liquid entering the heater 2. The compressor 13, using the same working fluid as the expander 9, compresses the working fluid from a low pressure, gaseous state to an intermediate pressure gas as part of a typical refrigeration cycle. The output from the compressor 13 is co-mingled with the outlet of the first recuperator 14. The combined outlet flows from the expander 9 and first recuperator 14 can then be optionally passed into recuperator 17 to extract as much heat from the working fluid as possible. The working fluid then passes through the five-way reversing valve 23 from port 18 to port 20 to the condenser heat exchanger 26. In an alternative embodiment, the condenser may be cooled by an externally chilled fluid as would be supplied by an evaporative type chiller.


The working fluid exits the condenser 26 as a intermediate pressure liquid and is split, where part of the liquid passes through the bi-directional, variable area expansion valve 37, and the other part of the liquid passes through check valve 32. Upon exiting the expansion valve 37, the intermediate pressure liquid becomes a low pressure liquid. The low pressure liquid enters the evaporator heat exchanger 43 to cool a space, such as a building. In an alternative embodiment, the evaporator may be used to cool another fluid, rather than directly cooling a building. The working fluid leaving the evaporator 43 is a low pressure vapor and is passed through the five-way reversing valve 23 from port 21 to port 22, where the working fluid returns to the compressor 13. Port 19 is not used in the cooling mode. The remainder of the working fluid not passing through the expansion valve 37 instead passes through check valve 32 and eventually returns to the liquid pump 47. Check valve 33 is checked closed.


In FIG. 2, the apparatus is configured for the heating mode. All functions of the system, unless noted below are the same as in FIG. 1. Differences from FIG. 1 include passing the combined flow from the expander 9, after passing through recuperator 14, and the outlet flow from the compressor 13 through port 19 of the five-way valve 23 to port 21. Recuperator 17 and port 18 are not used in the heating mode. The intermediate pressure gas from the five-way valve 23 leaves port 21 and passes through heat exchanger 43, which acts as a condenser.


The working fluid exits the condenser as a intermediate pressure liquid and is split where part of the liquid passes through the variable area, bi-directional expansion valve 37, and the other part of the liquid passes through check valve 33. The intermediate pressure liquid becomes a low pressure liquid, upon exiting the expansion valve 37. The low pressure liquid enters heat exchanger 26, which is being used as an evaporator. The working fluid leaving the evaporator is a low pressure vapor and is passed into port 20 of the five-way valve 23 and out of port 22, where the working fluid returns to the compressor 13. The remainder of the working fluid not passing through the expansion valve 37 instead passes through check valve 33 eventually returns to the high pressure liquid pump 47. Check valve 32 is checked closed.


SUMMARY OF THE INVENTION

The present invention provides a process and apparatus for utilizing waste heat to power a reconfigurable thermodynamic cycle that can be used to selectively cool or heat an environmentally controlled space, such as a room or a building, plus generate electrical power. Alternative configurations will be presented that incorporate a motor/generator, such that the heat pump cycle can be supplemented with electrical power, during times when thermodynamic energy may not be sufficient. Another alternative configuration includes incorporation of a prime mover, such as an internal combustion engine, to mechanically drive the integrated power, cooling, and heating system, and the heat generated by the prime mover is recovered to supply heat to help drive the heating and cooling cycle. The system provides a design which reasonably balances the need to maximize efficiency, while also keeping the design cost effective.


The thermodynamic cycle of this invention is a combination of a Rankine cycle to provide power and a refrigeration and heating cycle, commonly known as a heat pump. The system uses a single working fluid in both liquid and gaseous phases. The advantage of a single working fluid is that the system can tolerate some seal leakage between the expander and compressor and simplification of the overall system by reducing the total number of components required. The working fluid has desirable properties of low critical point pressure (<1000 psia) and temperature (<300° F.). Several common refrigerants are candidate working fluids.


Although, the combined Rankine and heat pump cycles are core to each integrated system, there are four typical configurations in which the thermodynamic core system is used. These are understood to be exemplary only and that other combinations can be obtained.

    • a) Incorporate a generator into the system as a means to provide electrical energy when there is excess thermodynamic energy available that exceeds what is required for cooling or heating purposes.
    • b) Incorporate an electric motor into the system as a means to supplement the heat pump cycle, when insufficient thermodynamic energy is available.
    • c) Incorporate a motor and generator or a single machine that acts as a motor/generator. In addition to providing electrical power, when excess thermodynamic energy is available, the motor can be used to supplement the heat pump cycle, when insufficient thermodynamic energy is available.
    • d) Incorporate a prime mover, such as an internal combustion engine, either alone, or in conjunction with a), b) or c) above. This configuration is preferable for portable, self-contained systems that provide combined electrical power, cooling and heating. The system could still be supplemented with external thermodynamic energy, in addition to the heat scavenged from the prime mover.


OBJECTS AND ADVANTAGES

Accordingly, besides the objects and advantages of the cooling and heating apparatus described above, several objects and advantages of the present invention are:


(a) to provide cooling and heating and electrical power apparatus and process which is powered by heat energy from low temperature, waste heat sources, such as thermal solar, internal combustion engine exhaust, residual energy from steam generators, or any one of many other similar sources.


(b) to provide a cooling and heating system which can accommodate variable amounts of input energy with wide variations of temperature of that input energy, and can be supplemented by an electric motor.


(c) to provide a self-contained system with a prime mover which can provide direct shaft power, where that shaft horsepower can easily be apportioned between providing heating or cooling and providing electrical power.


(d) to provide a means for supplementing the prime mover shaft power with shaft power from an expander, where the energy to drive the expander is scavenged from the prime mover and/or optionally supplemented by an external source.


(e) to provide a cooling, heating, and electrical power system which is simple in design and, therefore, is more cost effective to manufacture.


(f) to provide a system which is efficient, flexible in accommodating a variety of load conditions, and easy to control.


The novel features which are believed to be characteristic of the invention will be better understood from the following description, both to its organization and method of operation. Further objects and advantages will be apparent, when considered in connection with the accompanying drawings, in which presently preferred embodiments of the invention are illustrated by way of example. It is expressly understood that the drawings are for the purpose of illustration and description only, and are not intended as a definition of the limits of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic view of the prior art apparatus as configured for cooling an environmentally controlled space.



FIG. 2 is a diagrammatic view of the prior art apparatus as configured for heating an environmentally controlled space.



FIG. 3 is a diagrammatic view of the apparatus as configured for cooling with an integrated electrical machine, which could act as a generator only, a motor only, or as both a motor/generator.



FIG. 4 is a diagrammatic view of the apparatus as configured for cooling an environmentally controlled space with an integrated prime mover, such as an internal combustion engine, from which waste heat is used to drive or assist in driving the cooling and heating cycle, plus an integrated electrical machine, which could act as a generator only, a motor only, or as both a motor/generator.





DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

The embodiments described herein are for the purposes of illustration only, and it is understood by those familiar in the art that numerous other embodiments are possible. In one embodiment of the invention, as illustrated in FIG. 3, the apparatus is configured in the preferred embodiment for the cooling mode, which works in a similar fashion as explained previously. An electric machine 12 and clutch 11 have been added. The clutch 11 becomes preferable, when multiple modes of operation are desired. The clutch 11 could be externally actuated or a passive device, such as an overrunning clutch. The electric machine 12 could be a generator only, in which case the clutch 11 is not necessary, as the generator could only operate when the expander 9 is operable. The electric machine 12 could be a motor only, in which case the clutch 11 could be a passive clutch of the overrunning type, which would allow the electric motor to drive the vapor cycle compressor 13 independent of the expander 9. Further, the electric machine 12 could be a combination motor and generator, either independent devices or a single multi-function device. A single machine that can operate as either a motor or generator could be any of several devices well known to those experienced in the art. As in previous descriptions, the heat source for the expander could be any appropriate source or medium of heat of sufficient temperature and quantity to allow proper operation of the system.



FIG. 4 illustrates the system of FIG. 3 with the addition of a prime mover. For the purposes of illustration only, the prime mover 1 will be referred as an internal combustion engine or simply an engine 1. The engine 1 output shaft is directly coupled to the expander 9, which is itself coupled to other major rotating components in the system. Since most engines reject the majority of heat produced from the fuel to the environment, in this invention, the normally rejected heat is captured and used to drive the expander. FIG. 4 illustrates how different grades of heat, or heat available at different temperatures from the engine 1, may be captured and introduced to the Rankine cycle of the system. By example, the heat recovered by the engine cooling jacket 4 is usually lower temperature, typically less than 150° C. In this case, no additional heat is attempted to be recovered from the compressor 13 outlet flow. Recuperator 14 is still shown to recover usable heat remaining in the expander 9 outlet flow. The optimum arrangement of recuperation and heating the working fluid will vary from application to application depending on the temperatures and amounts of heat available from various sources within the engine 1, any other sources of available heat, and the importance of overall system efficiency versus cost for the additional system complexity.


The engine exhaust 3 can often exceed 500° C. and is shown in FIG. 4 to supply the heat input for the heater 2. The working fluid exits the heater 2, having recovered a significant portion of the heat from the engine exhaust 3, and produces additional shaft horsepower as it flows through the expander 9 to supplement the shaft horsepower supplied by the engine 1. In this respect, the Rankine cycle portion of the system acts as a bottoming cycle for the engine 1.


One of the major benefits of this system arrangement of combined shaft power is that all the power from the engine 1 and expander 9 can be applied as needed to any combination of air conditioning (or heating) load and electrical load demand, if the system includes an electrical machine 12 that can operate as a generator. For electrical power supplied by the system, the engine 1 can be controlled to operate at a constant speed, and therefore supply the electrical power at a constant frequency. As either the compressor 13 or generator 12 load increases, the fuel supply to the engine 1 is increased to increase the engine 1 output torque, but the speed can be maintained as constant to keep the electrical output frequency constant. An increase in the fuel flow to the engine 1 will also increase the heat supplied to the heater 2, which increases the amount of supplemental shaft horsepower supplied to the system from the expander 9.


Although the figures depict the rotating components on a common shaft, in some applications it may be beneficial to have one or more of the components rotating at different speeds through use of a gearbox or other speed reducing or speed increasing device.


CONCLUSION, RAMIFICATION, AND SCOPE

The present invention provides an apparatus for utilizing waste heat to drive a reconfigurable thermodynamic cycle that can be used to selectively cool or heat an environmentally controlled space, such as a room, building, or vehicle, can provide electrical power, and optionally can be coupled to a prime mover. The system provides a design which reasonably balances the need to maximize efficiency, while also keeping the design cost effective.


While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. An apparatus for heating and cooling comprising: a working fluid capable of both gas and liquid phases over the operating range of pressures and temperatures, a high pressure liquid pump connected to transfer said working fluid to a heater using an external heat source, the said heater connected to transfer said working fluid to a gas expander type prime mover, the said prime mover mechanically connected to drive the input shaft of a gas compressor, an electric machine mechanically attached to the shafting interconnecting the said expander and said compressor, allowing the said electric machine to add torque to said compressor input shaft, a first heat exchanger transferring heat from the said working fluid exiting said expander to the said working fluid between exiting said liquid pump and entering said heater, the said working fluid from the outlet of the hot side of said first heat exchanger and the said working fluid from the outlet of the said compressor connected to mix and flow to a second heat exchanger, the said second heat exchanger transfers heat from the said working fluid to a lower temperature second fluid, the said working fluid from the outlet of the said second heat exchanger connected to transfer said working fluid to the said liquid pump and transfer the said working fluid from the outlet of the said second heat exchanger to a flow restriction, which throttles the said working fluid. The said flow restriction connected to transfer the said working fluid to a third heat exchanger, the said third heat exchanger transferring heat from a third fluid which is the fluid that is desirably cooled, the said third heat exchanger connected to transfer the said working fluid to the inlet of the said compressor. A reversing valve or set of valves connected to the said working fluid, reversing the function of the said second heat exchanger and the said third heat exchanger, allowing the said second fluid to be cooled and the said third fluid to be heated.
  • 2. The apparatus according to claim 1 further comprising: a liquid feed tank between the said second heat exchanger and the said liquid pump, to separate liquid and residual gas phases of said working fluid.
  • 3. The apparatus according to claim 1 further comprising: the said electric machine can both generate electricity from shaft power or drive the said compressor.
  • 4. The apparatus according to claim 1 further comprising: a clutch mechanically attached between the said expander and said electric machine, allowing the said expander to disconnect from the shaft between the said expander and the said electric machine, and allow the said electric machine to drive the said compressor independently from the said expander.
  • 5. An apparatus for cooling comprising: a working fluid capable of both gas and liquid phases over the operating range of pressures and temperatures, a high pressure liquid pump connected to transfer said working fluid to a heater using the exhaust from a fuel-powered internal-combustion-engine-type prime mover as one of the heat sources, the said heater connected to transfer said working fluid to a gas expander, the said fuel-powered prime mover mechanically connected to drive the input shaft of a gas compressor, the said expander also mechanically connected to drive the input shaft of said gas compressor, a first heat exchanger transferring heat from the said working fluid exiting said expander to the said working fluid between exiting the said liquid pump and entering said heater, the said working fluid from the outlet of the hot side of the said first heat exchanger and the said working fluid from the outlet of the said compressor connected to mix and flow to a second heat exchanger, the said second heat exchanger transfers heat from the said working fluid to a lower temperature second fluid, the said working fluid from the outlet of the said second heat exchanger connected to transfer said working fluid to the said liquid pump and transfer the said working fluid from the outlet of the said second heat exchanger to a flow restriction, which throttles the said working fluid. The said flow restriction connected to transfer the said working fluid to a third heat exchanger, the said third heat exchanger transferring heat from a third fluid which is the fluid that is desirably cooled, the said third heat exchanger connected to transfer the said working fluid to the inlet of the said compressor.
  • 6. The apparatus according to claim 5 further comprising: a reversing valve or set of valves connected to the said working fluid, reversing the function of the said second heat exchanger and the said third heat exchanger, allowing the said second fluid to be cooled and the said third fluid to be warmed.
  • 7. The apparatus according to claim 5 further comprising: a liquid feed tank between the said second heatexchanger and the said liquid pump, to separate liquid and residual gas phases of said working fluid.
  • 8. The apparatus according to claim 5 further comprising: an electric machine mechanically attached to the shafting interconnecting the said prime mover, said expander and said compressor, allowing the said electric machine to generate electricity.
  • 9. The apparatus according to claim 5 further comprising: an electric machine mechanically attached to the shafting interconnecting the said prime mover, said expander and said compressor, allowing the said electric machine to operate as a motor.
  • 10. The apparatus according to claim 9 further comprising: a clutch mechanically attached between the said electric machine and both the said prime mover and said expander, allowing the said prime mover and said expander to disconnect from the shaft driving the said compressor, and allow the said electric machine to drive the said compressor independently from the said prime mover and said expander.
  • 11. The apparatus according to claim 5 further comprising: an electric machine mechanically attached to the shafting interconnecting the said prime mover, said expander and said compressor, allowing the said electric machine to operate as an electrical generator and a motor.
  • 12. The apparatus according to claim 11 further comprising: a clutch mechanically attached between the said electric machine and both the said prime mover and said expander, allowing the said prime mover and said expander to disconnect from the shaft driving the said compressor, and allow the said electric machine to drive the said compressor independently from the said prime mover and said expander.
  • 13. The apparatus according to claim 5 further comprising: the said working fluid connected from the said liquid pump to the prime mover, to use the said working fluid as a coolant for the prime mover, the said working fluid, having cooled the prime mover, is connected to transfer to the inlet of the cold side of the said first heat exchanger.