When diagnosing and treating various bodily ailments, such as with patients suffering from shock or cardiovascular problems, medical personnel often find it desirable to measure or monitor a patient's blood pressure. By measuring and monitoring the blood pressure of these and other types of patients, medical personnel are better able to detect blood flow difficulties and other cardiovascular problems at an early stage. As a result, the use of blood pressure measurement and monitoring may increase the likelihood that a patient can be successfully treated or provided with needed emergency assistance.
A variety of methods is currently used for measuring and monitoring blood pressure. For example, medical personnel frequently use various indirect blood pressure measurement techniques, such as measuring a patient's blood pressure by using a pressure cuff and a stethoscope. In addition, blood pressure measurements are often made using a number of direct measurement and monitoring techniques. Notably, when diagnosing or treating critically ill patients, such direct techniques are often preferred over any of the indirect techniques. Direct blood pressure measurement and monitoring techniques are generally more accurate and facilitate the continuous monitoring of a patient's blood pressure on a beat-to-beat basis. Direct blood pressure monitoring also enables the rapid detection of a change in cardiovascular activity, and this may be of significant importance in emergency situations.
In at least some direct, invasive, blood pressure monitoring systems, a catheter is inserted into a patient's circulatory system with the end of the catheter having an opening to the blood stream, typically in a major or peripheral blood vessel. An IV set attaches to the proximal end of the catheter protruding from the patient so that a solution flows through the catheter and into the patient. The IV solution provides a fluid column through which pressure pulses are transmitted, and a pressure transducer positioned along the fluid column monitors those pressure pulses. Disposable blood pressure transducers (DPTs) that connect to a monitor are often used in the OR, ICU or CCU of a medical care facility. Due to the separable nature of the transducer and monitor, different transducers may be connected to any one monitor, as long as cable connectors' electrical interfaces are compatible.
Embodiments of the disclosed concepts provide a device that integrates multiple hemodynamic pressure transducers or sensors into a single device package. The sensor package can include a mounting substrate designed to be attached to a monitored subject and placed approximately near the heart of the subject. Stated differently, the device can be designed for precordial mounting to the subject so that pressure readings are substantially accurate and appropriately calibrated without “leveling” the sensors relative to a subject's heart using a separate support, and regardless of the subject's position. In some embodiments, the assembly, including all transducers, can be fed through a single lumen such as a tube to an IV bag.
A hemodynamic sensing device according to at least some embodiments includes a precordial mounting substrate and at least one pressure transducer configured to be attachable to the precordial mounting substrate while the precordial mounting substrate is secured to a subject such as a hospital patient. An electrical interface is provided for the at least one pressure transducer. The electrical interface is adapted to communicate an electrical signal from the at least one pressure transducer to a receiving device such as a bedside medical monitor. A lumen set can be configured to provide fluid to the at least one pressure transducer from subject's blood stream.
In at least some embodiments, the hemodynamic sensing device includes a plurality of pressure transducers. In some embodiments the pressure transducers or sensors are adapted to be selectively attachable to a mounting substrate. Alternatively, sensing devices having various numbers of sensors can be manufactured and selected as appropriate by medical personnel. In some embodiments, the hemodynamic sensing device includes a single feed lumen to provide fluid for the fluid columns for all of the plurality of pressure transducers, thus reducing the number of supply tubes necessary to use the device.
In some embodiments, the device includes a blood draw port connected to the lumen set so that routine blood testing can be carried out without creating an additional site on the subject being monitored. In at least some embodiments, the mounting substrate for the pressure transducers is or includes an adhesive pad for positioning on the subject's skin at or near the level of the heart. The integrated sensor device package can also include a fastening mechanism to mount the device to a subject's clothes instead of directly to the subject. In example embodiments, the electrical signaling to a receiving system or device can be provided through a cable either with or without a detachable connector, or through a wireless transmitter.
As previously mentioned, a device according to example embodiments can be provided in a modular form so that the requisite number of transducers can be assembled together in the field to meet individual need. Alternatively, sensor device packages can be pre-assembled. In either case, to use the device, a pressure sensor or pressure sensors can be attached to the mounting substrate, which is designed to be attached to a subject at approximately heart level. A sensor can be connected to an electrical interface to be operable to communicate an electrical signal to a receiving device, and a lumen set can be connected to be operable to maintain a fluid column between a pressure sensor and the subject. When used with an appropriate monitor, these components provide the means for medical personnel to monitor a patient's pressure at various points.
In some embodiments of the concepts disclosed herein, a single support substrate connects a plurality of pressure transducers together and provides for those transducers to be connected to an electrical interface to communicate electrical signals from the transducers to a receiving device. A lumen set is configurable to provide fluid to the plurality of pressure transducers from the subject's blood stream. In this manner, an integrated device can be provided so that medical personnel do not need to deal routinely with as many individual sensor devices and connections as might otherwise be the case. In some embodiments, the single support substrate is configured to be precordially mounted. The integrated hemodynamic sensing device can include a plurality of pressure transducers that are adapted to be selectively attachable to the single support substrate.
The term “sensor” as used herein relates to a device, component, or region of a device capable of detecting, quantifying, or qualifying a sensed physical property in the body of a subject. A disposable pressure transducer (DPT) is a sensor that typically includes an identifier that can be detected by an associated monitor such that the monitor recognizes the characteristics of the device. If the monitor recognizes the type of DPT as compatible, it can proceed with the pressure measurement. The term “substrate” is meant in a broad sense in that the term is intended to not only encompass a flat article onto which sensors or sensor housings can be fixed, but also a housing which may cover all the sensors or sensor assemblies to integrate them into a single device package and provide a means for operatively connecting a plurality of pressure transducers together to form an integrated device.
A pressure transducer is a sensor capable of sensing or determining a pressure such as the fluid pressure within a lumen leading out of the body from an arterial catheter, and converting such pressure to a signal that can be communicated to a receiving device such as a monitor or display. A number of such pressure transducers are known. None are specifically required and many could be used in an embodiment of the concepts described herein. Blood pressure can be sensed directly (i.e., via direct physical contact with blood or IV fluid) or indirectly (i.e., optically or at a pulse point through the skin). For example, catheter-based fluid pressure transducers in direct contact with arterial blood or a fluid column in contact with arterial blood are presently accepted as standard practice in the OR, ICU or CCU, though less-invasive techniques such as external piezo-electric sensors in contact with the skin are available.
With some embodiments of the disclosed concepts, an IV set attaches to the proximal end of the catheter protruding from the patient so that a solution flows through the catheter and into the patient. The IV solution provides the fluid column through which pressure pulses are transmitted, and a pressure transducer positioned along the fluid column senses the changing pressure to provide hemodynamic monitoring. Generally, the pressure transducer can consist of a dome that functions as a reservoir for the IV fluid. The dome includes a resilient diaphragm that attaches to an electrical transducer component. The transducer senses pressure fluctuations in the diaphragm and converts them into electrical signals, which are then transmitted through a cable to a receiving device such as a monitor for amplification and display. A single silicon chip inside the transducer can include both the pressure diaphragm and the measuring circuitry of the pressure transducer. Since such silicon chips can be cheaply mass-produced, the total cost of pressure transducers is such that the transducer may be economically disposable. The cable includes a connector so that the transducer and associated portion of the cable can be discarded after use, whereas the mating connector and cable hard-wired to the monitor can be reused. Such disposable blood pressure transducers (DPTs) are the standard of care in the OR, ICU or CCU. Compatibility of a DPT with a given receiving system is assured through the use of standards. For example, the International Electrotechnical Commission includes a standard for the DPT interface, IEC 60601-2-34.
In order to maintain accuracy in pressure readings from pressure transducers that sense pressure in a fluid column as described above, siphonic pressure differences between the patients circulatory system and the sensor must be minimized. This can be practically accomplished by “zeroing” or “leveling” the pressure transducer so that it is physically at the same or at least substantially the same level as the subject's heart.
There is often a need to monitor pressure at various locations in the body. Thus multiple fluid columns are provided via a lumen set, which may be implemented by a plurality of plastic IV tubes. The sensors with the IV tubes attached can be mounted on a movable bracket that is manually adjusted when the patient moves or is moved by medical personnel. Alternatively, embodiments of the concepts disclosed below can provide a system where the transducers self level by automatically moving with the monitored subject. A device that includes the sensors and the mechanism for leveling the sensors may be called herein a “pressure sensing” device, a “blood pressure sensing” device, a “hemodynamic monitoring” device, a “pressure monitoring” device, or any other similar term may be used.
Still referring to
Still referring to
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US15/57225 | 10/23/2015 | WO | 00 |