Integrated receiver for continuous analyte sensor

Information

  • Patent Grant
  • 11564602
  • Patent Number
    11,564,602
  • Date Filed
    Wednesday, November 9, 2016
    7 years ago
  • Date Issued
    Tuesday, January 31, 2023
    a year ago
Abstract
A system is provided for monitoring glucose in a host, including a continuous glucose sensor that produces a data stream indicative of a host's glucose concentration and an integrated receiver that receives the data stream from the continuous glucose sensor and calibrates the data stream using a single point glucose monitor that is integral with the integrated receiver. The integrated receiver obtains a glucose value from the single point glucose monitor, calibrates the sensor data stream received from the continuous glucose sensor, and displays one or both of the single point glucose measurement values and the calibrated continuous glucose sensor values on the user interface.
Description
FIELD OF THE INVENTION

The present invention relates generally to systems and methods for monitoring glucose in a host. Particularly, a device for continuous glucose sensing is provided with an integrated receiver for single point glucose measurement and subsequent calibration of the continuous glucose sensor within the device.


BACKGROUND OF THE INVENTION

A variety of continual and continuous glucose sensors have been developed for detecting and/or quantifying analytes in a biological fluid sample, for example, glucose sensors that continually or continuously measure glucose concentration in a host. Typically, these glucose sensors require a reference glucose measurement with which to calibrate the sensor-measured glucose values. Additionally, long-term implantable glucose sensors typically request regular updates of calibration, for example new reference glucose values every day, week, or month. Accordingly, a user has typically been required to keep track of and even stay close to (for example, carry) a device associated with the continuous glucose sensor that receives and processes data from the continuous glucose sensor. Additionally, a user has typically been required to carry a separate device that provides a reference glucose value for calibration of the continuous glucose sensor. Many times additional hardware, such as cables, test strips, and other auxiliary devices are necessary to connect, test, and otherwise use the devices. Therefore, the use of a continuous device can be cumbersome, particularly when the user is away from home.


Furthermore, continuous sensors have conventionally been calibrated using a reference glucose monitor that uses different measurement technology than that of the continuous sensor, which can increase the error within the calibrated sensor values. For example, an implantable glucose sensor that contains a membrane containing glucose oxidase is typically calibrated using self-monitoring blood glucose (SMBG) test strip-based measurement values. Unfortunately, such SMBG tests have an error of ±20% and additionally cannot be calibrated by the user. Furthermore, because the reference measurement device (for example, SMBG) is independent from the continuous glucose sensor, the possibility of accuracy in reporting time of SMGB can be prone to human error.


SUMMARY OF THE INVENTION

A continuous glucose sensor that includes simpler or fewer components than prior art sensors, that is user friendly, that exhibits reduced error within the calibrated sensor values, and/or is less prone to human error is desirable.


Accordingly, in a first embodiment, a device for monitoring glucose concentration in a biological sample of a host is provided, the device comprising a continuous glucose sensor that produces a data stream indicative of a host's glucose concentration; an integrated receiver that receives the data stream from the continuous glucose sensor, wherein the integrated receiver comprises a microprocessor comprising programming to process the data stream received from glucose sensor; and a single point glucose monitor adapted to receive a biological sample from the host and measure the concentration of glucose in the sample; wherein the microprocessor further comprises programming to calibrate the data stream using the glucose concentration measured by the single point glucose monitor.


In an aspect of the first embodiment, the continuous glucose sensor comprises a sensing membrane comprising an enzyme; and an electrochemical cell that measures the glucose concentration.


In an aspect of the first embodiment, the single point glucose monitor comprises a sensing membrane comprising an enzyme; and an electrochemical cell that measures a concentration of glucose in the sample.


In an aspect of the first embodiment, the integrated receiver further comprises a user interface for displaying glucose concentration data from at least one of the continuous glucose sensor and the single point glucose monitor.


In a second embodiment, a method for calibrating a continuous glucose sensor in an integrated receiver is provided, the method comprising continually receiving a data stream in the integrated receiver from a continuous glucose sensor; measuring a glucose concentration of a biological sample using a single point glucose monitor integral with the integrated receiver; and calibrating the data stream within the integrated receiver using the glucose concentration measured by the single point glucose monitor.


In an aspect of the second embodiment, the method further comprises the step of displaying the glucose concentration measured by the single point glucose monitor.


In an aspect of the second embodiment, the method further comprises the step of displaying a calibrated data stream.


In a third embodiment, a device for calibrating continuous glucose sensor data is provided, the device comprising a single point glucose monitor adapted to measure a glucose concentration in a biological sample; a receiver for receiving a data stream from a continuous glucose sensor; a microprocessor comprising programming to calibrate the data stream from the continuous glucose sensor using the glucose concentration measured from the single point glucose monitor.


In an aspect of the third embodiment, the continuous glucose sensor comprises a sensing membrane comprising an enzyme; and an electrochemical cell that measures the glucose concentration.


In an aspect of the third embodiment, the single point glucose monitor comprises a sensing membrane comprising an enzyme; and an electrochemical cell that measures the glucose concentration in the biological sample.


In an aspect of the third embodiment, the device further comprises a user interface adapted to display glucose data from at least one of the continuous glucose sensor and the single point glucose monitor.


In an aspect of the third embodiment, the glucose monitor comprises a sensing region comprising a sensing membrane and at least two electrodes, wherein the sensing region is located within the integrated receiver.


In an aspect of the third embodiment, the integrated receiver comprises a removable cartridge, and wherein the sensing region is located within the removable cartridge.


In an aspect of the third embodiment, the integrated receiver comprises a housing, and wherein the glucose monitor comprises a sensing region movably mounted to the integrated receiver housing.


In an aspect of the third embodiment, the device further comprises a stylus movably mounted to the integrated receiver housing, and wherein the sensing region is located on the stylus.


In an aspect of the third embodiment, the device further comprises a receiving chamber located within the integrated receiver housing, and wherein the stylus is received within the receiving chamber for storage.


In an aspect of the third embodiment, the device further comprises a sterile solution chamber located at an end of the receiving chamber such that the sensing region is operably associated with the sterile solution chamber when the stylus is received within the receiving chamber for storage.


In an aspect of the third embodiment, the device further comprises a sterile solution port configured for refilling the sterile solution chamber with a sterile solution.


In an aspect of the third embodiment, the device further comprises a dispensing chamber located in the integrated receiver housing, the dispensing chamber adapted to dispense at least one disposable bioprotective film onto the sensing region.


In an aspect of the third embodiment, the device further comprises a storage chamber located in the integrated receiver housing, the storage chamber adapted to store the disposable bioprotective film.


In an aspect of the third embodiment, the device further comprises a shuttle mechanism located on the integrated receiver housing, the shuttle mechanism adapted to load the disposable bioprotective film into the dispensing chamber.


In an aspect of the third embodiment, the device further comprises at least one bioprotective film that is adapted to stretch or stick onto the sensing region to protect the sensing region from damage, clogging, or contamination from a biological fluid.


In an aspect of the third embodiment, the bioprotective film further comprises a sensing membrane comprising an enzyme.


In an aspect of the third embodiment, the sensing region comprises a sensing membrane and at least two electrodes, wherein the sensing membrane is disposed over the electrodes adapted for measuring a glucose concentration in a biological sample.


In an aspect of the third embodiment, the single point glucose monitor comprises a sensor port that houses a sensing region adapted for measuring a glucose concentration in the biological sample.


In an aspect of the third embodiment, the device further comprises a disposable capillary tube, wherein the capillary tube is configured to create a capillary action capable of drawing a liquid biological sample from a first end of the tube to a second end of the tube.


In an aspect of the third embodiment, the capillary tube comprises a filter configured to permit passage of glucose, but to filter or block passage of an undesired species or a contaminating species in the biological sample.


In an aspect of the third embodiment, the capillary tube further comprises a vent configured to allow displaced air within the capillary tube to escape therefrom.


In an aspect of the third embodiment, n the sensor port comprises a cover adapted for protecting the sensing region.


In an aspect of the third embodiment, the disposable capillary tube comprises a sensing membrane, wherein the sensing membrane comprises a resistance domain, an enzyme domain, an interference domain, and an electrolyte domain.


In an aspect of the third embodiment, the single point glucose monitor and the receiver are detachably connected to each other.


In an aspect of the third embodiment, the single point glucose monitor and the receiver each comprise at least one contact adapted for operable connection when detachably connected to each other.


In an aspect of the third embodiment, the microprocessor is located within the receiver.


In an aspect of the third embodiment, the device further comprises a microprocessor located within the single point glucose monitor, wherein the microprocessor is adapted for communication between the single point glucose monitor and the receiver when the single point glucose monitor contact and the receiver contact are operably connected.


In a fourth embodiment, a device for monitoring a glucose concentration in a biological sample in a host is provided, the device comprising a continuous glucose sensor configured to produce a data stream indicative of a glucose concentration in a biological sample of a host, wherein the glucose sensor comprises a sensing membrane comprising a catalyst, wherein the membrane is operably associated with at least two electrodes that are operably connected to an electrical circuit adapted for continuous glucose sensing; a single point glucose monitor configured to produce a glucose concentration measurement from a biological sample obtained from a host, wherein the glucose monitor comprises a sensing membrane comprising a catalyst, wherein the membrane is operably associated with at least two electrodes that are operably connected to an electrical circuit adapted for measuring the glucose concentration in the biological sample; a receiver integral with the single point glucose monitor adapted to receive a data stream from the continuous glucose sensor; and a microprocessor integral with the single point glucose monitor that comprises programming to calibrate the data stream from the continuous glucose sensor using the glucose concentration measurement from the single point glucose monitor.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram that illustrates an integrated receiver in one embodiment in wireless communication with a continuous glucose sensor.



FIG. 2A is an exploded perspective view of one exemplary embodiment of a continuous glucose sensor.



FIG. 2B is an expanded view of an alternative exemplary embodiment of a continuous glucose sensor, illustrating the in vivo portion of the sensor.



FIG. 3 is a block diagram that illustrates the continuous glucose sensor electronics in one embodiment.



FIG. 4A is a perspective view of an integrated receiver in one embodiment showing a single point glucose monitor in its closed position.



FIG. 4B is an exploded perspective view of the integrated receiver of FIG. 4A showing the single point glucose monitor with a cover removed.



FIG. 5A is a perspective view of an integrated receiver housing in another embodiment, showing a single point glucose monitor including a stylus movably mounted to the integrated receiver, wherein the stylus is shown in a storage position.



FIG. 5B is a perspective view of the integrated housing of FIG. 5A, showing the stylus in a testing position.



FIG. 5C is a perspective view of a portion of the stylus of FIG. 5A, showing the sensing region.



FIG. 5D is a perspective view of the integrated receiver housing of FIG. 5A, showing the stylus loaded with a disposable film, and in its testing position.



FIG. 5E is a perspective view of a portion of the stylus of FIG. 5A, showing the sensing region with a disposable film stretched and/or disposed thereon for receiving a biological sample.



FIG. 6A is a perspective view of an integrated receiver in yet another embodiment, including a single point glucose monitor and a disposable capillary tube for transferring a biological sample to a sensing region on the monitor.



FIG. 6B is a perspective view of the integrated receiver of FIG. 6A, showing the disposable capillary tube inserted into the single point glucose monitor to transfer the biological sample to a sensing region on the single point glucose monitor.



FIG. 6C is an expanded perspective view of a portion of the integrated receiver of FIG. 6A, showing the capillary tube inserted into the single point glucose monitor.



FIG. 6D is a schematic cross-sectional view of a capillary tube and a portion of the integrated receiver of FIG. 6A, illustrating the capillary tube in contact with the sensing membrane such that glucose from the biological sample can be measured by electrodes on the sensing region.



FIG. 6E is a schematic cross-sectional view of the capillary tube of FIG. 6A, illustrating an embodiment wherein a filter is located on one end.



FIG. 6F is a schematic cross-sectional view of the capillary tube of FIG. 6A, illustrating an embodiment wherein a filter is disposed within a wall of the capillary tube.



FIG. 6G is a schematic cross-sectional view of the capillary tube of FIG. 6A, illustrating an embodiment wherein a vent extends from the capillary tube.



FIG. 6H is a schematic illustration of one embodiment, wherein the capillary tube is round in shape with an inner capillary tube that is also round in shape.



FIG. 6I is a schematic illustration of one embodiment, wherein the capillary tube is rectangular in shape with an inner capillary tube that is formed therein.



FIG. 6J is a schematic illustration of one embodiment, wherein the capillary tube is rectangular in shape an inner capillary tube has a rounded structure.



FIG. 7A is a perspective view of an integrated receiver in yet another embodiment, wherein the single point glucose monitor is detachably connected to the receiver to form a modular configuration, shown in its attached state.



FIG. 7B is a perspective view of the integrated receiver of FIG. 7A, shown in its detached state.



FIG. 8 is a block diagram that illustrates integrated receiver electronics in one embodiment.



FIG. 9 is a flow chart that illustrates the process of initial calibration of the continuous glucose sensor and data output of the integrated receiver in one embodiment.



FIG. 10 is a graph that illustrates one exemplary embodiment of a regression performed on a calibration set to create a conversion function.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The following description and examples illustrate some exemplary embodiments of the disclosed invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a certain exemplary embodiment should not be deemed to limit the scope of the present invention.


Definitions

In order to facilitate an understanding of the preferred embodiments, a number of terms are defined below.


The term “continuous glucose sensor,” as used herein, is a broad term and are used in its ordinary sense, including, without limitation, a device that continuously or continually measures glucose concentration, for example, at time intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes, or longer. It should be understood that continuous glucose sensors can continually or continuously measure glucose concentration without requiring user initiation and/or interaction for each measurement, such as described with reference to U.S. Pat. No. 6,001,067, for example.


The phrase “continuous glucose sensing,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the period in which monitoring of plasma glucose concentration is continuously or continually performed, for example, at time intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes, or longer.


The term “single point glucose monitor,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a device that can be used to measure a glucose concentration within a host at a single point in time, for example, some embodiments utilize a small volume in vitro glucose monitor that includes an enzyme membrane such as described with reference to U.S. Pat. Nos. 4,994,167 and 4,757,022. It should be understood that single point glucose monitors can measure multiple samples (for example, blood or interstitial fluid); however only one sample is measured at a time and typically requires some user initiation and/or interaction.


The term “capillary action,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the phenomenon of a liquid, such as water or blood, spontaneously creeping up a thin tube or fiber due to adhesive or cohesive forces or surface tension.


The term “biological sample,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, sample of a host body, for example blood, interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like.


The term “host,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, mammals such as humans.


The term “biointerface membrane,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a permeable or semi-permeable membrane that can include two or more domains and is typically constructed of materials of a few microns thickness or more, which can be placed over the sensing region to keep host cells (for example, macrophages) from gaining proximity to, and thereby damaging the sensing membrane or forming a barrier cell layer and interfering with the transport of glucose across the tissue-device interface.


The term “sensing membrane,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a permeable or semi-permeable membrane that can be comprised of two or more domains and is typically constructed of materials of a few microns thickness or more, which are permeable to oxygen and are optionally permeable to glucose. In one example, the sensing membrane comprises an immobilized glucose oxidase enzyme, which enables an electrochemical reaction to occur to measure a concentration of glucose.


The term “domain,” as used herein is a broad term and is used in its ordinary sense, including, without limitation, regions of a membrane that can be layers, uniform or non-uniform gradients (for example, anisotropic), functional aspects of a material, or provided as portions of the membrane.


As used herein, the term “copolymer,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, polymers having two or more different repeat units and includes copolymers, terpolymers, tetrapolymers, etc.


The term “sensing region,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the region of a monitoring device responsible for the detection of glucose. In one embodiment, the sensing region generally comprises a non-conductive body, a working electrode (anode), a reference electrode and a counter electrode (cathode) passing through and secured within the body forming an electrochemically reactive surface at one location on the body and an electronic connection at another location on the body, and a sensing membrane affixed to the body and covering the electrochemically reactive surface. During general operation of the sensor a biological sample (for example, blood or interstitial fluid) or a portion thereof contacts (for example, directly or after passage through one or more domains of the sensing membrane) an enzyme (for example, glucose oxidase); the reaction of the biological sample (or portion thereof) results in the formation of reaction products that allow a determination of the glucose level in the biological sample.


The term “electrochemically reactive surface,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the surface of an electrode where an electrochemical reaction takes place. In the case of an electrochemical glucose sensor, hydrogen peroxide produced by an enzyme catalyzed reaction of the glucose being detected reacts at a working electrode creating a measurable electronic current (for example, detection of glucose utilizing glucose oxidase produces H2O2 as a by product, H2O2 reacts with the surface of the working electrode producing two protons (2H+), two electrons (2e) and one molecule of oxygen (O2) which produces the electronic current being detected). In the case of the counter electrode, a reducible species (for example, O2) is reduced at the electrode surface in order to balance the current being generated by the working electrode.


The term “electrochemical cell,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a device in which chemical energy is converted to electrical energy. Such a cell typically consists of two or more electrodes held apart from each other and in contact with an electrolyte solution. Connection of the electrodes to a source of direct electric current renders one of them negatively charged and the other positively charged. Positive ions in the electrolyte migrate to the negative electrode (cathode) and there combine with one or more electrons, losing part or all of their charge and becoming new ions having lower charge or neutral atoms or molecules; at the same time, negative ions migrate to the positive electrode (anode) and transfer one or more electrons to it, also becoming new ions or neutral particles. The overall effect of the two processes is the transfer of electrons from the negative ions to the positive ions, a chemical reaction.


The term “proximal” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, near to a point of reference such as an origin or a point of attachment. For example, in some embodiments of a sensing membrane that covers an electrochemically reactive surface, the electrolyte domain is located more proximal to the electrochemically reactive surface than the interference domain.


The term “distal” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, spaced relatively far from a point of reference, such as an origin or a point of attachment. For example, in some embodiments of a sensing membrane that covers an electrochemically reactive surface, a resistance domain is located more distal to the electrochemically reactive surfaces than the enzyme domain.


The term “substantially” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, being largely but not necessarily wholly that which is specified.


The terms “microprocessor” and “processor,” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, a computer system or state machine designed to perform arithmetic and logic operations using logic circuitry that responds to and processes the basic instructions that drive a computer.


The term “EEPROM,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, electrically erasable programmable read-only memory, which is user-modifiable read-only memory (ROM) that can be erased and reprogrammed (for example, written to) repeatedly through the application of higher than normal electrical voltage.


The term “SRAM,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, static random access memory (RAM) that retains data bits in its memory as long as power is being supplied.


The term “A/D Converter,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, hardware and/or software that converts analog electrical signals into corresponding digital signals.


The term “RF transceiver,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a radio frequency transmitter and/or receiver for transmitting and/or receiving signals.


The terms “raw data stream” and “data stream,” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, an analog or digital signal directly related to the measured glucose from the glucose sensor. In one example, the raw data stream is digital data in “counts” converted by an A/D converter from an analog signal (for example, voltage or amps) representative of a glucose concentration. The terms broadly encompass a plurality of time spaced data points from a substantially continuous glucose sensor, which comprises individual measurements taken at time intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes or longer.


The term “counts,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a unit of measurement of a digital signal. In one example, a raw data stream measured in counts is directly related to a voltage (for example, converted by an A/D converter), which is directly related to current from the working electrode. In another example, counter electrode voltage measured in counts is directly related to a voltage.


The term “electronic circuitry,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the components (for example, hardware and/or software) of a device configured to process data. In the case of a glucose-measuring device, the data includes biological information obtained by a sensor regarding a particular glucose in a biological fluid, thereby providing data regarding the amount of that glucose in the fluid. U.S. Pat. Nos. 4,757,022, 5,497,772 and 4,787,398, which are hereby incorporated by reference, describe suitable electronic circuits that can be utilized with devices of the preferred embodiments.


The term “potentiostat,” as used herein, is a broad term and is used in its ordinary sense, including, but not limited to, an electrical system that applies a potential between the working and reference electrodes of a two- or three-electrode cell at a preset value and measures the current flow through the working electrode. The potentiostat forces whatever current is necessary to flow between the working and reference (2 electrode) or counter (3 electrode) electrodes to keep the desired potential, as long as the needed cell voltage and current do not exceed the compliance limits of the potentiostat.


The term “electrical potential,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the electrical potential difference between two points in a circuit which is the cause of the flow of a current.


The terms “operably connected” and “operably linked,” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, one or more components being linked to another component(s) in a manner that allows transmission of signals between the components. For example, one or more electrodes can be used to detect the amount of glucose in a sample and convert that information into a signal. The signal can then be transmitted to an electronic circuit. In this case, the electrode is “operably linked” to the electronic circuit. These terms are broad enough to include wireless connectivity.


The term “linear regression,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, finding a line in which a set of data has a minimal measurement from that line. Byproducts of this algorithm include a slope, a y-intercept, and an R-Squared value that determine how well the measurement data fits the line.


The term “non-linear regression,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, fitting a set of data to describe the relationship between a response variable and one or more explanatory variables in a non-linear fashion.


Overview



FIG. 1 is a perspective view of a device in one embodiment including a continuous glucose sensor and an integrated receiver that has a single point glucose monitor thereon. The continuous glucose sensor 10 continuously measures glucose concentration in a host to provide a data stream representative of the host's glucose concentration, such as described in more detail below with reference to FIGS. 2 and 3. In general, the integrated receiver 12 includes a single point glucose monitor 14, electronic circuitry that processes data from the continuous glucose sensor 10 and the single point glucose monitor 14, and a user interface 16 that displays glucose data to a user, all of which are described in more detail with reference to FIGS. 4 to 10. Wireless transmissions 18 allow communication between the glucose sensor 10 and the integrated receiver 12, for example, so that the integrated receiver 12 can receive a data stream from the continuous glucose sensor 10.


Continuous Glucose Sensor


The preferred embodiments provide a continuous glucose sensor that measures a concentration of glucose or a substance indicative of the concentration or presence of the glucose. In some embodiments, the glucose sensor is an invasive, minimally-invasive, or non-invasive device, for example a subcutaneous, transdermal, or intravascular device. In some embodiments, the device can analyze a plurality of intermittent biological samples. The glucose sensor can use any method of glucose-measurement, including enzymatic, chemical, physical, electrochemical, spectrophotometric, polarimetric, calorimetric, radiometric, or the like. In alternative embodiments, the sensor can be any sensor capable of determining the level of an analyte in the body, for example oxygen, lactase, hormones, cholesterol, medicaments, viruses, or the like.


The glucose sensor uses any known method to provide an output signal indicative of the concentration of the glucose. The output signal is typically a raw data stream that is used to provide a useful value of the measured glucose concentration to a patient or doctor, for example.


One exemplary embodiment is described in detail below, which utilizes an implantable glucose sensor. However, it should be understood that the devices and methods described herein can be applied to any device capable of continually or continuously detecting a concentration of analyte of interest and providing an output signal that represents the concentration of that analyte.



FIG. 2A is an exploded perspective view of one exemplary embodiment of a continuous glucose sensor 10a. In this embodiment, the sensor is preferably wholly implanted into the subcutaneous tissue of a host, such as described in patent application Ser. No. 10/885,476 filed Jul. 6, 2004 and entitled “SYSTEMS AND METHODS FOR MANUFACTURE OF AN ANALYTE-MEASURING DEVICE INCLUDING A MEMBRANE SYSTEM”; U.S. patent application Ser. No. 10/838,912 filed May 3, 2004 and entitled, “IMPLANTABLE ANALYTE SENSOR”; U.S. patent application Ser. No. 10/789,359 filed Feb. 26, 2004 and entitled, “INTEGRATED DELIVERY DEVICE FOR A CONTINUOUS GLUCOSE SENSOR”; U.S. application Ser. No. 10/646,333 filed Aug. 22, 2003 entitled, “OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR”; U.S. application Ser. No. 10/633,367 filed Aug. 1, 2003 entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; and U.S. Pat. No. 6,001,067 issued Dec. 14, 1999 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”, each of which are incorporated herein by reference in their entirety. In this exemplary embodiment, a body 20 and a sensing region 21 house the electrodes 22 and sensor electronics (FIG. 3). The three electrodes 22 are operably connected to the sensor electronics (FIG. 3) and are covered by a sensing membrane 23 and a biointerface membrane 24, which are attached by a clip 25.


In one embodiment, the three electrodes 22 include a platinum working electrode, a platinum counter electrode, and a silver/silver chloride reference electrode. The top ends of the electrodes are in contact with an electrolyte phase (not shown), which is a free-flowing fluid phase disposed between the sensing membrane 23 and the electrodes 22. The sensing membrane 23 includes an enzyme, for example, glucose oxidase, and covers the electrolyte phase. The biointerface membrane 24 covers the sensing membrane 23 and serves, at least in part, to protect the sensor 10a from external forces that can result in environmental stress cracking of the sensing membrane 23. Copending U.S. patent application Ser. No. 10/647,065, entitled, “POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES,” describes a biointerface membrane that can be used in conjunction with the preferred embodiments, and is incorporated herein by reference in its entirety.


In one embodiment, the biointerface membrane 24 generally includes a cell disruptive domain most distal from the electrochemically reactive surfaces and a cell impermeable domain less distal from the electrochemically reactive surfaces than the cell disruptive domain. The cell disruptive domain is preferably designed to support tissue ingrowth, disrupt contractile forces typically found in a foreign body response, encourage vascularity within the membrane, and disrupt the formation of a barrier cell layer. The cell impermeable domain is preferably resistant to cellular attachment, impermeable to cells, and composed of a biostable material.


In one embodiment, the sensing membrane 23 generally provides one or more of the following functions: 1) protection of the exposed electrode surface from the biological environment, 2) diffusion resistance (limitation) of the analyte, 3) a catalyst for enabling an enzymatic reaction, 4) limitation or blocking of interfering species, and 5) hydrophilicity at the electrochemically reactive surfaces of the sensor interface, such as described in U.S. patent application Ser. No. 10/838,912, filed May 3, 2004 and entitled “IMPLANTABLE ANALYTE SENSOR,” which is incorporated herein by reference in its entirety. Accordingly, the sensing membrane 23 preferably includes a plurality of domains or layers, for example, an electrolyte domain, an interference domain, an enzyme domain (for example, glucose oxidase), a resistance domain, and can additionally include an oxygen domain (not shown), and/or a bioprotective domain (not shown), such as described in more detail in the above-cited U.S. patent application Ser. No. 10/838,912. However, it is understood that a sensing membrane modified for other devices, for example, by including fewer or additional domains is within the scope of the preferred embodiments.


In some embodiments, the domains of the biointerface and sensing membranes are formed from materials such as silicone, polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyurethanes, cellulosic polymers, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers. U. S. patent application Ser. No. 10/838,912, which is incorporated herein by reference in its entirety, describes biointerface and sensing membrane configurations and materials that can be applied to the preferred embodiments.


In the illustrated embodiment, the counter electrode is provided to balance the current generated by the species being measured at the working electrode. In the case of a glucose oxidase based glucose sensor, the species being measured at the working electrode is H2O2. Glucose oxidase catalyzes the conversion of oxygen and glucose to hydrogen peroxide and gluconate according to the following reaction:

Glucose+O2→Gluconate+H2O2


The change in H2O2 can be monitored to determine glucose concentration because for each glucose molecule metabolized, there is a proportional change in the product H2O2. Oxidation of H2O2 by the working electrode is balanced by reduction of ambient oxygen, enzyme generated H2O2, or other reducible species at the counter electrode. The H2O2 produced from the glucose oxidase reaction further reacts at the surface of working electrode and produces two protons (2H+), two electrons (2e), and one oxygen molecule (O2).


In one embodiment, a potentiostat is employed to monitor the electrochemical reaction at the electrochemical cell. The potentiostat applies a constant potential to the working and reference electrodes to determine a current value. The current that is produced at the working electrode (and flows through the circuitry to the counter electrode) is substantially proportional to the amount of H2O2 that diffuses to the working electrode. Accordingly, a raw signal can be produced that is representative of the concentration of glucose in the user's body, and therefore can be utilized to estimate a meaningful glucose value, such as described herein.



FIG. 2B is an expanded view of an alternative exemplary embodiment of a continuous glucose sensor, illustrating the in vivo portion of the sensor. U.S. Provisional Application 60/587,787, filed Jul. 13, 2004 and U.S. Provisional Application 60/614,683, filed Sep. 30, 2004, describe systems and methods suitable for the transcutaneous sensor of the illustrated embodiment; however, one skilled in the art appreciates a variety of transcutaneous sensors that can benefit from the integrated receiver of the preferred embodiments.


In this embodiment, the in vivo portion of the sensor 10b is the portion adapted for insertion under the host's skin, while an ex vivo portion of the sensor 10b is the portion that remains above the host's skin after sensor insertion and operably connects to an electronics unit (not shown). The sensor 10b two or more electrodes: a working electrode 26 and at least one additional electrode 28, which can function as a counter and/or reference electrode, hereinafter referred to as the reference electrode. Each electrode is formed from a fine wire, with a diameter in the range of 0.001 to 0.010 inches, for example, and can be formed from plated wire or bulk material.


In one embodiment, the working electrode 26 comprises a wire formed from a conductive material, such as platinum, palladium, graphite, gold, carbon, conductive polymer, or the like. The working electrode 26 is configured and arranged to measure the concentration of an analyte. The working electrode 20 is covered with an insulating material, for example a non-conductive polymer. Dip-coating, spray-coating, or other coating or deposition techniques can be used to deposit the insulating material on the working electrode, for example. In one preferred embodiment, the insulating material comprises Parylene, which can be an advantageous conformal coating for its strength, lubricity, and electrical insulation properties, however, a variety of other insulating materials can be used, for example, fluorinated polymers, polyethyleneterephthalate, polyurethane, polyimide, or the like.


The reference electrode 28, which can function as a reference electrode alone, or as a dual reference and counter electrode, is formed from silver, Silver/Silver chloride, or the like. In one embodiment, the reference electrode 28 is formed from a flat wire with rounded edges in order to decrease sharp edges and increase host comfort. Preferably, the reference electrode 28 is juxtapositioned and/or twisted with or around the working electrode 26; however other configurations are also possible. In some embodiments, the reference electrode 28 is helically wound around the working electrode 26 (see FIG. 2B). The assembly of wires is then optionally coated together with an insulating material, similar to that described above, in order to provide an insulating attachment. Some portion of the coated assembly structure is then stripped, for example using an excimer laser, chemical etching, or the like, to expose the necessary electroactive surfaces. In one implementation, a window 28 is formed on the insulating material to expose an electroactive surface of the working electrode and at least some edges of the sensor are stripped to expose sections of electroactive surface on the reference electrode. Other methods and configurations for exposing electroactive surfaces are also possible, for example by exposing the surfaces of the working electrode 26 between the coils of the reference electrode 28. In some alternative embodiments, additional electrodes can be included within the assembly, for example, a three-electrode system (working, reference, and counter electrodes) and/or including an additional working electrode (which can be used to generate oxygen, configured as a baseline subtracting electrode, or configured for measuring additional analytes, for example).


A sensing membrane (not shown) is deposited over the electroactive surfaces of the sensor 10b (working electrode and optionally reference electrode) and includes a plurality of domains or layers, such as described above, with reference to FIG. 2A. The sensing membrane can be deposited on the exposed electroactive surfaces using known thin film techniques (for example, spraying, electro-depositing, dipping, or the like). In one exemplary embodiment, each domain is deposited by dipping the sensor into a solution and drawing out the sensor at a speed that provides the appropriate domain thickness. In general, the membrane system can be disposed over (deposited on) the electroactive surfaces using methods appreciated by one skilled in the art.


In the illustrated embodiment, the sensor glucose oxidase electrochemical sensor, wherein the working electrode 26 measures the hydrogen peroxide produced by an enzyme catalyzed reaction of the analyte being detected and creates a measurable electronic current (for example, detection of glucose utilizing glucose oxidase produces H2O2 peroxide as a by product, H2O2 reacts with the surface of the working electrode producing two protons (2H+), two electrons (2e) and one molecule of oxygen (O2) which produces the electronic current being detected), such as described in more detail above and as is appreciated by one skilled in the art.



FIG. 3 is a block diagram that illustrates the continuous glucose sensor electronics in one embodiment. In this embodiment, a potentiostat 30 is shown, which is operably connected to electrodes 24a (FIG. 2) or 24b (FIG. 3) to obtain a current value, and includes a resistor (not shown) that translates the current into voltage. An A/D converter 32 digitizes the analog signal into “counts” for processing. Accordingly, the resulting raw data stream in counts is directly related to the current measured by the potentiostat 30.


A microprocessor 34 is the central control unit that houses EEPROM 36 and SRAM 38, and controls the processing of the sensor electronics. Certain alternative embodiments can utilize a computer system other than a microprocessor to process data as described herein. In other alternative embodiments, an application-specific integrated circuit (ASIC) can be used for some or all the sensor's central processing. The EEPROM 36 provides semi-permanent storage of data, for example, storing data such as sensor identifier (ID) and programming to process data streams (for example, programming for data smoothing and/or replacement of signal artifacts such as described in U.S. patent application entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM,” filed Aug. 22, 2003). The SRAM 38 can be used for the system's cache memory, for example for temporarily storing recent sensor data. In some alternative embodiments, memory storage components comparable to EEPROM and SRAM can be used instead of or in addition to the preferred hardware, such as dynamic RAM, non-static RAM, rewritable ROMs, flash memory, or the like.


A battery 40 is operably connected to the microprocessor 34 and provides the necessary power for the sensor 10. In one embodiment, the battery is a Lithium Manganese Dioxide battery, however any appropriately sized and powered battery can be used (for example, AAA, Nickel-cadmium, Zinc-carbon, Alkaline, Lithium, Nickel-metal hydride, Lithium-ion, Zinc-air, Zinc-mercury oxide, Silver-zinc, and/or hermetically-sealed). In some embodiments the battery is rechargeable. In some embodiments, a plurality of batteries can be used to power the system. A Quartz Crystal 42 is operably connected to the microprocessor 34 and maintains system time for the computer system as a whole.


An RF Transceiver 44 is operably connected to the microprocessor 34 and transmits the sensor data from the sensor 10 to a receiver (see FIGS. 4 to 8) within a wireless transmission 46 via antenna 48. Although an RF transceiver is shown here, some other embodiments can include a wired rather than wireless connection to the receiver. In yet other embodiments, the receiver can be transcutaneously powered via an inductive coupling, for example. A second quartz crystal 50 provides the system time for synchronizing the data transmissions from the RF transceiver. The transceiver 44 can be substituted with a transmitter in other embodiments. In some alternative embodiments other mechanisms such as optical, infrared radiation (IR), ultrasonic, or the like can be used to transmit and/or receive data.


In one alternative embodiment, the continuous glucose sensor comprises a transcutaneous sensor such as described in U.S. Pat. No. 6,565,509 to Say et al. In another alternative embodiment, the continuous glucose sensor comprises a subcutaneous sensor such as described with reference to U.S. Pat. No. 6,579,690 to Bonnecaze et al. or U.S. Pat. No. 6,484,046 to Say et al. In another alternative embodiment, the continuous glucose sensor comprises a refillable subcutaneous sensor such as described with reference to U.S. Pat. No. 6,512,939 to Colvin et al. In another alternative embodiment, the continuous glucose sensor comprises an intravascular sensor such as described with reference to U.S. Pat. No. 6,477,395 to Schulman et al. In another alternative embodiment, the continuous glucose sensor comprises an intravascular sensor such as described with reference to U.S. Pat. No. 6,424,847 to Mastrototaro et al. All of the above patents are incorporated in their entirety herein by reference.


Although a few exemplary embodiments of continuous glucose sensors are illustrated and described herein, it should be understood that the disclosed embodiments are applicable to a variety of continuous glucose sensor configurations.


Integrated Receiver


The integrated receiver provides an integrated housing that includes a single point glucose monitor, electronics (for example, hardware and software) useful to receive and process data from the continuous glucose sensor and the single point glucose monitor, and a user interface that displays processed data to a user (for example, patient or doctor). FIGS. 4 to 7 illustrate preferred embodiments of the integrated receiver with a single point glucose monitor. FIGS. 8 to 10 illustrate some preferred electronics and data processing within the integrated receiver that are applicable to all embodiments of the integrated receiver (for example, FIGS. 4 to 7). Because the single point glucose monitor is integrated into the continuous sensor's receiver housing, there is no need for a separate glucose monitor to provide reference values for calibration or the like.


In the illustrated embodiments, the single point glucose monitor includes a meter for measuring glucose within a biological sample including a sensing region that has a sensing membrane impregnated with an enzyme, similar to the sensing membrane described with reference to FIG. 2, and such as described with reference to FIGS. 4 to 7. However, in alternative embodiments, the single point glucose monitor can use other measurement techniques such as optical, for example.



FIG. 4A is a perspective view of an integrated receiver in one embodiment showing a single point glucose monitor in its closed position. FIG. 4B is an exploded perspective view of the integrated receiver, showing the single point glucose monitor with the cover removed to reveal the receptacle inside. The integrated receiver 12 provides a housing that integrates a single point glucose monitor 14 and electronics (FIG. 8) useful to receive, process and display data on the user interface 16. The single point glucose monitor permits rapid and accurate measurement of the amount of a particular substance (for example, glucose) in a biological fluid.


The integrated receiver 12 includes a main housing 62 and a cartridge 64 that is removably mounted on the housing 62, which permits the cartridge 64 to be disposable and replaceable as needed. The housing 62 includes a case 66 having an upper portion 68 and a lower portion 70. The upper portion 68 and lower portion 70 are connected together by any particular fastening means such as several screws (not shown).


The main housing 62 also includes electronic circuitry operably connected to at least two electrodes (not shown). The electrodes are preferably mounted within a sensing region 72 that supports the electrodes as they extend upwardly therein. A sensing membrane (not shown) overlays the electrodes on the sensing region 72 and is operably associated with the electrodes when the cartridge is removably mounted on the housing. The cartridge 64 also includes means for protecting the sensing membrane when not in use. The protection means is preferably a cover 74 that is movably mounted on a body portion 76 of the cartridge 64. Alternatively, the cover 74 can be mounted on the case 66. In the illustrated embodiment, a hinge assembly 78 movably mounts the cover 74 on the body portion 76.


Generally, the cover 74 has a first position such as shown in FIG. 4A in which it protects the membrane, and a second position. Access to the sensing membrane is preferable in order to conveniently place the biological fluid sample on the sensing membrane for analysis.


The housing 62 preferably defines a well 80 having a bottom 82. In practice, the biological fluid sample is placed on the sensing region 72 in the well 80 for analysis. Generally, the well 80 defines an opening of less than 4 millimeters in diameter and less than 2 millimeters in depth. As a result, the well has a volume of less than about 0.1 to 0.2 cubic centimeters. These dimensions substantially minimize the size of the biological fluid sample necessary for analysis down to the sample sizes as small as about five microliters. Because the size of the sample can be particularly small, compensation for temperature changes during analysis that was often necessary with previous devices can be avoided.


The protection means of the cartridge 64 preferably also includes means for sealing the well 80 and hence the sensing region including the sensing membrane, which is disposed at the bottom of the well 80, from the ambient surroundings.


A retaining means is also provided for releasably retaining the cartridge 64 and its body portion 76 on the housing 62. The retaining means preferably includes a detent 84 on the cartridge 64, which is received in a recess defined by the upper portion 68 of the case 66. The retaining means also preferably includes at least one, preferably two wings 86 on the body portion 76 of the cartridge 64 which are received in one or more slots 88 on the case 66. The slots 88 are generally perpendicular to the cover 74 so that opening the cover will not disengage the wings 86 from the slots 88.


The sensing region 72, in which the electrodes are disposed, is preferably generally annular in design with the interior portion thereof filled with an electrically nonconductive support material such as a hardened polyepoxide-containing resin. The electrically nonconductive support material and the top (electrochemically reactive) surfaces of the electrodes define a sensing membrane contact surface. Namely, the sensing membrane can be stretched over the contact surface to more effectively place the membrane in operative association with the electrodes (not shown). In an alternative embodiment of the sensing region 72, the electrodes can be deposited onto a ceramic surface, and an electrically nonconductive material can be applied as a coating over the electrodes to form an insulating barrier. A portion of each electrode, however, is not coated to form a membrane contact surface so that a membrane can be applied over the electrodes in operative contact therewith.


Generally, the sensing membrane can be constructed substantially similar to the sensing membrane described with reference to FIG. 2. For example, the sensing membrane includes a resistance domain most distal from the electrochemically reactive surfaces, an enzyme domain less distal from the electrochemically reactive surfaces than the resistance domain, an interference domain less distal from the electrochemically reactive surfaces than the enzyme domain, and an electrolyte domain adjacent to the electrochemically reactive surfaces. However, it is understood that the sensing membrane can be modified for other devices, for example, by including fewer or additional domains. Furthermore, design considerations for the sensing membrane of the single point glucose monitor can differ from that of the continuous glucose sensor due to oxygen availability, for example.


In some embodiments, the domains of the sensing membrane are formed from materials such as silicone, polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyurethanes, cellulosic polymers, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers.


The cover 74 is preferably provided with a closure means (not shown) such as one or more latches that engage the body portion 76. Generally, the force necessary to disengage the closure means from the body portion should be less than that necessary to disengage the wings 86 from the slots 88. In this manner, an operator can easily open the cover 74 without accidentally disengaging the cartridge 64 from the main housing 62.


The sensing region 72, including the electrodes and sensing membrane, contacts the body fluid sample for analysis. The sensing region 72 is operably associated with the electronic circuitry (see FIG. 8) that analyzes the current from the reaction of the components in the body fluid with the electrodes. The electronic circuitry is in turn operably associated with the user interface 16 (for example, such as a liquid crystal display) to indicate glucose concentration.


In one embodiment, the electrode configuration includes a three-electrode electrochemical cell, which in combination with the chemical reactions occurring in the sensing membrane and on the electrochemically reactive surfaces, makes possible consistent electrode behavior and, in particular, performance of a reference electrode that is stable with time. However, in alternative embodiments, wherein the electrode configuration includes a two-electrode electrochemical cell with a reference cathodic, chloride ions will be lost from the reference electrode that eventually leads to unstable electrode behavior. According to the preferred embodiments, permanent stable reference electrode behavior is achieved when the hydrogen peroxide produced in the membrane oxidizes the silver metal to silver oxide which is then converted to silver chloride by chloride ion. Advantages include ease of manufacturing of the electrode, self-forming and self-maintaining electrode behavior, and long-term reference electrode stability.


In general, the glucose measurement technique of the integrated receiver 12 is similar to that described with reference to FIGS. 2 and 3, above, however the electronics are adapted for single point measurement. The electronics associated with the integrated receiver 12 are described in more detail below with reference to FIG. 8. Generally, glucose from a biological sample produces a current flow at a working electrode, with equal current provided by a counter electrode in a reference circuit. The current is converted in an analog section by a current to voltage converter to a voltage, which is inverted, level-shifted, and delivered to an A/D converter in the microprocessor (see FIG. 8). As part of the calibration, the microprocessor can set the analog gain via its control port. The A/D converter is preferably activated at one-second intervals. The microprocessor looks at the converter output with any number of pattern recognition algorithms known to those skilled in the art until a glucose peak is identified. A timer is then activated for about 30 seconds at the end of which time the difference between the first and last electrode current values is calculated. This difference is then divided by the value stored in the memory during instrument calibration and is then multiplied by the calibration glucose concentration. The result includes a calibrated glucose concentration value that is meaningful to a user, and useful in calibrating the data stream from the continuous glucose sensor 10, for example.


The single point glucose monitor described with reference to FIGS. 4A and 4B can be calibrated by the user as described in more detail with reference to U.S. Pat. Nos. 4,994,167 and 4,757,022, both of which are incorporated herein in their entirety. The ability to calibrate the glucose monitor is particularly advantageous, for example, as compared to a conventional test strip, which cannot be calibrated by the user.


Additionally, the similarity of the sensing membranes used for the continuous glucose sensor and the single point glucose sensor provides an internal control that creates increased reliability by nature of consistency and decreased error potential that can otherwise be increased due to combining dissimilar measurement techniques. Additionally, the disclosed membrane system is known to provide longevity, repeatability, and cost effectiveness, for example as compared to single use strips, or the like.


During the data processing, prompts or messages can be displayed on the user interface 16 to guide the user through the calibration and sample measurement procedures. In addition, prompts can be displayed to inform the user about necessary maintenance procedures, such as “Replace Sensor” or “Replace Battery.” An on/off button 90 preferably initiates the operation and calibration sequences.


Methods and devices that can be suitable for use in conjunction with aspects of the above-described preferred embodiments are disclosed in applications including U.S. Pat. Nos. 4,994,167 and 4,757,022. The integrated receiver electronics and its integration with the continuous glucose sensor are described in more detail below with reference to FIGS. 8 to 10.



FIGS. 5A to 5E illustrate another embodiment of an integrated receiver, wherein the single point glucose monitor includes a stylus movably mounted to the integrated receiver for measurement of glucose in a biological sample. FIG. 5A is a perspective view of the integrated receiver housing in another embodiment, showing a single point glucose monitor including a stylus movably mounted to the integrated receiver, wherein the stylus is shown in a storage position. FIG. 5B is a perspective view of the integrated housing of FIG. 5A, showing the stylus in a testing position. FIG. 5C is a perspective view of a portion of the stylus of FIG. 5A, showing the sensing region. FIG. 5D is a perspective view of the integrated receiver housing of FIG. 5A, showing the stylus loaded with a disposable film, and in its testing position. FIG. 5E is a perspective view of a portion of the stylus of FIG. 5A, showing the sensing region with a disposable film stretched and/or disposed thereon.


In this embodiment, the integrated receiver provides 92 a housing that integrates a single point glucose monitor 94 and electronics (see FIG. 8) useful to receive, process, and display data on the user interface 96. The single point glucose monitor 94 permits rapid and accurate measurement of the amount of a particular substance (for example, glucose) in a biological fluid. Generally, the integrated receiver electronics process single point glucose monitor data, receive and process continuous glucose sensor data, including calibration of the continuous sensor data using the single point monitor data for example, and output data via the user interface 96, such as is described below in more detail with reference to FIG. 8.


The single point glucose monitor 94 includes a stylus 98 that is movably mounted to the integrated receiver housing 92 via a connector 93. The connector 93 can be a cord, bar, hinge, or any such connection means that allows the stylus to move from a first (storage) position (FIG. 5A) to a second (testing) position (FIG. 5B) on the housing. The stylus is not constrained to the first and second positions; rather the stylus can be configured to swing at various angles, about various pivots, or in any manner allowed by the connector for convenience to the user. In some alternative embodiments, the stylus 98 is removably mounted on the integrated receiver housing 92 and an operable connection can be established using a wireless connection, or alternatively using electrical contacts that operably connect the stylus 98 that is removably mounted onto the integrated receiver housing 92.


The stylus 98 includes a sensing region 100 on one end that is operably connected to the integrated receiver's electronics (FIG. 8). As best illustrated in FIG. 5C, the sensing region 100 is provided with at least two, preferably three electrodes 102 and a sensing membrane (not shown) disposed over the electrodes 102 and/or the entire sensing region 100. The sensing region includes the electrodes 102 and the sensing membrane, which are configured to measure glucose in a manner such as described above with reference to the sensing region of FIGS. 2 and 4. In one embodiment, the sensing membrane is reusable and can be held on the sensing region 100 by a clip, such as described with reference to FIG. 2. In alternative embodiments, the sensing membrane is reusable can be disposed onto the sensing region using depositing or bonding techniques known in the art of polymers.


In order to maintain a preferred wetness of the sensing region 100, and particularly of the sensing membrane, the integrated receiver housing 92 includes a sterile solution chamber (not shown) located at the end of the receiving chamber 104 that receives the stylus for storage, such that when the stylus is in its storage position (FIG. 5A), the sensing membrane is maintained in the sterile solution. A sterile solution port 106 is in communication with the sterile solution chamber and allows for refilling of the sterile solution chamber using a sterile refill solution 108.


Typically, when a biological sample 106 (FIG. 5E) is placed on a surface, such as the surface of the sensing membrane and/or sensing region 100, there is a concern about contamination of the surface after use of the biological sample 106. Therefore, a single-use disposable bioprotective film 109 can be placed over the sensing region 100 to provide protection from contamination. The disposable film 109 can be any film with that allows the passage of glucose, but blocks the passage of undesired species in the blood that could damage or contaminate the sensing membrane and/or cause inaccurate measurements (for example, a thin film of very low molecular weight cutoff to prevent the transport of proteins, viruses, etc).


In some alternative embodiments, the bioprotective film 109 further comprises a sensing membrane formed as a part of the film (for example, laminated to the film), instead of (or in addition to) a sensing membrane disposed on the sensing region. This alternative embodiment is particularly advantageous in that it provides a disposable sensing membrane that requires no cleaning step, for example.


Because the stylus 98 can be put into direct contact with the biological sample 106 (for example, on a finger or arm), no transfer mechanism is required, and therefore the sample size can be smaller than conventionally required. Additionally, sensing region 100 does not require a separate cleaning step, because the disposable film 109 fully protects the sensing region 100 from contamination, and should be disposed of after use.


The integrated receiver 92 housing further allows for storage and dispensing of the disposable films 109. A shuttle mechanism 110 is provided that preferably feeds the films 109 into a spring-loaded storage chamber (not shown) beneath the shuttle mechanism 110, or the like. The shuttle mechanism 110 can be used to load the disposable films 109, one at a time, into a dispensing chamber 111 for dispensing onto the sensing region. In alternative embodiments, other storage and dispensing mechanisms can be configured as a part of the integrated receiver housing 12 or separate therefrom.


In practice, the stylus 98 is held in its storage position within the receiving chamber 104 where it is protected and maintained with a preferred wetness (FIG. 5A). A user then withdrawals the stylus 98 from the receiving chamber 104 (FIG. 5B) and loads a disposable film 109 by sliding the shuttle mechanism 110 toward the dispensing chamber 111. When the sensing region 100 of the stylus 98 presses on the disposable film 109 within the dispensing chamber, the film will be stretched over and/or otherwise stick to the moist sensing membrane on the surface of the sensing region 100 (FIG. 5D). At this point, the stylus 98 is ready for a biological sample (for example, blood sample) 106. The stylus 98 can be brought into contact with the finger or arm of the user to directly receive the biological sample from the user without the need for a transfer mechanism (FIG. 5E). After the test, the disposable film is removed from the sensing region and the stylus 98 is replaced into the receiving chamber 104 of the integrated receiver 92.


In this embodiment, the sensing region measures the glucose concentration of the biological sample in a manner such as described with reference to FIGS. 2 and 4, above. The integrated receiver's electronics, including data processing and calibration, are described in more detail below with reference to FIG. 8.



FIGS. 6A to 6J illustrate yet another embodiment of an integrated receiver, including a single point glucose monitor, electronics, and a disposable filtering capillary tube. FIG. 6A is a perspective view of the integrated receiver in yet another embodiment, including a single point glucose monitor and a disposable capillary tube for transferring a biological sample to a sensing region on the monitor. FIG. 6B is a perspective view of the integrated receiver of FIG. 6A, showing the disposable capillary tube inserted into the single point glucose monitor to transfer the biological sample to a sensing region on the single point glucose monitor. FIG. 6C is an expanded perspective view of a portion of the integrated receiver of FIG. 6A, showing the capillary tube inserted into the single point glucose monitor. FIG. 6D is a schematic cross-sectional view of a portion of the integrated receiver of FIG. 6A, illustrating the capillary tube in contact with a sensing membrane such that glucose from the biological sample can be measured by electrodes on the sensing region. FIG. 6E is a schematic cross-sectional view of the capillary tube of FIG. 6A, illustrating an embodiment wherein a filter is located on one end. FIG. 6F is a schematic cross-sectional view of the capillary tube of FIG. 6A, illustrating an embodiment wherein a filter is disposed between two ends. FIG. 6G is a schematic cross-sectional view of the capillary tube of FIG. 6A, illustrating an embodiment wherein a vent extends from the capillary tube. FIG. 6H is a schematic illustration of one embodiment, wherein the capillary tube 132 is round in shape with an inner capillary tube that is also round in shape. FIG. 6I is a schematic illustration of one embodiment, wherein the capillary tube 132 is rectangular in shape with an inner capillary tube 144 that is formed therein. FIG. 6J is a schematic illustration of one embodiment, wherein the capillary tube 132 is rectangular in shape an inner capillary tube 144 has a rounded structure.


In this embodiment, the integrated receiver provides a housing 112 that integrates a single point glucose monitor 114 and electronics (see FIG. 8) useful to receive, process, and display data on a user interface 116. The single point glucose monitor 114 permits rapid and accurate measurement of the amount of a particular substance (for example, glucose) in a biological sample. Generally, the electronics that process single point glucose monitor data, receive and process continuous glucose sensor data, including calibration of the continuous sensor data using the single point monitor data for example, and output data via the user interface 116, are described below in more detail with reference to FIG. 8. Buttons 118 can be provided on this or any of the preferred integrated receiver embodiments in order to facilitate user interaction with the integrated receiver.


The single point glucose monitor 114 includes a sensor port 120 configured to receive a biological fluid and measure its glucose concentration therefrom. As best illustrated in FIG. 6D, a sensing region 122, which includes a sensing membrane 124 (such as described in more detail elsewhere herein), is located within the sensor port 120. The sensing region includes electrodes 126, the top ends of which are in contact with an electrolyte phase (not shown), which is a free-flowing fluid phase disposed between the sensing membrane 124 and the electrodes 126. The sensing region 122 measures glucose in the biological sample in a manner such as described in more detail above, with reference to the sensing regions of FIGS. 2, 4, and 5. In some embodiments, the sensor port 120 includes a cover (not shown) configured to cover the sensing membrane 124 when the single glucose monitor is not in use in order to maintain a preferred wetness of the sensing region 122, and particularly of the sensing membrane.


Typically, when a biological sample is placed in on a surface (e.g., the sensing membrane 124), there is a concern about contamination of the surface from the biological sample. Therefore, a single-use disposable capillary tube 132 can be provided to transport and filter the biological sample, for example from a blood sample of a finger or arm, to the sensing region 122. The disposable capillary tube 132 uses capillary action to draw the biological sample from a first end 134 to a second end 136 of the capillary tube 132. A filter 140 is provided within the capillary tube 132, which is designed to allow the passage of glucose, but filter or block the passage of undesired species in the biological sample that could damage or contaminate the sensing membrane and/or cause inaccurate measurements (for example, the filter can be formed from a membrane of very low molecular weight cutoff to prevent the transport of proteins, viruses, etc). Because the filter 140 protects the sensing region 122 from contamination, the sensing region does not require a separate cleaning step, and the filter should be disposed of after use.


Referring now to FIGS. 6E to 6G, various embodiments of the filter within the capillary tube are illustrated. Each capillary tube 132 has a capillary inlet 142 at a first end 134, an inner capillary tube 144, a filter 140, and an outlet 146 on the second end 136. The capillary tube 132 enables the transport of blood or other aqueous solutions from the capillary inlet 142 to the capillary outlet 146. The fluid transport is facilitated by capillary action and preferably enabled by a hydrophilic surface of the inner capillary tube 144. In some embodiments, some portions of the inner capillary tube 144 can be made hydrophobic to control fluid flow. In some embodiments, the inner capillary tube 144 has a volume between about 2 and 3 microliters; however a larger or smaller volume is possible.



FIG. 6E is a schematic cross-sectional view of the capillary tube in one embodiment, wherein a filter 140 is disposed at the second end 136 within the inner capillary tube 144. This embodiment of the capillary tube is designed to filter the biological sample prior to its exit out of the capillary tube outlet 146.



FIG. 6F is a schematic cross-sectional view of the capillary tube in another embodiment, wherein the filter 140 within the wall capillary tube 132 rather than within the inner capillary tube 144. In this embodiment, the open inner capillary tube is designed to ensure accurate and repeatable fluid flow through the capillary tube by allowing displaced air to escape from the capillary tube outlet 146. As the fluid passes through the inner capillary tube 144, at least a portion of the bodily fluid flows down through the filter 140 and exits the capillary tube 132 through a side exit 141. In some embodiments, the surface of the inner capillary tube 144 near the second end of the capillary can be altered to be hydrophobic thereby preventing blood from escaping the second end.



FIG. 6G is a schematic cross-sectional view of the capillary tube in yet another embodiment, wherein the capillary tube further comprises a vent 148. This embodiment of the capillary tube is designed to ensure accurate and repeatable fluid flow through the capillary tube, by allowing displaced air and other gases to escape from the vent 148, which is located on a side of the capillary tube at a position the allows air to escape prior to filtering of the biological fluid through the filter 140.


Referring now to FIGS. 6H to 6J, various embodiments of the capillary tube structure are illustrated. The schematic views are intended to be exemplary and do not represent scale or proportion of the capillary tubes.



FIG. 6H is a schematic illustration of one embodiment, wherein the capillary tube 132 is round in shape with an inner capillary tube that is also round in shape. This is an embodiment similar to that shown in FIG. 6A to 6D, and optionally includes a tab, wings, or other structure to aid in handling and/or mechanical alignment of the tube 132.



FIG. 6I is a schematic illustration of one embodiment, wherein the capillary tube 132 is rectangular in shape with an inner capillary tube 144 that is formed therein. In one embodiment, the inner capillary tube 144 can be formed by methods, for example as known in the art of manufacturing test strips used for self-monitoring blood glucose meters.



FIG. 6J is a schematic illustration of one embodiment; wherein the capillary tube 132 is rectangular in shape an inner capillary tube 144 has a rounded structure. Shape, dimensions, proportions, or the like do not limit the capillary tube of the preferred embodiments, provided that the capillary tube is capable of performing capillary action.


The capillary tubes 132 can be manufactured using materials such as plastic, glass, silicon, or the like. In one embodiment, the preferred manufacturing material is plastic because of its low cost and the availability of numerous manufacturing processes. The inner capillary tube 144 can be molded or embossed to form the capillary structure. In some alternative embodiments, such as shown FIG. 6I, the inner capillary tube 144 can be formed by multi-layers including a top-capping layer that forms the capillary structure. Adhesive, ultrasonic bonding, solvents or other methods can be used to bond the layers. Holding tabs are not employed in certain embodiments of the capillary tube depending on their structure, for example the capillary tubes shown in FIGS. 6H to 6J.


In some embodiments, it can be advantageous to place a means of detecting a proper fill of the capillary. This can be accomplished for example by electrical means, optical means, or the like. In some embodiments (not shown), the integrated receiver housing 112 can be designed with a means for storing and dispensing capillary tubes 132. In alternative embodiments, other storage and/or dispensing means can be configured separate from the integrated receiver housing 112.


In practice, a user obtains a biological sample from a source, such as a finger or forearm (in some alternative embodiments, the single point glucose monitor can by designed to measure biological fluids other than blood, such as urine, sweat, or the like). The user then grasps a disposable capillary tube 132 (e.g., tab or outer surface) and contacts the source with the capillary inlet 142. Because of the design of the inner capillary tube 144, capillary action causes the biological sample to be drawn towards the capillary outlet 146. The biological sample is filtered as it passes through the filter 140, which is permeable to glucose but impermeable to large molecules and species in the blood that can clog, damage, or contaminate the sensing membrane 124, and/or cause inaccurate measurements. Therefore, the biological sample permeates the filter 140 and into the sensing membrane 124 (for example, fluid contact between the capillary tube and sensing membrane enables the transfer of the filtered biological sample), where it enyzmatically reacts with the catalyst (e.g., glucose oxidase) and produces hydrogen peroxide. Hydrogen peroxide is detected by the electrochemical sensor, wherein the electrical signal is converted into glucose value, such as described in more detail elsewhere herein.


The sensing membrane 124 is a reusable component of the single point glucose monitor, which advantageously provides a low cost associated with each glucose measurement as compared to conventional glucose measuring test strips. Additionally, the disposable capillary tube 132 simplifies the cleanup of the device, as compared to conventional single point glucose monitors that utilize similar enzyme membrane technology. Furthermore, because the blood remains within the capillary tube 144, which can be disposed of without contaminating the integrated receiver housing 112 or the sensing membrane 124, the risk of human contact with blood is reduced.



FIGS. 7A and 7B are perspective views of yet another embodiment of an integrated receiver, wherein the single point glucose monitor is detachably connected to the receiver housing to provide a modular configuration. FIG. 7A is a perspective view of the integrated receiver in this embodiment, wherein the single point glucose monitor is detachably connected to the receiver to form a modular configuration, shown in its connected state. FIG. 7B is a perspective view of the integrated receiver of FIG. 7A, shown in its detached state.


In this embodiment, the integrated receiver 150 provides a receiver housing 152 and a single point glucose monitor 154, which are detachably connectable to each other. The receiver housing 152 includes electronics (hardware and software) useful to receive, process, and display data from the continuous glucose sensor and/or the single point glucose sensor on a user interface 156, such as described in more detail with reference to FIG. 8. In some embodiments, some part of the electronics (for example, the electronics specific to the single point glucose monitor 154) can be housed within the single point glucose monitor 154. The single point glucose monitor 154 can be configured as described with reference to FIG. 6, for example, to permit rapid and accurate measurements of the amount of a particular substance (for example, glucose) in a biological sample. In alternative embodiments, the single point glucose monitor of this modular embodiment can be configured as described with reference to any of the single point glucose monitors of the preferred embodiments. In yet alternative embodiments, the single point glucose monitor can be configured using other known glucose meter configurations.


In general, this embodiment provides for a modular configuration between a receiver housing 152 and a single point glucose monitor 154, wherein the single point glucose monitor can be detached when a user prefers to carry a smaller, simpler, or lighter device (for example, during exercise). However, when a user is ready to perform a single point glucose test, the glucose monitor 154 can be easily attached to the receiver 152 to form an integrated receiver 150 with its numerous associated advantages. In one embodiment, electrical contacts (not shown) on the receiver housing 152 and the single point glucose monitor 154 allow an electrical connection to be established in its attached position. In another embodiment, a wireless connection between the receiver housing 152 and the single point glucose monitor 154 can be provided, wherein the integration is advantageous for its convenient one-piece system (for example, fewer loose parts), its similar measurement technologies (for example, enzyme membrane-based electrochemical measurement), and its added versatility to function even when the modular device is detached.


While not required, it is preferred in this embodiment that the single point glucose monitor 154 be dependent upon the integrated receiver 152 for at least a portion of its operation. For example, at least some of the electronics and/or user interface for the single point glucose monitor 154 are located within the receiver 152. Numerous advantages associated with the integrated receiver 150, such as ensuring accurate time stamping of the single point glucose test at the receiver and other advantages described herein, can be provided by an integrated continuous glucose receiver and single point glucose monitor, such as described herein.


Additionally, the integrated receiver housing configurations of the preferred embodiments are advantageous in that they can be calibrated by the user and can be designed with a measurement technique consistent with that of the continuous glucose sensor. These and other advantages can be seen in alternative embodiments of the device of the preferred embodiments, which are described in more detail elsewhere herein.


In one alternative embodiment, the single point glucose monitor comprises an integrated lancing and measurement device such as described in U.S. Pat. No. 6,607,658 to Heller et al. In another alternative embodiment, the single point glucose monitor comprises a near infrared device such as described in U.S. Pat. No. 5,068,536 to Rosenthal et al. In another alternative embodiment, the single point glucose monitor comprises an integrated lancer, blood-monitoring device, and medication delivery pen, such as described in U.S. Pat. No. 6,192,891 to Gravel et al. In another alternative embodiment, the single point glucose monitor comprises a reflectance reading apparatus such as described in U.S. Pat. No. 5,426,032 to Phillips et al. In another alternative embodiment, the single point glucose monitor comprises a spectroscopic transflectance device such as described in U.S. Pat. No. 6,309,884 to Cooper et al. Other integrations that can be combined with the integrated receiver are described in U.S. patent application Ser. No. 10/789,359, filed Feb. 26, 2004. All of the above patents and patent applications are incorporated in their entirety herein by reference.



FIG. 8 is a block diagram that illustrates integrated receiver electronics in one embodiment. The described electronics are applicable to the preferred embodiments, including the integrated receiver 12 of FIGS. 1, 4A, and 4B, the integrated receiver 92 of FIGS. 5A to 5E, the integrated receiver 112 of FIGS. 6A to 6D, and the integrated receiver 150 of FIGS. 7A and 7B.


A quartz crystal 160 is operably connected to an RF transceiver 162, which together function to receive and synchronize data streams 164 via an antenna 166 (for example, transmission 46 from the RF transceiver 44 shown in FIG. 3). Once received, a microprocessor 168 processes the signals, such as described below.


The microprocessor 168 is the central control unit that provides the processing, such as storing data, analyzing continuous glucose sensor data stream, analyzing single point glucose values, accuracy checking, checking clinical acceptability, calibrating sensor data, downloading data, and controlling the user interface by providing prompts, messages, warnings and alarms, or the like. The EEPROM 170 is operably connected to the microprocessor 168 and provides semi-permanent storage of data, storing data such as receiver ID and programming to process data streams (for example, programming for performing calibration and other algorithms described elsewhere herein). SRAM 172 is used for the system's cache memory and is helpful in data processing. For example, the SRAM stores information from the continuous glucose sensor and the single point glucose monitor for later recall by the user or a doctor; a user or doctor can transcribe the stored information at a later time to determine compliance with the medical regimen or a comparison of glucose concentration to medication administration (for example, this can be accomplished by downloading the information through the pc com port 174). In addition, the SRAM 172 can also store updated program instructions and/or patient specific information. FIGS. 9 and 10 describe more detail about programming that is preferably processed by the microprocessor 168. In some alternative embodiments, memory storage components comparable to EEPROM and SRAM can be used instead of or in addition to the preferred hardware, such as dynamic RAM, non-static RAM, rewritable ROMs, flash memory, or the like.


A battery 176 is operably connected to the microprocessor 168 and provides power for the receiver. In one embodiment, the battery is a standard AAA alkaline battery, however any appropriately sized and powered battery can be used. In some embodiments, a plurality of batteries can be used to power the system. In some embodiments, a power port (not shown) is provided permit recharging of rechargeable batteries. A quartz crystal 178 is operably connected to the microprocessor 168 and maintains system time for the computer system as a whole.


A PC communication (com) port 174 can be provided to enable communication with systems, for example, a serial communications port, allows for communicating with another computer system (for example, PC, PDA, server, or the like). In one exemplary embodiment, the receiver is able to download historical data to a physician's PC for retrospective analysis by the physician. The PC communication port 174 can also be used to interface with other medical devices, for example pacemakers, implanted analyte sensor patches, infusion devices, telemetry devices, or the like.


Electronics associated with the single point glucose monitor 180 are operably connected to the microprocessor 168 and include a potentiostat 181 in one embodiment that measures a current flow produced at the working electrode when a biological sample is placed on the sensing membrane, such as described with reference to FIGS. 4 to 7, for example. The current is then converted into an analog signal by a current to voltage converter, which can be inverted, level-shifted, and sent to the A/D converter 182. The microprocessor can set the analog gain via its control port (not shown). The A/D converter is preferably activated at one-second intervals. The microprocessor looks at the converter output with any number of pattern recognition algorithms known to those skilled in the art until a glucose peak is identified. A timer is then preferably activated for about 30 seconds at the end of which time the difference between the first and last electrode current values is calculated. This difference is then divided by the value stored in the memory during instrument calibration and is then multiplied by the calibration glucose concentration. The glucose value in milligram per deciliter, millimoles per liter, or the like, is then stored in the microprocessor, displayed on the user interface, used to calibrate of the glucose sensor data stream, downloaded, etc.


A user interface 184 comprises a keyboard 186, speaker 188, vibrator 190, backlight 192, liquid crystal display (LCD) 194, and one or more buttons 196. The components that comprise the user interface 184 provide controls to interact with the user. The keyboard 186 can allow, for example, input of user information about an individual, such as mealtime, exercise, insulin administration, and reference glucose values. The speaker 188 can provide, for example, audible signals or alerts for conditions such as present and/or predicted hyper- and hypoglycemic conditions. The vibrator 190 can provide, for example, tactile signals or alerts for reasons such as described with reference to the speaker, above. The backlight 192 can be provided, for example, to aid the user in reading the LCD in low light conditions. The LCD 194 can be provided, for example, to provide the user with visual data output. In some embodiments, the LCD is a touch-activated screen. The buttons 196 can provide for toggle, menu selection, option selection, mode selection, and reset, for example. In some alternative embodiments, a microphone can be provided to allow for voice-activated control.


The user interface 184, which is operably connected to the microprocessor 168 serves to provide data input and output for both the continuous glucose sensor (for example, FIGS. 2 and 3) and for the integrated receiver including the single point glucose monitor (for example, FIGS. 4 to 7).


In some embodiments, prompts or messages can be displayed on the user interface to guide the user through the initial calibration and sample measurement procedures for the single point glucose monitor. Additionally, prompts can be displayed to inform the user about necessary maintenance procedures, such as “Replace Sensing Membrane” or “Replace Battery.” Even more, the glucose concentration value measured from the single point glucose monitor can be individually displayed.


In some embodiments, prompts or messages can be displayed on the user interface to convey information to the user, such as malfunction, outlier values, missed data transmissions, or the like, for the continuous glucose sensor. Additionally, prompts can be displayed to guide the user through calibration of the continuous glucose sensor. Even more, calibrated sensor glucose data, which is described in more detail with reference to FIGS. 9 and 10, can be displayed in numerical or graphical representations, or the like.


Reference is now made to FIG. 9, which is a flow chart that illustrates the process of initial calibration and data output of the glucose sensor 10 in one embodiment. Calibration of the glucose sensor 10 generally includes data processing that converts a sensor data stream into estimated glucose values that are meaningful to a user. Accordingly, a reference glucose value can be used to calibrate the data stream from the glucose sensor 10. The calibration can be performed on a real-time basis and/or backwards recalibrated (for example, retrospectively).


At block 200, a sensor data receiving module, also referred to as the sensor data module, receives sensor data (for example, a data stream), including one or more time-spaced sensor data points, hereinafter referred to as “sensor data” or “sensor glucose data.” The integrated receiver receives the sensor data from a continuous glucose sensor, which can be in wired or wireless communication with the integrated receiver. Some or all of the sensor data point(s) can be smoothed or replaced by estimated signal values such as described with reference to U.S. patent application entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM,” filed Aug. 22, 2003. During the initialization of the sensor, prior to initial calibration, the integrated receiver (for example, FIGS. 4 to 7) receives and stores the sensor data, however it does not necessarily display any data to the user until initial calibration and optionally stabilization of the sensor 10 has been determined.


At block 202 a single point glucose module, also referred to as the reference input module, receives glucose data from the integrated single point glucose monitor, including one or more reference glucose data points, hereinafter referred as “reference data” or “reference glucose data.” Namely, the single point glucose monitor, such as described in more detail with reference to FIGS. 4 to 7, which is integral with the receiver, provides a reference glucose concentration value, such as described above with respect to the single point glucose monitors of the preferred embodiments. The reference glucose concentration value from the single point glucose monitor is calibrated such as described above in more detail with reference to FIG. 8.


In some embodiments, the microprocessor 168 monitors the continuous glucose sensor data stream to determine a preferable time for capturing glucose concentration values using the single point glucose monitor electronics 180 for calibration of the continuous sensor data stream. For example, when sensor glucose data (for example, observed from the data stream) changes too rapidly, a single point glucose monitor reading may not be sufficiently reliable for calibration during unstable glucose changes in the host; in contrast, when sensor glucose data are relatively stable (for example, relatively low rate of change), a single point glucose monitor reading can be taken for a reliable calibration. In some additional embodiments, the microprocessor can prompt the user via the user interface to obtain a single point glucose value for calibration at predetermined intervals. In some additional embodiments, the user interface can prompt the user to obtain a single point glucose monitor value for calibration based upon certain events, such as meals, exercise, large excursions in glucose levels, faulty or interrupted data readings, or the like. In some embodiments, certain acceptability parameters can be set for reference values received from the single point glucose monitor. For example, in one embodiment, the receiver only accepts reference glucose data between about 40 and about 400 mg/dL.


At block 204, a data matching module, matches reference data (for example, one or more reference glucose data points) with substantially time corresponding sensor data (for example, one or more sensor data points) to provide one or more matched data pairs. In one embodiment, one reference data point is matched to one time corresponding sensor data point to form a matched data pair. In another embodiment, a plurality of reference data points are averaged (for example, equally or non-equally weighted average, mean-value, median, or the like) and matched to one time corresponding sensor data point to form a matched data pair. In another embodiment, one reference data point is matched to a plurality of time corresponding sensor data points averaged to form a matched data pair. In yet another embodiment, a plurality of reference data points are averaged and matched to a plurality of time corresponding sensor data points averaged to form a matched data pair.


In one embodiment, time corresponding sensor data comprises one or more sensor data points that occur, for example, 15±5 min after the reference glucose data timestamp (for example, the time that the reference glucose data is obtained). In this embodiment, the 15 minute time delay has been chosen to account for an approximately 10 minute delay introduced by the filter used in data smoothing and an approximately 5 minute physiological time-lag (for example, the time necessary for the glucose to diffusion through a membrane(s) of a glucose sensor). In alternative embodiments, the time corresponding sensor value can be more or less than in the above-described embodiment, for example ±60 minutes. Variability in time correspondence of sensor and reference data can be attributed to, for example, a longer or shorter time delay introduced during signal estimation, or if the configuration of the glucose sensor 10 incurs a greater or lesser physiological time lag.


One advantage of integrated receiver of the preferred embodiments can be seen in the time stamp of the reference glucose data. Namely, typical implementations of the continuous glucose sensor 10, wherein the single point glucose monitor is not integral with the receiver, the reference glucose data can be obtained at a time that is different from the time that the data is input into the receiver 30. Thus, the user may not accurately input the “time stamp” of the reference glucose (for example, the time at which the reference glucose value was actually obtained) at the time of reference data input into the receiver. Therefore, the accuracy of the calibration is subject to human error (for example, due to inconsistencies in entering the actual time of the single point glucose test). In contrast, the preferred embodiments of the integrated receiver advantageously do no suffer from this potential inaccuracy in that the time stamp is automatically and accurately obtained at the time of single point glucose test. Additionally, the process of obtaining reference data is simplified and made convenient using the integrated receiver because of fewer loose parts (for example, cables, test strips, or the like) and less required data entry (for example, time of testing).


In some embodiments, tests are used to evaluate the best-matched pair using a reference data point against individual sensor values over a predetermined time period (for example, about 30 minutes). In one such embodiment, the reference data point is matched with sensor data points at 5-minute intervals and each matched pair is evaluated. The matched pair with the best correlation can be selected as the matched pair for data processing. In some alternative embodiments, matching a reference data point with an average of a plurality of sensor data points over a predetermined time period can be used to form a matched pair.


At block 206, a calibration set module, forms an initial calibration set from a set of one or more matched data pairs, which are used to determine the relationship between the reference glucose data and the sensor glucose data, such as described in more detail with reference to block 208, below.


The matched data pairs, which make up the initial calibration set, can be selected according to predetermined criteria. In some embodiments, the number (n) of data pair(s) selected for the initial calibration set is one. In other embodiments, n data pairs are selected for the initial calibration set wherein n is a function of the frequency of the received reference glucose data points. In one exemplary embodiment, six data pairs make up the initial calibration set. In another embodiment, the calibration set includes only one data pair.


In some embodiments, the data pairs are selected only within a certain glucose value threshold, for example wherein the reference glucose value is between about 40 and about 400 mg/dL. In some embodiments, the data pairs that form the initial calibration set are selected according to their time stamp.


At block 208, a conversion function module creates a conversion function using the calibration set. The conversion function substantially defines the relationship between the reference glucose data and the sensor glucose data. A variety of known methods can be used with the preferred embodiments to create the conversion function from the calibration set. In one embodiment, wherein a plurality of matched data points form the initial calibration set, a linear least squares regression is performed on the initial calibration set such as described in more detail with reference to FIG. 10.


At block 210, a sensor data transformation module uses the conversion function to transform sensor data into substantially real-time glucose value estimates, also referred to as calibrated data, as sensor data is continuously (or intermittently) received from the sensor. In other words, the offset value at any given point in time can be subtracted from the raw value (for example, in counts) and divided by the slope to obtain the estimated glucose value:







mg


/


d





L

=


(


raw





value

-
offset

)

slope





In some alternative embodiments, the sensor and/or reference glucose data are stored in a database for retrospective analysis.


At block 212, an output module provides output to the user via the user interface. The output is representative of the estimated glucose value, which is determined by converting the sensor data into a meaningful glucose value such as described in more detail with reference to block 210, above. User output can be in the form of a numeric estimated glucose value, an indication of directional trend of glucose concentration, and/or a graphical representation of the estimated glucose data over a period of time, for example. Other representations of the estimated glucose values are also possible, for example audio and tactile.


In one embodiment, the estimated glucose value is represented by a numeric value. In other exemplary embodiments, the user interface graphically represents the estimated glucose data trend over a predetermined time period (for example, one, three, and nine hours, respectively). In alternative embodiments, other time periods can be represented. In alternative embodiments, pictures, animation, charts, graphs, and numeric data can be selectively displayed.


Accordingly, after initial calibration of the sensor, real-time continuous glucose information can be displayed on the user interface so that the user can regularly and proactively care for his/her diabetic condition within the bounds set by his/her physician. Both the calibrated reference glucose data from the single point glucose monitor and the sensor glucose data from the continuous glucose sensor can be displayed to the user. In an embodiment wherein the continuous glucose sensor functions as an adjunctive device to the single point glucose monitor, the user interface can display numeric reference glucose data, while showing the sensor glucose data only in a graphical representation so that the user can see the historical and present sensor trend information as well as the most recent reference glucose data value. In an embodiment wherein the continuous glucose sensor functions as a non-adjunctive device to the single point glucose monitor, the user interface can display the reference glucose data and/or the sensor glucose data. The user can toggle through menus and screens using the buttons in order to view alternate data and/or screen formats, for example.


In alternative embodiments, the conversion function is used to predict glucose values at future points in time. These predicted values can be used to alert the user of upcoming hypoglycemic or hyperglycemic events. Additionally, predicted values can be used to compensate for the time lag (for example, 15 minute time lag such as described elsewhere herein), so that an estimated glucose value displayed to the user represents the instant time, rather than a time delayed estimated value.


In some embodiments, the substantially real-time estimated glucose value, a predicted future estimated glucose value, a rate of change, and/or a directional trend of the glucose concentration is used to control the administration of a constituent to the user, including an appropriate amount and time, in order to control an aspect of the user's biological system. One such example is a closed loop glucose sensor and insulin pump, wherein the glucose data (for example, estimated glucose value, rate of change, and/or directional trend) from the glucose sensor is used to determine the amount of insulin, and time of administration, that can be given to a diabetic user to evade hyper- and hypoglycemic conditions.



FIG. 10 is a graph that illustrates one embodiment of a regression performed on a calibration set to create a conversion function such as described with reference to FIG. 9, block 208, above. In this embodiment, a linear least squares regression is performed on the initial calibration set. The x-axis represents reference glucose data; the y-axis represents sensor data. The graph pictorially illustrates regression of matched pairs 214 in the calibration set. The regression calculates a slope 216 and an offset 218, for example, using the well-known slope-intercept equation (y=mx+b), which defines the conversion function.


In alternative embodiments, other algorithms could be used to determine the conversion function, for example forms of linear and non-linear regression, for example fuzzy logic, neural networks, piece-wise linear regression, polynomial fit, genetic algorithms, and other pattern recognition and signal estimation techniques.


In yet other alternative embodiments, the conversion function can comprise two or more different optimal conversions because an optimal conversion at any time is dependent on one or more parameters, such as time of day, calories consumed, exercise, or glucose concentration above or below a set threshold, for example. In one such exemplary embodiment, the conversion function is adapted for the estimated glucose concentration (for example, high vs. low). For example in an implantable glucose sensor it has been observed that the cells surrounding the implant will consume at least a small amount of glucose as it diffuses toward the glucose sensor. Assuming the cells consume substantially the same amount of glucose whether the glucose concentration is low or high, this phenomenon will have a greater effect on the concentration of glucose during low blood sugar episodes than the effect on the concentration of glucose during relatively higher blood sugar episodes. Accordingly, the conversion function can be adapted to compensate for the sensitivity differences in blood sugar level. In one implementation, the conversion function comprises two different regression lines, wherein a first regression line is applied when the estimated glucose concentration is at or below a certain threshold (for example, 150 mg/dL) and a second regression line is applied when the estimated glucose concentration is at or above a certain threshold (for example, 150 mg/dL). In one alternative implementation, a predetermined pivot of the regression line that forms the conversion function can be applied when the estimated blood is above or below a set threshold (for example, 150 mg/dL), wherein the pivot and threshold are determined from a retrospective analysis of the performance of a conversion function and its performance at a range of glucose concentrations. In another implementation, the regression line that forms the conversion function is pivoted about a point in order to comply with clinical acceptability standards (for example, Clarke Error Grid, Consensus Grid, mean absolute relative difference, or other clinical cost function) and/or physiological parameters. Although only a few example implementations are described, other embodiments include numerous implementations wherein the conversion function is adaptively applied based on one or more parameters that can affect the sensitivity of the sensor data over time.


The preferred embodiments described a continuous glucose sensor and integrated receiver with single point glucose calibration that is more cost effective than conventional reference glucose monitors (for example, more cost effective than test strips). Additionally, the consistency between the similar measurement technologies used both for the continuous sensor and the single point glucose monitor increases the consistency and decreases the cause for error between the two measurements devices, yielding a more reliable, accurate device.


In some alternative embodiments similarly advantageous results can be provided that by combined continuous glucose sensor and integrated receiver configurations wherein the measurement technologies are consistent between the continuous glucose sensor and single point glucose monitor. For example, an optical, non-invasive, “continuous or quasi-continuous” glucose measurement device such as described by U.S. Pat. No. 6,049,727, which is incorporated by reference herein in its entirety, can be implanted in the body. An integrated receiver can be provided that processes sensor data and includes an optical non-invasive single point glucose monitor such as described with reference to U.S. Pat. No. 6,309,884, which is incorporated by reference herein in its entirety. Accordingly, when optical-based technology is used both for the continuous sensor and the single point glucose monitor, increased consistency and decreased cause for error between the two measurements devices exist, yielding a more reliable, accurate device. Other embodiments can be provided that utilize consistent measurement technologies between a continuous analyte sensor and a single point analyte monitor useful for calibration such as described herein and are within the spirit of the preferred embodiments.


Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in U.S. patent application Ser. No. 10/885,476 filed Jul. 6, 2004, and entitled “SYSTEMS AND METHODS FOR MANUFACTURE OF AN ANALYTE-MEASURING DEVICE INCLUDING A MEMBRANE SYSTEM”; U.S. patent application Ser. No. 10/842,716, filed May 10, 2004, and entitled, “MEMBRANE SYSTEMS INCORPORATING BIOACTIVE AGENTS”; U.S. patent application Ser. No. 10/838,912 filed May 3, 2004, and entitled, “IMPLANTABLE ANALYTE SENSOR”; U.S. patent application Ser. No. 10/789,359 filed Feb. 26, 2004, and entitled, “INTEGRATED DELIVERY DEVICE FOR A CONTINUOUS GLUCOSE SENSOR”; U.S. application Ser. No. 10/685,636 filed Oct. 28, 2003, and entitled, “SILICONE COMPOSITION FOR MEMBRANE SYSTEM”; U.S. application Ser. No. 10/648,849 filed Aug. 22, 2003, and entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM”; U.S. application Ser. No. 10/646,333 filed Aug. 22, 2003, entitled, “OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR”; U.S. application Ser. No. 10/647,065 filed Aug. 22, 2003, entitled, “POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 10/633,367 filed Aug. 1, 2003, entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. Pat. No. 6,702,857 entitled “MEMBRANE FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 09/916,711 filed Jul. 27, 2001, and entitled “SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICE”; U.S. application Ser. No. 09/447,227 filed Nov. 22, 1999, and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 10/153,356 filed May 22, 2002, and entitled “TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS”; U.S. application Ser. No. 09/489,588 filed Jan. 21, 2000, and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 09/636,369 filed Aug. 11, 2000, and entitled “SYSTEMS AND METHODS FOR REMOTE MONITORING AND MODULATION OF MEDICAL DEVICES”; and U.S. application Ser. No. 09/916,858 filed Jul. 27, 2001, and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS,” as well as issued patents including U.S. Pat. No. 6,001,067 issued Dec. 14, 1999, and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. Pat. No. 4,994,167 issued Feb. 19, 1991, and entitled “BIOLOGICAL FLUID MEASURING DEVICE”; and U.S. Pat. No. 4,757,022 filed Jul. 12, 1988, and entitled “BIOLOGICAL FLUID MEASURING DEVICE”; U.S. Appl. No. 60/489,615 filed Jul. 23, 2003, and entitled “ROLLED ELECTRODE ARRAY AND ITS METHOD FOR MANUFACTURE”; U.S. Appl. No. 60/490,010 filed Jul. 25, 2003, and entitled “INCREASING BIAS FOR OXYGEN PRODUCTION IN AN ELECTRODE ASSEMBLY”; U.S. Appl. No. 60/490,009 filed Jul. 25, 2003, and entitled “OXYGEN ENHANCING ENZYME MEMBRANE FOR ELECTROCHEMICAL SENSORS”; U.S. application Ser. No. 10/896,312 filed Jul. 21, 2004, and entitled “OXYGEN-GENERATING ELECTRODE FOR USE IN ELECTROCHEMICAL SENSORS”; U.S. application Ser. No. 10/896,637 filed Jul. 21, 2004, and entitled “ROLLED ELECTRODE ARRAY AND ITS METHOD FOR MANUFACTURE”; U.S. application Ser. No. 10/896,772 filed Jul. 21, 2004, and entitled “INCREASING BIAS FOR OXYGEN PRODUCTION IN AN ELECTRODE ASSEMBLY”; U.S. application Ser. No. 10/896,639 filed Jul. 21, 2004, and entitled “OXYGEN ENHANCING ENZYME MEMBRANE FOR ELECTROCHEMICAL SENSORS”; U.S. application Ser. No. 10/897,377 filed Jul. 21, 2004, and entitled “ELECTROCHEMICAL SENSORS INCLUDING ELECTRODE SYSTEMS WITH INCREASED OXYGEN GENERATION”. The foregoing patent applications and patents are incorporated herein by reference in their entireties.


All references cited herein are incorporated herein by reference in their entireties. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.


The term “comprising” as used herein is synonymous with “including,” “containing,” or “characterized by,” and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.


All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.


The above description discloses several methods and materials of the present invention. This invention is susceptible to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment. Such modifications will become apparent to those skilled in the art from a consideration of this disclosure or practice of the invention disclosed herein. Consequently, it is not intended that this invention be limited to the specific embodiments disclosed herein, but that it cover all modifications and alternatives coming within the true scope and spirit of the invention as embodied in the attached claims.

Claims
  • 1. A continuous glucose monitoring system comprising: an implantable glucose sensor;a single point glucose monitor configured to receive a biological sample from a host and measure a glucose concentration from the biological sample, the single point glucose monitor comprising a sensing region, and a sensing membrane located over the sensing region;a handheld device configured to wirelessly receive sensor data from the implantable glucose sensor, wherein the single point glucose monitor is detachably connectable to the handheld device, and wherein the handheld device comprises: a processor to perform operations comprising: receiving a reference glucose data point from the single point glucose monitor; the reference glucose data point being associated with a time stamp;receiving a plurality of implantable glucose sensor data points from the implantable glucose sensor, wherein the plurality of implantable glucose sensor data points is obtained from a predetermined time period after the time stamp;generating an average implantable glucose sensor data point from the plurality of implantable glucose sensor data points;generating a matched data pair using the reference glucose data point and the average implantable glucose sensor data point;determining a calibration conversion function using the matched data pair;determining a glucose concentration of the host using the calibration conversion function; andgenerating, using the calibration conversion function, a prediction including a plurality of future glucose values; anda user interface comprising a touch-activated screen, wherein the user interface is configured to contemporaneously display concentration data comprising the glucose concentration measured by the single point glucose monitor and the glucose concentration determined using the calibration conversion function, wherein the user interface is configured to receive input from a user associated with mealtime, exercise, and insulin administration, and wherein the user interface is configured to generate an alert for a predicted upcoming hypoglycemic or hyperglycemic event in response to the prediction of the plurality of future glucose values.
  • 2. The system of claim 1, wherein the single point glucose monitor is configured to receive a drop of blood.
  • 3. The system of claim 1, wherein both the implantable glucose sensor and the single point glucose monitor use an electrochemical sensor.
  • 4. The system of claim 1, wherein at least a portion of the single point glucose monitor is configured to be releasably received by the handheld device.
  • 5. The system of claim 1, wherein the single point glucose monitor comprises a disposable element for receiving a biological sample, the disposable element detachably connectable to the handheld device.
  • 6. A continuous glucose monitoring system comprising: an implantable glucose sensor; anda handheld device configured to wirelessly receive sensor data from the implantable glucose sensor, wherein the handheld device comprises: a single point glucose monitor configured to receive a biological sample from a host and measure a glucose concentration of the biological sample, wherein the single point glucose monitor is configured to use a sensing region and a sensing membrane located over the sensing region, wherein the sensing region is detachable from the handheld device;a processor to perform operations comprising: receiving a reference glucose data point from the single point glucose monitor, the reference glucose data point being associated with a time stamp;receiving a plurality of implantable glucose sensor data points from the implantable glucose sensor, wherein the plurality of implantable glucose sensor data points is obtained from a predetermined time period after the time stamp;generating an average implantable glucose sensor data point from the plurality of implantable glucose sensor data points;generating a matched data pair using reference glucose data point and the average implantable glucose sensor data point;determining a calibration conversion function using the matched data pair;determining a glucose concentration of the: host using t calibration conversion function;generating, using the calibration conversion function, a prediction including a plurality of future glucose values;determining, based upon the prediction, an upcoming hypoglycemic or hyperglycemic event; andtransmitting, based upon the determining, an alert; anda user interface comprising a touch-activated screen, wherein the user interface is configured to contemporaneously display concentration data comprising the glucose concentration measured by the single point glucose monitor and the glucose concentration determined using the calibration conversion function, wherein the user interface is further configured to display the transmitted alert.
  • 7. The system of claim 6, wherein the single point glucose monitor is configured to receive a drop of blood.
  • 8. The system of claim 6, wherein both the implantable glucose sensor and the single point glucose monitor use an electrochemical sensor.
  • 9. The system of claim 6, wherein the sensing region of the sensing membrane of the single point glucose monitor is located on a single point glucose monitor configured to be releasably received by the handheld device.
  • 10. The system of claim 6, wherein the single point glucose monitor comprises a disposable element for receiving a biological sample, the disposable element detachably connectable to the handheld device.
INCORPORATION BY REFERENCE TO RELATED APPLICATIONS

Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57. This application is a continuation of U.S. application Ser. No. 12/731,965, filed Mar. 25, 2010, which is a continuation of U.S. application Ser. No. 12/182,073, filed Jul. 29, 2008, now abandoned, which is a continuation of U.S. application Ser. No. 10/991,966, filed Nov. 17, 2004, now U.S. Pat. No. 7,519,408, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/523,840, filed Nov. 19, 2003, U.S. Provisional Application 60/587,787, filed Jul. 13, 2004, and U.S. Provisional Application No. 60/614,683, filed Sep. 30, 2004, Each of the aforementioned applications is incorporated by reference herein in its entirety, and each is hereby expressly made a part of this specification.

US Referenced Citations (816)
Number Name Date Kind
2719797 Rosenblatt et al. Oct 1955 A
3210578 Sherer Oct 1965 A
3219533 Mullins Nov 1965 A
3381371 Russell May 1968 A
3775182 Patton et al. Nov 1973 A
3780727 King Dec 1973 A
3826244 Salcman et al. Jul 1974 A
3837339 Aisenberg et al. Sep 1974 A
3898984 Mandel et al. Aug 1975 A
3929971 Roy Dec 1975 A
3943918 Lewis Mar 1976 A
3957613 Macur May 1976 A
3964974 Banauch et al. Jun 1976 A
3979274 Newman Sep 1976 A
4024312 Korpman May 1977 A
4040908 Clark, Jr. Aug 1977 A
4052754 Homsy Oct 1977 A
4073713 Newman Feb 1978 A
4076656 White et al. Feb 1978 A
4172770 Semersky et al. Oct 1979 A
4197840 Beck et al. Apr 1980 A
4215703 Willson Aug 1980 A
4240438 Updike et al. Dec 1980 A
4240889 Yoda et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4253469 Aslan Mar 1981 A
4255500 Hooke Mar 1981 A
4259540 Sabia Mar 1981 A
4374013 Enfors Feb 1983 A
4388166 Suzuki et al. Jun 1983 A
4403984 Ash et al. Sep 1983 A
4415666 D'Orazio et al. Nov 1983 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4442841 Uehara et al. Apr 1984 A
4454295 Wittmann et al. Jun 1984 A
4477314 Richter et al. Oct 1984 A
4494950 Fischell Jan 1985 A
4506680 Stokes Mar 1985 A
RE31916 Oswin et al. Jun 1985 E
4535786 Kater Aug 1985 A
4554927 Fussell Nov 1985 A
4577642 Stokes Mar 1986 A
4583976 Ferguson Apr 1986 A
RE32361 Duggan Feb 1987 E
4655880 Liu Apr 1987 A
4663824 Kenmochi May 1987 A
4671288 Gough Jun 1987 A
4680268 Clark, Jr. Jul 1987 A
4703756 Gough et al. Nov 1987 A
4711251 Stokes Dec 1987 A
4721677 Clark, Jr. Jan 1988 A
4731726 Allen, III Mar 1988 A
4750496 Reinhart et al. Jun 1988 A
4753652 Langer et al. Jun 1988 A
4757022 Shults et al. Jul 1988 A
4759828 Young et al. Jul 1988 A
4781798 Gough Nov 1988 A
4787398 Garcia et al. Nov 1988 A
4805624 Yao et al. Feb 1989 A
4805625 Wyler Feb 1989 A
4807632 Liess et al. Feb 1989 A
4810470 Burkhardt et al. Mar 1989 A
4831070 McInally et al. May 1989 A
4832034 Pizziconi et al. May 1989 A
4841974 Gumbrecht et al. Jun 1989 A
4849458 Reed et al. Jul 1989 A
4852573 Kennedy Aug 1989 A
4858615 Meinema Aug 1989 A
4871440 Nagata et al. Oct 1989 A
4883057 Broderick Nov 1989 A
4889744 Quaid Dec 1989 A
4890620 Gough Jan 1990 A
4890621 Hakky Jan 1990 A
4902294 Gosserez Feb 1990 A
4907857 Giuliani et al. Mar 1990 A
4919141 Zier et al. Apr 1990 A
4927407 Dorman May 1990 A
4927516 Yamaguchi et al. May 1990 A
4944299 Silvian Jul 1990 A
4953552 DeMarzo Sep 1990 A
4974592 Branco Dec 1990 A
4974929 Curry Dec 1990 A
4975636 Desautels Dec 1990 A
4984929 Rock et al. Jan 1991 A
4986671 Sun et al. Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4992794 Brouwers Feb 1991 A
4994167 Shults et al. Feb 1991 A
5002572 Picha Mar 1991 A
5007929 Quaid Apr 1991 A
5030333 Clark, Jr. Jul 1991 A
5034112 Murase et al. Jul 1991 A
5050612 Matsumura Sep 1991 A
5059654 Hou et al. Oct 1991 A
5067491 Taylor, II et al. Nov 1991 A
5068536 Rosenthal Nov 1991 A
5077476 Rosenthal Dec 1991 A
5097834 Skrabal Mar 1992 A
5101814 Palti Apr 1992 A
5108819 Heller et al. Apr 1992 A
5137028 Nishimura Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5160418 Mullen Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5190041 Palti Mar 1993 A
5198771 Fidler et al. Mar 1993 A
5208147 Kagenow et al. May 1993 A
5235003 Ward et al. Aug 1993 A
5243983 Tarr et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5266179 Nankai et al. Nov 1993 A
5269891 Colin Dec 1993 A
5271736 Picha Dec 1993 A
5279294 Anderson et al. Jan 1994 A
5281319 Kaneko et al. Jan 1994 A
5282848 Schmitt Feb 1994 A
5284140 Allen et al. Feb 1994 A
5284570 Savage et al. Feb 1994 A
5285513 Kaufman et al. Feb 1994 A
5287753 Routh et al. Feb 1994 A
5299571 Mastrototaro Apr 1994 A
5304468 Phillips et al. Apr 1994 A
5307263 Brown Apr 1994 A
5310469 Cunningham May 1994 A
5312361 Zadini et al. May 1994 A
5314471 Brauker et al. May 1994 A
5316008 Suga et al. May 1994 A
5322063 Allen et al. Jun 1994 A
5324322 Grill, Jr. et al. Jun 1994 A
5326356 Della Valle et al. Jul 1994 A
5330521 Cohen Jul 1994 A
5330634 Wong et al. Jul 1994 A
5331555 Hashimoto et al. Jul 1994 A
5337747 Neftel Aug 1994 A
5342409 Mullett Aug 1994 A
5343869 Pross et al. Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5348788 White Sep 1994 A
5352351 White et al. Oct 1994 A
5354449 Band et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5368224 Richardson et al. Nov 1994 A
5372133 Hogen Esch Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5380536 Hubbell et al. Jan 1995 A
5384028 Ito Jan 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5397848 Yang et al. Mar 1995 A
5411647 Johnson et al. May 1995 A
5411866 Luong et al. May 1995 A
5421923 Clarke et al. Jun 1995 A
5426032 Phillips et al. Jun 1995 A
5429735 Johnson et al. Jul 1995 A
5431160 Wilkins Jul 1995 A
5434412 Sodickson et al. Jul 1995 A
5448992 Kupershmidt Sep 1995 A
5453278 Chan et al. Sep 1995 A
5462051 Oka et al. Oct 1995 A
5462064 DAngelo et al. Oct 1995 A
5466356 Schneider et al. Nov 1995 A
5469846 Khan Nov 1995 A
5474552 Palti Dec 1995 A
5476776 Wilkins Dec 1995 A
5482008 Stafford et al. Jan 1996 A
5482473 Lord et al. Jan 1996 A
5484404 Schulman et al. Jan 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5502396 Desarzens et al. Mar 1996 A
5507288 Booker et al. Apr 1996 A
5508203 Fuller et al. Apr 1996 A
5513636 Palti May 1996 A
5518601 Foos et al. May 1996 A
5527288 Gross et al. Jun 1996 A
5531679 Schulman et al. Jul 1996 A
5531878 Vadgama et al. Jul 1996 A
5540828 Yacynych Jul 1996 A
5545220 Andrews et al. Aug 1996 A
5553616 Ham et al. Sep 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5575930 Tietje-Girault et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5584876 Bruchman et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5589133 Suzuki Dec 1996 A
5590651 Shaffer et al. Jan 1997 A
5593440 Brauker et al. Jan 1997 A
5611900 Worden et al. Mar 1997 A
5628890 Carter et al. May 1997 A
5640470 Iyer et al. Jun 1997 A
5653756 Clarke et al. Aug 1997 A
5653863 Genshaw et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665065 Colman et al. Sep 1997 A
5676820 Wang et al. Oct 1997 A
5682884 Hill et al. Nov 1997 A
5683562 Schaffar et al. Nov 1997 A
5686829 Girault Nov 1997 A
5695623 Michel et al. Dec 1997 A
5696314 McCaffrey et al. Dec 1997 A
5711861 Ward et al. Jan 1998 A
5714123 Sohrab Feb 1998 A
5730654 Brown Mar 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5749832 Vadgama et al. May 1998 A
5749907 Mann May 1998 A
5771890 Tamada Jun 1998 A
5781455 Hyodo et al. Jul 1998 A
5782912 Brauker et al. Jul 1998 A
5787900 Butler et al. Aug 1998 A
5791344 Schulman et al. Aug 1998 A
5795774 Matsumoto et al. Aug 1998 A
5798065 Picha Aug 1998 A
5800420 Gross et al. Sep 1998 A
5800529 Brauker et al. Sep 1998 A
5806517 Gerhardt et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5807406 Brauker et al. Sep 1998 A
5811487 Schulz, Jr. et al. Sep 1998 A
5814599 Mitragotri et al. Sep 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5836887 Oka et al. Nov 1998 A
5836989 Shelton Nov 1998 A
5840148 Campbell et al. Nov 1998 A
5848991 Gross et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5861019 Sun et al. Jan 1999 A
5863400 Drummond et al. Jan 1999 A
5871514 Wiklund et al. Feb 1999 A
5882494 Van Antwerp Mar 1999 A
5895235 Droz Apr 1999 A
5897578 Wiklund et al. Apr 1999 A
5899855 Brown May 1999 A
5904708 Goedeke May 1999 A
5913998 Butler et al. Jun 1999 A
5914026 Blubaugh, Jr. et al. Jun 1999 A
5917346 Gord Jun 1999 A
5919215 Wiklund et al. Jul 1999 A
5928155 Eggers et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5933136 Brown Aug 1999 A
5944661 Swette et al. Aug 1999 A
5954643 Vanantwerp et al. Sep 1999 A
5954954 Houck et al. Sep 1999 A
5957854 Besson et al. Sep 1999 A
5957903 Mirzaee et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5963132 Yoakum Oct 1999 A
5964993 Blubaugh et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5976085 Kimball et al. Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
5999848 Gord et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6001471 Bries et al. Dec 1999 A
6011984 Van Antwerp et al. Jan 2000 A
6016448 Busacker et al. Jan 2000 A
6023629 Tamada Feb 2000 A
6027445 Von Bahr Feb 2000 A
6036924 Simons et al. Mar 2000 A
6049727 Crothall Apr 2000 A
6059946 Yukawa et al. May 2000 A
6063637 Arnold et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6081736 Colvin et al. Jun 2000 A
6083523 Dionne et al. Jul 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6107083 Collins et al. Aug 2000 A
6115634 Donders et al. Sep 2000 A
6117290 Say et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6122536 Sun et al. Sep 2000 A
6123827 Wong et al. Sep 2000 A
6127154 Mosbach et al. Oct 2000 A
6134461 Say et al. Oct 2000 A
6135978 Houben et al. Oct 2000 A
6142939 Eppstein et al. Nov 2000 A
6144869 Berner et al. Nov 2000 A
6162611 Heller et al. Dec 2000 A
6167614 Tuttle et al. Jan 2001 B1
6168568 Gavriely Jan 2001 B1
6169155 Alvarez et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6180416 Kurnik et al. Jan 2001 B1
6187062 Oweis et al. Feb 2001 B1
6189536 Martinez et al. Feb 2001 B1
6192891 Gravel et al. Feb 2001 B1
6201980 Darrow et al. Mar 2001 B1
6201993 Kruse et al. Mar 2001 B1
6206856 Mahurkar Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6212424 Robinson Apr 2001 B1
6214185 Offenbacher et al. Apr 2001 B1
6223083 Rosar Apr 2001 B1
6230059 Duffin May 2001 B1
6231879 Li et al. May 2001 B1
6233080 Brenner et al. May 2001 B1
6233471 Berner et al. May 2001 B1
6241863 Monbouquette Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6256522 Schultz Jul 2001 B1
6259937 Schulman et al. Jul 2001 B1
6272364 Kurnik Aug 2001 B1
6272480 Tresp et al. Aug 2001 B1
6274285 Gries et al. Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6284478 Heller et al. Sep 2001 B1
6298254 Tamada Oct 2001 B2
6299578 Kurnik et al. Oct 2001 B1
6299583 Eggers et al. Oct 2001 B1
6300002 Webb et al. Oct 2001 B1
6302855 Knobbe et al. Oct 2001 B1
6309351 Kurnik et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6315738 Nishikawa et al. Nov 2001 B1
6325978 Labuda et al. Dec 2001 B1
6326160 Dunn et al. Dec 2001 B1
6329161 Heller et al. Dec 2001 B1
6329929 Weijand et al. Dec 2001 B1
6330464 Colvin, Jr. et al. Dec 2001 B1
6343225 Clark, Jr. Jan 2002 B1
6356776 Berner et al. Mar 2002 B1
6365670 Fry Apr 2002 B1
6366794 Moussy et al. Apr 2002 B1
6370941 Nakamura et al. Apr 2002 B2
6379301 Worthington et al. Apr 2002 B1
6379317 Kintzig et al. Apr 2002 B1
6387709 Mason et al. May 2002 B1
6406066 Uegane Jun 2002 B1
6406426 Reuss et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6416651 Miller Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6447448 Ishikawa et al. Sep 2002 B1
6447542 Weadock Sep 2002 B1
6461496 Feldman et al. Oct 2002 B1
6464849 Say et al. Oct 2002 B1
6466810 Ward et al. Oct 2002 B1
6471689 Joseph et al. Oct 2002 B1
6475750 Han et al. Nov 2002 B1
6477392 Honigs et al. Nov 2002 B1
6477395 Schulman et al. Nov 2002 B2
6481440 Gielen et al. Nov 2002 B2
6484046 Say et al. Nov 2002 B1
6494830 Wessel Dec 2002 B1
6498043 Schulman et al. Dec 2002 B1
6510329 Heckel Jan 2003 B2
6512939 Colvin, Jr. et al. Jan 2003 B1
6520997 Pekkarinen et al. Feb 2003 B1
6526298 Khalil et al. Feb 2003 B1
6527729 Turcott Mar 2003 B1
6534711 Pollack Mar 2003 B1
6537318 Ita et al. Mar 2003 B1
6541266 Modzelewski et al. Apr 2003 B2
6544212 Galley et al. Apr 2003 B2
6545085 Kilgour et al. Apr 2003 B2
6546268 Ishikawa et al. Apr 2003 B1
6546269 Kurnik Apr 2003 B1
6551496 Moles et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553244 Lesho et al. Apr 2003 B2
6558320 Causey et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6563244 Yamauchi et al. May 2003 B1
6565509 Say et al. May 2003 B1
6569521 Sheridan et al. May 2003 B1
6572545 Knobbe et al. Jun 2003 B2
6574490 Abbink et al. Jun 2003 B2
6575905 Knobbe et al. Jun 2003 B2
6579498 Eglise Jun 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6585763 Keilman et al. Jul 2003 B1
6589229 Connelly et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6605072 Struys et al. Aug 2003 B2
6607509 Bobroff et al. Aug 2003 B2
6607658 Heller et al. Aug 2003 B1
6612984 Kerr, II Sep 2003 B1
6613379 Ward et al. Sep 2003 B2
6618934 Feldman et al. Sep 2003 B1
6633772 Ford et al. Oct 2003 B2
6641533 Causey et al. Nov 2003 B2
6642015 Vachon et al. Nov 2003 B2
6645181 Lavi et al. Nov 2003 B1
6648821 Lebel et al. Nov 2003 B2
6653091 Dunn et al. Nov 2003 B1
6654625 Say et al. Nov 2003 B1
6673022 Bobo et al. Jan 2004 B1
6673596 Sayler et al. Jan 2004 B1
6683535 Utke Jan 2004 B1
6687522 Tamada Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6699188 Wessel Mar 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6699383 Lemire et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6702972 Markle Mar 2004 B1
6721587 Gough Apr 2004 B2
6731976 Penn et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6742635 Hirshberg Jun 2004 B2
6743635 Neel et al. Jun 2004 B2
6773565 Kunimoto et al. Aug 2004 B2
6802957 Jung et al. Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6813519 Lebel et al. Nov 2004 B2
6862465 Shults et al. Mar 2005 B2
6869413 Langley et al. Mar 2005 B2
6893552 Wang et al. May 2005 B1
6895263 Shin et al. May 2005 B2
6925393 Kalatz et al. Aug 2005 B1
6931327 Goode, Jr. et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6952604 DeNuzzio et al. Oct 2005 B2
6965791 Hitchcock et al. Nov 2005 B1
6998247 Monfre et al. Feb 2006 B2
7011630 Desai et al. Mar 2006 B2
7016713 Gardner et al. Mar 2006 B2
7022072 Fox et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7027848 Robinson et al. Apr 2006 B2
7029444 Shin et al. Apr 2006 B2
7058437 Buse et al. Jun 2006 B2
7060059 Keith et al. Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7134999 Brauker et al. Nov 2006 B2
7162290 Levin Jan 2007 B1
7169289 Schulein et al. Jan 2007 B2
7183102 Monfre et al. Feb 2007 B2
7225535 Feldman et al. Jun 2007 B2
7229288 Stuart et al. Jun 2007 B2
7261690 Teller et al. Aug 2007 B2
7267665 Steil et al. Sep 2007 B2
7276029 Goode et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7295867 Berner et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7354420 Steil et al. Apr 2008 B2
7359723 Jones Apr 2008 B2
7367942 Grage et al. May 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7417164 Suri Aug 2008 B2
7426408 DeNuzzio et al. Sep 2008 B2
7433727 Ward et al. Oct 2008 B2
7519408 Rasdal et al. Apr 2009 B2
7519478 Bartkowiak et al. Apr 2009 B2
7523004 Bartkowiak et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7587287 Connolly et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604593 Parris et al. Oct 2009 B2
7618368 Brown Nov 2009 B2
7618369 Hayter et al. Nov 2009 B2
7624028 Brown Nov 2009 B1
7636602 Baru Fassio et al. Dec 2009 B2
7640032 Jones Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7647237 Malave et al. Jan 2010 B2
7657297 Simpson et al. Feb 2010 B2
7695434 Malecha Apr 2010 B2
7711402 Shults et al. May 2010 B2
7731659 Malecha Jun 2010 B2
7761126 Gardner et al. Jul 2010 B2
7766830 Fox et al. Aug 2010 B2
7771352 Shults et al. Aug 2010 B2
7774145 Brauker et al. Aug 2010 B2
7792562 Shults et al. Sep 2010 B2
7927274 Rasdal et al. Apr 2011 B2
8005524 Brauker et al. Aug 2011 B2
8005525 Goode et al. Aug 2011 B2
8010174 Goode, Jr. et al. Aug 2011 B2
8282550 Rasdal et al. Oct 2012 B2
8673598 Schroder et al. Mar 2014 B2
9538946 Rasdal et al. Jan 2017 B2
20010016682 Berner et al. Aug 2001 A1
20010041830 Varalli et al. Nov 2001 A1
20010051768 Schulman et al. Dec 2001 A1
20020002326 Causey, III Jan 2002 A1
20020016535 Martin et al. Feb 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020022883 Burg Feb 2002 A1
20020026110 Parris et al. Feb 2002 A1
20020026111 Ackerman Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020042561 Schulman et al. Apr 2002 A1
20020043471 Ikeda et al. Apr 2002 A1
20020045808 Ford et al. Apr 2002 A1
20020065453 Lesho et al. May 2002 A1
20020068860 Clark, Jr. Jun 2002 A1
20020084196 Liamos et al. Jul 2002 A1
20020099282 Knobbe et al. Jul 2002 A1
20020099997 Piret Jul 2002 A1
20020111547 Knobbe et al. Aug 2002 A1
20020119711 Van Antwerp et al. Aug 2002 A1
20020151796 Koulik Oct 2002 A1
20020155615 Novikov et al. Oct 2002 A1
20020161288 Shin Oct 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020188185 Sohrab Dec 2002 A1
20020193885 Legeay et al. Dec 2002 A1
20020198513 Lebel et al. Dec 2002 A1
20030004432 Assenheimer Jan 2003 A1
20030006669 Pei et al. Jan 2003 A1
20030023171 Sato et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030050537 Wessel Mar 2003 A1
20030050546 Desai et al. Mar 2003 A1
20030054428 Monfre et al. Mar 2003 A1
20030060765 Campbell et al. Mar 2003 A1
20030070548 Clausen Apr 2003 A1
20030076082 Morgan et al. Apr 2003 A1
20030078481 McIvor et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030091433 Tam et al. May 2003 A1
20030097082 Purdy et al. May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030100821 Heller et al. May 2003 A1
20030114836 Estes Jun 2003 A1
20030117296 Seely Jun 2003 A1
20030120152 Omiya Jun 2003 A1
20030125612 Fox et al. Jul 2003 A1
20030125613 Enegren et al. Jul 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030176183 Drucker et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030188427 Say et al. Oct 2003 A1
20030199744 Buse et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030211625 Cohan Nov 2003 A1
20030212317 Kovatchev et al. Nov 2003 A1
20030212346 Yuzhakov Nov 2003 A1
20030212347 Sohrab Nov 2003 A1
20030235817 Bartkowiak et al. Dec 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040015063 DeNuzzio et al. Jan 2004 A1
20040015134 Lavi et al. Jan 2004 A1
20040024327 Brodnick Feb 2004 A1
20040030285 Lavi et al. Feb 2004 A1
20040030294 Mahurkar Feb 2004 A1
20040039298 Abreu Feb 2004 A1
20040039406 Jessen Feb 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040068230 Estes et al. Apr 2004 A1
20040073095 Causey et al. Apr 2004 A1
20040074785 Holker et al. Apr 2004 A1
20040078219 Kaylor Apr 2004 A1
20040106857 Gough Jun 2004 A1
20040143173 Reghabi et al. Jul 2004 A1
20040146909 Duong et al. Jul 2004 A1
20040152187 Haight et al. Aug 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040173472 Jung et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Morgensen Oct 2004 A1
20040219664 Heller et al. Nov 2004 A1
20040220517 Starkweather et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20050010265 Baru Fassio et al. Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050026689 Marks Feb 2005 A1
20050027180 Goode et al. Feb 2005 A1
20050027181 Goode et al. Feb 2005 A1
20050027182 Siddiqui et al. Feb 2005 A1
20050027462 Goode et al. Feb 2005 A1
20050027463 Goode et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050033132 Shults et al. Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050043598 Goode et al. Feb 2005 A1
20050049472 Manda et al. Mar 2005 A1
20050049473 Desai et al. Mar 2005 A1
20050051427 Brauker et al. Mar 2005 A1
20050051440 Simpson et al. Mar 2005 A1
20050054909 Petisce et al. Mar 2005 A1
20050056552 Simpson et al. Mar 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096519 DeNuzzio et al. May 2005 A1
20050101847 Routt et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050115832 Simpson et al. Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050139489 Davies et al. Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050143675 Neel et al. Jun 2005 A1
20050154271 Rasdal et al. Jul 2005 A1
20050177398 Watanabe et al. Aug 2005 A1
20050182451 Griffin et al. Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050211571 Schulein et al. Sep 2005 A1
20050215872 Berner et al. Sep 2005 A1
20050239154 Feldman et al. Oct 2005 A1
20050242479 Petisce et al. Nov 2005 A1
20050245795 Goode et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050261563 Zhou et al. Nov 2005 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060040402 Brauker et al. Feb 2006 A1
20060079809 Goldberger et al. Apr 2006 A1
20060094947 Kovatchev May 2006 A1
20060100588 Brunnberg et al. May 2006 A1
20060148096 Jina Jul 2006 A1
20060183984 Dobbles et al. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060258929 Goode et al. Nov 2006 A1
20060281985 Ward et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070027385 Brister et al. Feb 2007 A1
20070032706 Kamath et al. Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070049873 Hansen et al. Mar 2007 A1
20070066873 Kamath et al. Mar 2007 A1
20070203410 Say et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070208244 Brauker et al. Sep 2007 A1
20070208245 Brauker et al. Sep 2007 A1
20070208246 Brauker et al. Sep 2007 A1
20070213610 Say et al. Sep 2007 A1
20070225579 Lucassen et al. Sep 2007 A1
20070232876 Otto et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20080021666 Goode et al. Jan 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080071157 Mcgarraugh et al. Mar 2008 A1
20080071158 Mcgarraugh et al. Mar 2008 A1
20080072663 Keenan et al. Mar 2008 A1
20080119709 Wang et al. May 2008 A1
20080154101 Jain et al. Jun 2008 A1
20080183061 Goode et al. Jul 2008 A1
20080183399 Goode et al. Jul 2008 A1
20080187655 Markle et al. Aug 2008 A1
20080188722 Markle et al. Aug 2008 A1
20080188725 Markle et al. Aug 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080189051 Goode et al. Aug 2008 A1
20080193936 Squirrell Aug 2008 A1
20080194837 Kim et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode et al. Aug 2008 A1
20080195967 Goode et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080210557 Heller et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080255438 Saidara et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080305009 Gamsey et al. Dec 2008 A1
20080305506 Suri Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306433 Dobbles et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20090005666 Shin et al. Jan 2009 A1
20090012379 Goode et al. Jan 2009 A1
20090018418 Markle et al. Jan 2009 A1
20090018426 Markle et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090061528 Suri Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090062645 Fehre et al. Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090081803 Gamsey et al. Mar 2009 A1
20090099434 Liu et al. Apr 2009 A1
20090124877 Goode, Jr. et al. May 2009 A1
20090124878 Goode, Jr. et al. May 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090177143 Markle et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247857 Harper et al. Oct 2009 A1
20090264719 Markle et al. Oct 2009 A1
20090264856 Lebel et al. Oct 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036224 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100161269 Kamath et al. Jun 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode et al. Jul 2010 A1
20100179399 Goode et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179405 Goode et al. Jul 2010 A1
20100179406 Goode et al. Jul 2010 A1
20100179407 Goode, Jr. et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode et al. Jul 2010 A1
20100185072 Goode et al. Jul 2010 A1
20100185073 Goode et al. Jul 2010 A1
20100185074 Goode et al. Jul 2010 A1
20100204555 Shults et al. Aug 2010 A1
20100214104 Goode et al. Aug 2010 A1
20100217106 Goode et al. Aug 2010 A1
20100217555 Goode, Jr. et al. Aug 2010 A1
20100234707 Goode, Jr. et al. Sep 2010 A1
20100234796 Kamath et al. Sep 2010 A1
20100235106 Goode, Jr. et al. Sep 2010 A1
20100240975 Goode, Jr. et al. Sep 2010 A1
20100240976 Goode, Jr. et al. Sep 2010 A1
20110118579 Goode, Jr. et al. May 2011 A1
20110124997 Goode, Jr. et al. May 2011 A1
20110130970 Goode, Jr. et al. Jun 2011 A1
20110137601 Goode, Jr. et al. Jun 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231140 Goode, Jr. et al. Sep 2011 A1
20110231141 Goode, Jr. et al. Sep 2011 A1
20110231142 Goode, Jr. et al. Sep 2011 A1
Foreign Referenced Citations (117)
Number Date Country
2127172 Jul 1998 CA
0 098 592 Jan 1984 EP
0 107 634 May 1984 EP
0 127 958 Dec 1984 EP
0 286 118 Oct 1988 EP
0 288 793 Nov 1988 EP
0 320 109 Jun 1989 EP
0 352 610 Jan 1990 EP
0 352 631 Jan 1990 EP
0 353 328 Feb 1990 EP
0 390 390 Oct 1990 EP
0396788 Nov 1990 EP
0 406 473 Jan 1991 EP
0 440 044 Aug 1991 EP
0 441 252 Aug 1991 EP
0 441 394 Aug 1991 EP
0 467 078 Jan 1992 EP
0534074 Mar 1993 EP
0 563 795 Oct 1993 EP
0 323 605 Jan 1994 EP
0 647 849 Apr 1995 EP
0 424 633 Jan 1996 EP
0 776 628 Jun 1997 EP
0817809 Jan 1998 EP
0 838 230 Apr 1998 EP
0 880 936 Dec 1998 EP
0 885 932 Dec 1998 EP
0967788 Dec 1999 EP
0995805 Apr 2000 EP
1 077 634 Feb 2001 EP
1 078 258 Feb 2001 EP
1 153 571 Nov 2001 EP
0 817 809 Jul 2002 EP
1 266 607 Dec 2002 EP
2 226 086 Aug 2010 EP
2 223 710 Sep 2010 EP
2656423 Jun 1991 FR
2760962 Sep 1998 FR
1 442 303 Jul 1976 GB
2 149 918 Jun 1985 GB
S6283649 Apr 1987 JP
S6283849 Apr 1987 JP
04-215739 Aug 1992 JP
H0783871 Mar 1995 JP
2002-513602 May 2002 JP
2002189015 Jul 2002 JP
WO 1989002720 Apr 1989 WO
WO 1990000738 Jan 1990 WO
WO 1990010861 Sep 1990 WO
WO 1992013271 Aug 1992 WO
WO 1993014693 Aug 1993 WO
WO 1994022367 Oct 1994 WO
WO 1995007109 Mar 1995 WO
WO 1995013838 May 1995 WO
WO 1996014026 May 1996 WO
WO 1996025089 Aug 1996 WO
WO 1996030431 Oct 1996 WO
WO 1997001986 Jan 1997 WO
WO 1997006727 Feb 1997 WO
WO 1997028737 Aug 1997 WO
WO 1998024358 Jun 1998 WO
WO-9838906 Sep 1998 WO
WO 1999056613 Apr 1999 WO
WO 1999048419 Sep 1999 WO
WO 1999058051 Nov 1999 WO
WO 1999058973 Nov 1999 WO
WO 2000012720 Mar 2000 WO
WO 2000013002 Mar 2000 WO
WO 2000013003 Mar 2000 WO
WO 2000019887 Apr 2000 WO
WO 2000032098 Jun 2000 WO
WO 2000033065 Jun 2000 WO
WO 2000049941 Aug 2000 WO
WO 2000059373 Oct 2000 WO
WO 2000074753 Dec 2000 WO
WO 2000078210 Dec 2000 WO
WO-0112158 Feb 2001 WO
WO 2001016579 Mar 2001 WO
WO 2001020019 Mar 2001 WO
WO 2001020334 Mar 2001 WO
WO 2001034243 May 2001 WO
WO 2001052727 Jul 2001 WO
WO 2001058348 Aug 2001 WO
WO 2001068901 Sep 2001 WO
WO 2001069222 Sep 2001 WO
WO 2001088524 Nov 2001 WO
WO 2001088534 Nov 2001 WO
WO 2002005702 Jan 2002 WO
WO 2002024065 Mar 2002 WO
WO-0078210 May 2002 WO
WO 2002082989 Oct 2002 WO
WO 2002089666 Nov 2002 WO
WO 2002100266 Dec 2002 WO
WO 2003000127 Jan 2003 WO
WO-03063700 Aug 2003 WO
WO 2003101862 Dec 2003 WO
WO 2004110256 Dec 2004 WO
WO 2005011489 Feb 2005 WO
WO 2005012873 Feb 2005 WO
WO 2005026689 Mar 2005 WO
WO 2005032400 Apr 2005 WO
WO 2005057168 Jun 2005 WO
WO 2005057175 Jun 2005 WO
WO 2005078424 Aug 2005 WO
WO-2005026689 Oct 2005 WO
WO-2006017358 Feb 2006 WO
WO 2006050405 May 2006 WO
WO 2006105146 Oct 2006 WO
WO 2006118713 Nov 2006 WO
WO 2006131288 Dec 2006 WO
WO 2007002579 Jan 2007 WO
WO 2007065285 Jun 2007 WO
WO 2007097754 Aug 2007 WO
WO 2007114943 Oct 2007 WO
WO 2007127606 Nov 2007 WO
WO 2007143225 Dec 2007 WO
WO 2008076868 Jun 2008 WO
Non-Patent Literature Citations (557)
Entry
US 7,530,950 B2, 05/2009, Brister et al. (withdrawn)
Abel et al. 1984. Experience with an implantable glucose sensor as a prerequisite of an artificial beta cell. Biomed Biochim Acta 43(5):577-584.
Abel et al. 2002. Biosensors for in vivo glucose measurement: can we cross the experimental stage. Biosensors & Bioelectronics 17:1059-1070.
Adilman, Glenn, Dec. 1983. Videogames: Knowing the Score, Creative Computing 9:224 (5 pages), Dialog: File 148, Acc# 01891055.
Alcock & Turner 1994. Continuous Analyte Monitoring to Aid Clinical Practice. IEEE Engineering in Med & Biol Mag 13:319-325.
American Heritage Dictionary, 4th Edition. 2000. Houghton Mifflin Company, p. 82.
Amin et al. 2003. Hypoglycemia prevalence in prepubertal children with type 1 diabetes on standard insulin regimen: Use of continuous glucose monitoring system. Diabetes Care 26(3):662-667.
Answers.com. 2006. “xenogenic.” The American Heritage Stedman's Medical Dictionary. Houghton Mifflin Company, 2002. Answers.com Nov. 7, 2006 http://www.Answers.com/topic/xenogenic.
Armour et al. Dec. 1990. Application of Chronic Intravascular Blood Glucose Sensor in Dogs. Diabetes 39:1519-1526.
Atanasov et al. 1994. Biosensor for continuous glucose monitoring. Biotechnology and Bioengineering 43:262-266.
Atanasov et al. 1997. Implantation of a refillable glucose monitoring-telemetry device. Biosensors & Bioelectronics 12:669-680.
Aussedat et al. 1997. A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycaemic alarm. Biosensors & Bioelectronics 12(11): 1061-1071.
Bailey et al. 2007. Reduction in hemoglobin A 1 c with real-time continuous glucose monitoring: results from a 12-week observational study. Diabetes Technology & Therapeutics 9(3):203-210.
Baker et al. 1996. Dynamic delay and maximal dynamic error in continuous biosensors. Analytical Chemistry 68(8):1292-1297.
Bani Amer, M. M. 2002. An accurate amperometric glucose sensor based glucometer with eliminated cross-sensitivity. J Med Eng Technol 26(5):208-213.
Bard et al. 1980. Electrochemical Methods. John Wiley & Sons, pp. 173-175.
Beach et al. 1999. Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring. IEEE Transactions on Instrumentation and Measurement 48(6):1239-1245.
Bellucci et al. Jan. 1986. Electrochemical behaviour of graphite-epoxy composite materials (GECM) in aqueous salt solutions. J Applied Electrochemistry 16( 1):15-22.
Bessman et al. 1973. Progress toward a glucose sensor for the artificial pancreas. Proceedings of a Workshop on Ion-Selective Microelectrodes, Jun. 4-5, 1973, Boston, MA, pp. 189-197.
Biermann et al. 2008. How would patients behave if they were continually informed of their blood glucose levels? A simulation study using a “virtual” patient. Diabetes Technology & Therapeutics 10:178-187.
Bindra et al. 1991. Design and In Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring. Analytical Chemistry 63: 1692-1696.
Bisenberger et al. 1995. A triple-step potential waveform at enzyme multisensors with thick-film gold electrodes for detection of glucose and sucrose. Sensors and Actuators B 28:181-189.
Bland et al. 1986. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307-310.
Bland et al. 1990. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput Biol Med 20(5):337-340.
Bobbioni-Harsch et al. 1993. Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats. J Biomed Eng 15:457-463.
Bode et al. 1999. Continuous glucose monitoring used to adjust diabetes therapy improves glycosylated hemoglobin: A pilot study. Diabetes Research and Clinical Practice 46:183-190.
Bode et al. 2000. Using the continuous glucose monitoring system to improve the management of type 1 diabetes. Diabetes Technology & Therapeutics 2(Suppl 1):S43-S48.
Bode, B. W. 2000. Clinical utility of the continuous glucose monitoring system. Diabetes Technology & Therapeutics (Suppl 1):S35-s41.
Boedeker Plastics, Inc. 2009. Polyethylene Specifications Data Sheet, http://www.boedeker.com/polye_p.htm [Aug. 19, 2009 3:36:33 PM].
Boland et al. 2001. Limitations of conventional methods of self-monitoring of blood glucose. Diabetes Care 24(11):1858-1862.
Bolinder et al. 1992. Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia 35:1177-1180.
Bolinder et al. 1997. Self-monitoring of blood glucose in type 1 diabetic patients: Comparison with continuous microdialysis measurements of glucose in subcutaneous adipose tissue during ordinary life conditions. Diabetes Care 20(1):64-70.
Bott, A. 1998. Electrochemical methods for the determination of glucose. Current Separations 17(1 ):25-31.
Bott, A. W. 1997. A Comparison of Cyclic Voltammetry and Cyclic Staircase Voltammetry. Current Separations 16(1):23-26.
Bowman et al. 1986. The packaging of implantable integrated sensors. IEEE Trans Biomed Eng (BME) 33(2):248-255.
Brauker et al. Jun. 27, 1996. Local Inflammatory Response Around Diffusion Chambers Containing Xeongrafts. Transplantation 61(12):1671-1677.
Braunwald, 2008. Biomarkers in heart farlure. NEJM 358: 2148-2159.
Bremer et al. 1999. Is blood glucose predictable from previous values? A solicitation for data. Diabetes 48:445-451.
Bremer et al. 2001. Benchmark data from the literature for evaluation of new glucose sensing technologies, Diabetes Technology & Therapeutics 3(3):409-418.
Brooks et al. 1987/88. Development of an on-line glucose sensor for fermentation momtoring. Biosensors, 3:45-56 (1987/88).
Bruckel et al. 1989. In vivo measurement of subcutaneous glucose concentrations with an enzymatic glucose sensor and a wick method. Klin Wochenschr 67:491-495.
Brunstein et al. 1989. Preparation and validation of implantable electrodes for the measurement of oxygen and glucose. Biomed Biochim. Acta 48(11/12):911-917.
Cai et al. 2004. A wireless, remote query glucose biosensor based on a pH-sensitive polymer, Analytical Chemistry 76(4):4038-4043.
Cameron et al. 1997. Micromodular Implants to provide electrical stimulation of paralyzed muscles and limbs. IEEE Trans Biomed Eng (BME) 44(9):781-790.
Campanella et al. 1993. Biosensor for direct determination of glucose and lactate in undiluted biological fluids. Biosensors & Bioelectronics 8:307-314.
Candas et al. 1994. An adaptive plasma glucose controller based on a nonlinear insulin/glucose model. . IEEE Trans Biomed Eng (BME) 41(2): 116-124.
Cass et al. 1984. Ferrocene-mediated enzyme electrodes for amperometric determination of glucose. Analytical Chemistry 36:667-671.
Cassidy et al., Apr. 1993. Novel electrochemical device for the detection of cholesterol or glucose. Analyst 118:415-418.
Chase et al. 2001. Continuous subcutaneous glucose monitoring in children with type 1 diabetes. Pediatrics 107:222-226.
Chen et al. 2002. Defining the period of recovery of the glucose concentration after its local perturbation by the implantation of a miniature sensor. Clin Chem Lab Med 40:786-789.
Chia et al. 2004. Glucose sensors: toward closed loop insulin delivery. Endocrinol Metab Clin North Am 33:175-95.
Choleau et al. 2002. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 1. Effect of measurement uncertainties on the determination of sensor sensitivity and background current. Biosensors and Bioelectronics 17:641-646.
Choleau et al. 2002. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 2. Superiority of the one-point calibration method. Biosensors and Bioelectronics 17:647-654.
Ciba Speciality Chemicals, Incs. 1998. Ciba® Irgacure® 2959 Photoinitiator, Product Description. Apr. 2, 1998, Basel, Switzerland (3 pages).
Claremont et al. 1986. Subcutaneous implantation of a ferrocene-mediated glucose sensor in pigs. Diabetologia 29:817-821.
Claremont et al. Jul. 1986. Potentially-implantable, ferrocene-mediated glucose sensor. J Biomed Eng 8: 272-274.
Clark et al. 1981. One-minute electrochemical enzymic assay for cholesterol in biological materials. Clin Chem 27(12):1978-1982.
Clark et al. 1987. Configurational cyclic voltammetry: increasing the specificity and reliability of implanted electrodes. IEEE/Ninth Annual Conference of the Engineering in Medicine and Biology Society, pp. 0782-0783.
Clark et al. 1988. Long-term stability of electroenzymatic glucose sensors implanted in mice. Trans Am Soc Artif Intern Organs 34:259-265.
Clarke et al. Sep.-Oct. 1987. Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose. Diabetes Care 10(5):622-628.
CLSI. 2008. Performance metrics for continuous interstitial glucose monitoring; approved guideline, CLSI document POCT05-A. Wayne, PA: Clinical and Laboratory Standards Institute. 28(33) (72 pages).
Colangelo et al. 1967. Corrosion rate measurements in vivo. J Biomed Matls Res 1:405-414.
Colowick et al. 1976. Methods in Enzymology, vol. XLIV, Immobilized Enzymes. New York: Academic Press (11 pages).
Cox et al. 1985. Accuracy of perceiving blood glucose in IDDM. Diabetes Care 8(6):529-536.
Csoregi et al. 1994. Amperometric microbiosensors for detection of hydrogen peroxide and glucose based on peroxidase-modified carbon fibers. Electroanalysis 6:925-933.
Csoregi et al., 1994. Design, characterization, and one-point in vivo calibration of a subcutaneously implanted glucose electrode. Analytical Chemistry 66(19):3131-3138.
Currie et al. 2004. Novel non-intrusive trans-dermal remote wireless micro-fluidic monitoring systme applied to continuous glucose and lactate assays for casualty care and combat readiness assessment. RTO HFM Symposium, St. Pete Beach, RTO-MP-HFM-109, Aug. 16-18, 2004 (18 pages).
Danielsson et al. 1988. Enzyme thermistors. Methods in Enzymology 137:181-197.
Dassau et al. 2009. In silico evaluation platform for artificial pancreatic (3-cell development—a dynamic simulator for closed loop control with hardware-in-the-loop. Diabetes Technology & Therapeutics 11(3):1-8.
Davieset al. 1992. Polymer membranes in clinical sensor applications. I. An overview of membrane function. Biomaterials 13(14):971-978.
Davis et al. 1983. Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase. Enzyme Microb Technol 5:383-388.
Deutsch et al. 1994. Time series analysis and control of blood glucose levels in diabetic patients. Computer Methods and Programs in Biomedicine 41:167-182.
Dixon et al. 2002. Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. J Neuroscience Methods 119:135-142.
DuPont1 Dimension AR®. 1998. The chemistry analyzer that makes the most of your time, money and effort. Catalog. Dade International, Chemistry Systems. Newark, DE (18 pages).
Durliat et al. 1976. Spectrophotometric and electrochemical determinations of L(+)-lactate in blood by use of lactate dehydrogenase from yeast. Clin Chem 22(11): 1802-1805.
Edwards Lifesciences. 2002. Accuracy for you and your patients. Marketing materials (4 pages).
El Degheidy et al. 1986. Optimization of an implantable coated wire glucose sensor. J Biomed Eng 8:121-129.
El-Khatib et al. 2007. Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic swine. J Diabetes Science and Technology 1(2):181-192.
El-Sa'ad et al. 1990. Moisture Absorption by Epoxy Resins: the Reverse Thermal Effect. J Materials Science 25:3577-3582.
Ernst et al. 2002. Reliable glucose monitoring through the use of microsystem technology. Analytical Bioanalytical Chemistry 373:758-761.
Fabietti et al. 2007. Clinical validation of a new control-oriented model of insulin and glucose dynamos in subjects with type 1 diabetes. Diabetes Technology & Therapeutics 9(4):327-338.
Fahy et al. Mar. 2008. An analysis: hyperglycemic intensive care patients need continuous glucose monitoring—easier said than done. J Diabetes Science and Technology 2(2):201-204.
Fare et al. 1998. Functional characterization of a conducting polymer-based immunoassay system. Biosensors & Bioelectronics 13(3-4):459-470.
Feldman et al. 2003. A continuous glucose sensor based on wired enzyme technology—results from a 3-day trial in patients with type 1 diabetes. Diabetes Technology & Therapeutics 5(5):769-779.
Fischer et al. 1987. Assessment of subcutaneous glucose concentration: validation of the wick technique as a reference for implanted electrochemical sensors in normal and diabetic dogs. Diabetologia 30:940-945.
Fischer et al. 1989. Oxygen Tension at the Subcutaneous Implantation Site of Glucose Sensors. Biomed Biochem 11/12:965-972.
Fischer et al. 1995. (Abstract) Hypoglycaemia-warning by means of subcutaneous electrochemical glucose sensors: an animal study. Horm Metab Rese 27:53.
Freedman et al. 1991. Statistics, Second Edition, W.W. Norton & Company, p. 74.
Freiberger, Paul, 1992. Video Game Takes on Diabetes Superhero ‘Captain Novolin’Offers Treatment Tips, San Francisco Examiner, Jun. 26, 1992, Fourth Edition, Business Sec. B1.
Frohnauer et al. 2001. Graphical human insulin time-activity profiles using standardized definitions. Diabetes Technology & Therapeutics 3(3):419-429.
Frost et al. 2002. Implantable chemical sensors for real-time clinical monitoring: Progress and challenges. Current Opinion in Chemical Biology 6:633-641.
Gabbay et al. 2008. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes. Diabetes Technology & Therapeutics 10:188-193.
Ganesan et al. 2005. Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor. Analytical Biochemistry 343:188-191.
Ganesh et al. Mar. 2008. Evaluation of the VIA® blood chemistry monitor for glucose in healthy and diabetic volunteers, J Diabetes Science and Technology 2(2):182-193.
Garg et al. 1999. Correlation of fingerstick blood glucose measurements with GlucoWatch biographer glucose results in young subjects with type 1 diabetes. D iabetes Care 22(10):1708-1714.
Garg et al. 2004. Improved Glucose Excursions Using an Implantable Real-Time continuous Glucose Sensor in Adults with Type I Diabetes. Diabetes Care 27:734-738.
Gerritsen et al. 1999. Performance of subcutaneously implanted glucose sensors for continuous monitoring. The Netherlands Journal of Medicine 54:167-179.
Gerritsen, M. 2000. Problems associated with subcutaneously implanted glucose sensors. Diabetes Care 23(2):143-145.
Gilligan et al. 1994. Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model. Diabetes Care 17(8):882-887.
Gilligan et al. 2004. Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans. Diabetes Technology & Therapeutics 6:378-386.
Godsland et al. 2001. Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: The Importance of Basal Glucose Levels. Clinical Science 110:1-9.
Gouda et al., Jul. 4, 2003. Thermal inactivation of glucose oxidase. The Journal of Biological Chemistry 278(27):24324-24333.
Gough 2001. The implantable glucose sensor: An example of bioengineering design. Introduction to Bioengineering, Chapter 3, pp. 57-66.
Gough et al. 2000. Immobilized glucose oxidase in implantable glucose sensor technology. Diabetes Technology & Therapeutics 2(3):377-380.
Gough et al. 2003. Frequency characterization of blood glucose dynamics. Annals of Biomedical Engineering 31:91-97.
Gross et al. 2000. Efficacy and reliability of the continuous glucose monitoring system. Diabetes Technology & Therapeutics 2(Suppl 1):S19-S26.
Gross et al. 2000. Performance evaluation of the MiniMed® continuous glucose monitoring system during patient home use. Diabetes Technology & Therapeutics 2(1):49-56.
Guerci et al., 2003. Clinical performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion using insulin analogs. Diabetes Care 26:582-589.
Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part I: An adsorption-controlled mechanism. Electrochimica Acta 43(5-6):579-588.
Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: Effect of potential. Electrochimica Acta 43(14-15):2015-2024.
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature. Electrochimica Acta, 44:2455-2462.
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: Phosphate buffer dependence. Electrochimica Acta, 44:4573-4582.
Hall et al. 2000. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: Inhibition by chloride. Electrochimica Acta, 45:3573-3579.
Hamilton Syringe Selection Guide. 2006. Syringe Selection, www.hamiltoncompany.com.
Hashiguchi et al. 1994. Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method: Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients. Diabetes Care 17(5):387-396.
Heise et al. 2003. Hypoglycemia warning signal and glucose sensors: Requirements and concepts. Diabetes Technology & Therapeutics 5:563-571.
Heller 1990. Electrical wiring of redox enzymes. Acc. Chem. Res. 23:128-134.
Heller, A. 1992. Electrical Connection of Enzyme Redox Centers to Electrodes. J. Phys. Chem. 96:3579-3587.
Heller, A. 1999. Implanted electrochemical glucose sensors for the management of diabetes. Annu Rev Biomed Eng 1:153-175.
Heller A. 2003. Plugging metal connectors into enzymes. Nature Biotechnology 21:631-632.
Hicks, 1985. In Situ Monitoring. Clinical Chemistry 31(12):1931-1935.
Hitchman, M. L. 1978. Measurement of Dissolved Oxygen. In Elving et al. (Eds.). . New York: John Wiley & Sons, Chemical Analysis, vol. 49, Chap. 3, pp. 34-49, 59-123.
Hoel, Paul G. 1976. Elementary Statisics, Fourth Edition. John Wiley & Sons, Inc.. pp. 113-114.
Hrapovic et al. 2003. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization. Analytical Chemistry 75:3308-3315.
http://www.merriam-webster.com/dictionary, definition for “aberrant,” Aug. 19, 2008, p. 1.
Huang et al. Aug. 1975. Electrochemical Generation of Oxygen. 1. The Effects of Anions and Cations on Hydrogen Chemisorption and Anodic Oxide Film Formation on Platinum Electrode. 2: The Effects of Anions and Cations on Oxygen Generation on Platinum Electrode. U.S. Department of Commerce/NTIS, pp. 1-116.
Huang et al., Sep. 1997. A 0.5mW Passive Telemetry IC for Biomedical Applications. Proceedings of the 23rd European Solid-State Circuits Conference (ESSCIRC '97), pp. 172-175, Southampton, UK.
Huet al. 1993. A needle-type enzyme-based lactate sensor for in vivo monitoring. Analytica Chimica Acta, 281:503-511.
Hunter et al. Mar. 31, 2000. Minimally Invasive Glucose Sensor and Insulin Delivery System. MIT Home Automation and Healthcare Consortium. Progress Report No. 2-5. 17 pages.
Ishikawa et al. 1998. Initial evaluation of a 290-mm diameter subcutaneous glucose sensor: Glucose monitoring with a biocompatible, flexible-wire, enzyme-based amperometric microsensor in diabetic and nondiabetic humans. J of Diabetes and Its Complications 12:295-301.
Jablecki et al. 2000. Simulations of the frequency response of implantable glucose sensors. Analytical Chemistry 72:1853-1859.
Jaffari et al. 1995. Recent advances in amperometric glucose biosensors for in vivo monitoring. Physiol. Meas. 16: 1-15.
Jaremko et al. 1998. Advances toward the implantable artificial pancreas for treatment of diabetes. Diabetes Care 21(3):444-450.
Jensen et al. 1997. Fast wave forms for pulsed electrochemical detection of glucose by incorporation of reductive desorption of oxidation products. Analytical Chemistry 69(9):1776-1781.
Jeong et al. 2003. In vivo calibration of the subcutaneous amperometric glucose sensors using a nonenzyme electrode. Biosensors and Bioelectronics 19:313-319.
Jeutter et al. 1993. Design of a radio-linked implantable cochlear prosthesis using surface acoustic wave devices. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 40(5):469-477.
Jeutter, D. C. 1982. A transcutaneous implanted battery recharging and biotelemeter power switching system. IEEE Trans Biomed Eng (BME) 29:314-321.
Jobst et al. 1996. Thin-Film Microbiosensors for Glucose-Lactate Monitoring. Analytical Chemistry 8(18): 3173-3179.
Johnson 1991. Reproducible electrodeposition of biomolecules for the fabrication of miniature electroenzymatic biosensors. Sensors and Actuators B 5:85-89.
Johnson et al. 1992. In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Biosensors & Bioelectronics 7:709-714.
Joung et al. 1998. An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer. IEEE Transactions on Power Electronics 13(6):1013-1022.
Jovanovic, L. 2000. The role of continuous glucose monitoring in gestational diabetes meliitus. Diabetes Technology & Therapeutics (Suppl 1):S67-S71.
Kacaniklic et al. May-Jun. 1994. Amperometric Biosensors for Detection of L- and D-Amino Acids Based on Coimmoblized Peroxidase and L- and D-Amino Acid Oxidases in Carbon Paste Electrodes. Electroanalysis, 6(5-6): 381-390.
Kamath et al. Nov. 13-15, 2008. (Abstract) Calibration of a continuous glucose monitor: effect of glucose rate of change. Eighth Annual Diabetes Technology Meeting, p. A88.
Kang et al. 2003. In vitro and short-term in vivo characteristics of a Kel-F thin film modified glucose sensor. Anal Sci 19:1481-1486.
Kaufman et al. 2001. A pilot study of the continuous glucose monitoring system. D iabetes Care 24(12):2030-2034.
Kaufman. 2000. Role of the continuous glucose monitoring system in pediatric patients. Diabetes Technology & Therapeutics 2(1):S-49-S-52.
Kawagoe et al. 1991. Enzyme-modified organic conducting salt microelectrode. Analytical Chemistry 63:2961-2965.
Keedy et al. 1991. Determination of urate in undiluted whole blood by enzyme electrode. Biosensors & Bioelectronics 6:491-499.
Kerner et al. 1988. A potentially implantable enzyme electrode for amperometric measurement of glucose. Horm Metab Res Suppl. 20:8-13.
Kerner et al. 1993. The function of a hydrogen peroxide-detecting electroenzymatic glucose electrode is markedly impaired in human sub-cutaneous tissue and plasma. Biosensors & Bioelectronics 8:473-482.
Kerner, W. 2001. Implantable glucose sensors: Present status and future developments. Exp. Clin. Endocrinol. Diabetes 109(Suppl 2):S341-S346.
Klueh et al. 2003. Use of Vascular Endothelial Cell Growth Factor Gene Transfer to Enhance Implantable Sensor Function in Vivo, Biosensor Function and Vegf Gene Transfer. J Biomed Matls Res 67A:1072-1086.
Kondo et al. 1982. A miniature glucose sensor, implantable in the blood stream. Diabetes Care. 5(3):218-221.
Koschinsky et al. 1988. New approach to technical and clinical evaluaton of devices for self-monitoring of blood glucose. Diabetes Care 11(8): 619-619.
Koschinsky et al. 2001. Sensors for glucose monitoring: Technical and clinical aspects. Diabetes Metab Res Rev 17:113-123.
Kost et al. 1985. Glucose-sensitive membranes containing glucose oxidase: activity, swelling, and permeability studies. J Biomed Matls Res 19:1117-1133.
Koudelka et al. 1989. In vivo response of microfabricated glucose sensors to glycemia changes in normal rats. Biomed Biochim Acta 48(11-12):953-956.
Koudelka et al. 1991. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors. Biosensors & Bioelectronics 6:31-36.
Kovatchev et al. Aug. 2004. Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data. Diabetes Care 27(8): 1922-1928.
Kraver et al. 2001. A mixed-signal sensor interface microinstrument. Sensors and Actuators A 91:266-277.
Krouwer, J. S. 2002. Setting performance goals and evaluating total analytical error for diagnostic assays. Clinical Chemistry 48(6):919-927.
Kruger et al. 2000. Psychological motivation and patient education: A role for continuous glucose monitoring. Diabetes Technology & Therapeutics 2(Suppl 1):S93-S97.
Kulys et al., 1994. Carbon-paste biosensors array for long-term glucose measurement. Biosensors & Bioelectronics 9:491-500.
Kunjan et al. Mar. 2008. Automated blood sampling and glucose sensing in critical care settings. J Diabetes Science and Technology 2(3):194-200.
Kurnik et al. 1999. Application of the mixtures of experts algorithm for signal processing in a noninvasive glucose monitoring system. Sensors and Actuators B 60:19-26.
Kurtz et al. 2005. Recommendations for blood pressure measurement in humans and experimental animals, Part 2: Blood pressure measurement in experimental animals, a statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45:299-310.
LaCourse et al. 1993. Optimization of waveforms for pulsed amperometric detection of carbohydrates based on pulsed voltammetry. Analytical Chemistry 65:50-52.
Ladd et al. 1996. Structure Determination by X-ray Crystallography, 3rd ed. Plenum, 1996, Ch. 1, pp. xxi-xxiv and 1-58.
Lehmann et al. May 1994. Retrospective validation of a physiological model of glucose-insulin interaction in type 1 diabetes mellitus. Med Eng Phys 16:193-202.
Lerner et al. 1984. An implantable electrochemical glucose sensor. Ann. N. Y. Acad. Sci. 428:263-278.
Lewandowski et al. 1988. Evaluation of a miniature blood glucose sensor. Trans Am Soc Artif Intern Organs 34:255-258.
Leypoldt et al. 1984. Model of a two-substrate enzyme electrode for glucose. Analytical Chemistry 56:2896-2904.
Linke et al. 1994. Amperometric biosensor for in vivo glucose sensing based on glucose oxidase immobilized in a redox hydrogel. Biosensors & Bioelectronics 9:151-158.
Lohn et al. 1999. A knowledge-based system for real-time validation of calibrations and measurements. Chemometrics and Intelligent Laboratory Systems 46:57-66.
Lowe, 1984. Biosensors. Trends in Biotechnology 2(3):59-65.
Luong et al. 2004. Solubilization of Multiwall Carbon Nanotubes by 3-Aminopropyltriethoxysilane Towards the Fabrication of Electrochemical Biosensors with Promoted Electron Transfer. Electronanalysis 16(1-2):132-139.
Lyandres et al. 2008. Progress toward an in vivo surface-enhanced raman spectroscopy glucose sensor. Diabetes Technology & Therapeutics 10(4):257-265.
Lynch et al. 2001. Estimation-based model predictive control of blood glucose in type I diabetics; A simulation study. Proceedings of the IEEE 27th Annual Northeast Bioengineering Conference, pp. 79-80.
Lynn, P. A. 1971. Recursive digital filters for biological signals. Med & Biol Eng 9:37-43.
Maidan et al. 1992. Elimination of Electrooxidizable Interferent-Produced Currents in Amperometric Biosensors. Analytical Chemistry 64:2889-2896.
Makale et al. 2003. Tissue window chamber system for validation of implanted oxygen sensors. Am. J. Physiol. Heart Circ. Physiol. 284:H2288-2294.
Malin et al. 1999. Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy. Clinical Chemistry 45(9):1651-1658.
Mancy et al. 1962. A galvanic cell oxygen analyzer. J Electroanalytical Chemistry 4:65-92.
Maran et al. 2002. Continuous subcutaneous glucose monitoring in diabetic patients: A multicenter analysis. Diabetes Care 25(2):347-352.
March, W. F. 2002. D ealing with the delay. Diabetes Technology & Therapeutics 4(1):49-50.
Marena et al. 1993. The artificial endocrine pancreas in clinical practice and research. Panminerva Medica 35(2): 67-74.
Markwell Medical 1990. Direct 30/30® Blood Glucose Sensor, ELCO Diagnostics Company (1 page).
Martin, R. F. 2000. General Deming regression for estimating systematic bias and its confidence interval in method-comparison studies. Clinical Chemistry 46(1):100-104.
Mascini et al. 1989. Glucose electrochemical probe with extended linearity for whole blood. J Pharm Biomed Anal 7(12):1507-1512.
Mastrototaro et al. 1991. An electroenzymatic glucose sensor fabricated on a flexible substrate. Sensors and Actuators B 5:139-144.
Mastrototaro et al. 2003. Reproducibility of the continuous glucose monitoring system matches previous reports and the intended use of the product. Diabetes Care 26:256: author reply p. 257.
Mastrototaro, J. J. 2000. The MiniMed continuous glucose monitoring system. Diabetes Technology & Therapeutics 2(Suppl 1):S13-S18.
Matsuki. 1994. Energy transfer system utilizing amorphous wires for implantable medical devices. IEEE Trans on Magnetics 31 (2):1276-1282.
Matsumoto et al. 1998. A micro-planar amperometric glucose sensor unsusceptible to interference species. Sensors and Actuators B 49:68-72.
Matthews et al. 1988. An amperometric needle-type glucose sensor testing in rats and man. Diabetic Medicine 5:248-252.
Mazze et al. 2008. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diabetes Technology & Therapeutics 10:149-159.
Mazzola et al., Oct. 1983. Video Diabetes: A Teaching Tool for Children with Insulin-Dependent Diabetes, Proceedings—7th Annual Symposium on Computer Applications in Medical Care; Washington, D.C.; Dialog:, File 8, Acc# 01624462, 1 page Abstract.
McCartney et al. 2001. Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Anal Biochem 292:216-221.
McGrath et al. 1995. The use of differential measurements with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis. Biosensors & Bioelectronics 10:937-943.
McKean et al. Jul. 7, 1988. A Telemetry Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors. Trans Biomed Eng (BME) 35:526-532.
Memoli et al. 2002. A comparison between different immobilised glucoseoxidase-based electrodes. J Pharm Biomed Anal 29:1045-1052.
Merriam-Webster Online Dictionary. Jan. 11, 2010. Definition of “acceleration”. http://www.merriam-webster.com/dictionary/Acceleration.
Merriam-Webster Online Dictionary. Jan. 11, 2010. Definition of “system”. http://www.merriam-webster.com/dictionary/System.
Merriam-Webster Online Dictionary. Apr. 23, 2007. Definition of “nominal”. http://www.merriam-webster.com/dictionary/nominal.
Metzger et al. Jul. 2002. Reproducibility of glucose measurements using the glucose sensor. Diabetes Care 25(6):1185-1191.
Meyerhoff et al. 1992. On line continuous monitoring of subcutaneous tissue glucose in men by combining portable glucosensor with microdialysis. Diabetologia 35:1087-1092.
Miller et al. 1993. Development of an autotuned transcutaneous energy transfer system. Asaio J 39:M706-M710.
Moatti-Sirat et al. 1992. Evaluating in vitro and in vivo the interference of ascorbate and acetaminophen on glucose detection by a needle-type glucose sensor. Biosensors & Bioelectronics 7:345-352.
Moatti-Sirat et al. 1992. Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue. Diabetologia 35:224-230.
Moatti-Sirat et al. Jun. 1994. Reduction of acetaminophen interference in glucose sensors by a composite Nation membrane: demonstration in rats and man. Diabetologia 37(6):610-616.
Monsod et al. 2002. Do sensor glucose levels accurately predict plasma glucose concentrations during hypoglycemia and hyperinsulinemia? Diabetes Care 25(5):889-893.
Morff et al. 1990. Microfabrication of reproducible, economical, electroenzymatic glucose sensors. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 12(2):0483-0484.
Mosbach et al. 1975. Determination of heat changes in the proximity of immobilized enzymes with an enzyme thermistor and its use for the assay of metabolites. Biochim Biophys Acta 403:256-265.
Motonaka et al. 1993. Determination of cholesterol and cholesterol ester with novel enzyme microsensors. Analytical Chemistry 65:3258-3261.
Moussy et al. 1993. Performance of subcutaneously implanted needle-type glucose sensors employing a novel trilayer coating. Analytical Chemistry 85: 2072-2077.
Moussy et al. 1994. A miniaturized Nafion-based glucose sensor: In vitro and in vivo evaluation in dogs. Int J Artif Organs 17(2):88-94.
Moussy, Francis, Nov. 2002. Implantable Glucose Sensor: Progress and Problems. Sensors 1:270-273.
Muslu. 1991. Trickling filter performance. Applied Biochem Biotech 37:211-224.
Neuburger et al. 1987. Pulsed amperometric detection of carbohydrates at gold electrodes with a two-step potential waveform. Analytical Chemistry 59:150-154.
Nintendo Healthcare, Wired, Dec. 1993.
Novo Nordisk 1994. Diabetes Educational Video Game Recognized by Software Publishers Association, Press Release, Novo Nordisk, Mar. 14, 1994.
Ohara et al. 1994. “Wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Analytical Chemistry 66:2451-2457.
Oharaet al. Dec. 1993. Glucose electrodes based on cross-linked bis(2,2′-bipyridine)chloroosmium(+/2+) complexed poly(l-vinylimidazole) films. Analytical Chemistry 65:3512-3517.
Okuda et al. 1971. Mutarotase effect on micro deteminations of D-glucose and its anomers with (3-D-glucose oxidase. Anal Biochem 43:312-315.
Oxford English Dictionary Online. Jan. 11, 2010. Definition of “impending”. http://www.askoxford.com/results/?view=dev dict&field-12668446 lmpending&branch=.
Palmisano et al. 2000. Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosensors & Bioelectronics 15:531-539.
Panteleon et al. 2003. The role of the independent variable to glucose sensor calibration. Diabetes Technology & Therapeutics 5(3):401-410.
Parker et al. 1999. A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng (BME) 46(2):148-157.
Patel et al. 2003. Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems—a preliminary report. Biosensors & Bioelectronics 18:1073-1076.
Peacock et al. 2008. Cardiac troponin and outcome in acute heart failure. NEJM 358:2117-2126.
Pfeiffer et al. 1992. On line continuous monitoring of subcutaneous tissue glucose is feasible by combining portable glucosensor with microdialysis. Horm Metab Res 25:121-124.
Pfeiffer, E.F. 1990. The glucose sensor: the missing link in diabetes therapy. Horm Metab Res Suppl. 24:154-164.
Phillips. 1995. A high capacity transcutaneous energy transmission system. Asaio Journal 41:M259-M262.
Pichert et al. 2000. Issues for the coming age of continuous glucose monitoring. Diabetes Educ 26(6):969-980.
Pickup et al. 1987/88. Implantable glucose sensors: choosing the appropriate sensing strategy. Biosensors 3:335-346.
Pickup et al. 1989. In vivo molecular sensing in diabetes meliitus: an implantable glucose sensor with direct electron transfer. Diabetologia 32:213-217.
Pickup et al. 1989. Potentially-implantable, amperometric glucose sensors with mediated electron transfer: improving the operating stability. Biosensors 4:109-119.
Pickup et al. 1993. Responses and Calibration of Amperometric Glucose Sensors Implanted in the Subcutaneous Tissue of Man. ACTA Diabetol 30:143-148.
Pinner et al. Oct. 1959. Cross-linking of cellulose acetate by ionizing radiation. Nature 184:1303-1304.
Pishko et al. 1991. “Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels,” Analytical Chemistry, 63:2268-72.
Pitzer et al. 2001. Detection of hypoglycemia with the GlucoWatch biographer. Diabetes Care 24(5):881-885.
Poirier et al. 1998. Clinical and statistical evaluation of self-monitoring blood glucose meters. Diabetes Care 21(11):1919-1924.
Poitout et al. 1991. In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor. Asaio Transactions 37:M298-M300.
Poitout et al. 1993. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Diabetologia 36:658-663.
Poitout et al. 1994. Development of a glucose sensor for glucose monitoring in man: the disposable implant concept. Clinical Materials 15:241-246.
Postlethwaite et al. 1996. Interdigitated array electrode as an alternative to the rotated ring-disk electrode for determination of the reaction products of dioxygen reduction. Analytical Chemistry 68:2951-2958.
Prabhu et al. 1981. Electrochemical studies of hydrogen peroxide at a platinum disc electrode. Electrochimica Acta 26(6):725-729.
Quinn et al. 1995. Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors. The American Physiological Society E155-E161.
Quinn et al. 1997. Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials 18:1665-1670.
Rabah et al. 1991. Electrochemical wear of graphite anodes during electrolysis of brine. Carbon 29(2):165-171.
Raya Systems Pioneers Healihy Video Games, PlayRight, Nov. 1993 (pp. 14-15).
Reach et al. 1986. A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors. Biosensors 2:211-220.
Reach et al. 1992. Can continuous glucose monitoring be used for the treatment of diabetes? Analytical Chemistry 64(5):381-386.
Reach, G. 2001. Which threshold to detect hypoglycemia? Value of receiver-operator curve analysis to find a compromise between sensitivity and specificity. Diabetes Care 24(5):803-804.
Reach, Gerard. 2001. Letters to the Editor Re: Diabetes Technology & Therapeutics (2000) 2:49-56. Diabetes Technology & Therapeutics 3(1): 129-130.
Rebrin et al. 1989. Automated feedback control of subcutaneous glucose concentration in diabetic dogs. Diabetologia 32:573-576.
Rebrin et al. 1992. Subcutaneous glucose monitoring by means of electrochemical sensors: fiction or reality? J Biomed Eng 14:33-40.
Rebrin et al. 1999. Subcutaneous glucose predicts plasma glucose independent of insulin: Implications for continuous monitoring. Am J Physiol 277:E561-E571.
Reusch 2004. Chemical Reactivity. Organometallic Compounds. Virtual Textbook of Organic Chem. pp. 1-16, http://www.cem.msu.edu/˜reusch/VirtualText/orgmetal.htm.
Rhodes et al. 1994. Prediction of pocket-portable and implantable glucose enzyme electrode performance from combined species permeability and digital simulation analysis. Analytical Chemistry. 66(9):1520-1529.
Rigla et al. 2008. Real-time continuous glucose monitoring together with telemedical assistance improves glycemic control and glucose stability in pump-treated patients. Diabetes Technology & Therapeutics 10(3):194-199.
Rinken et al. 1998. Calibration of glucose biosensors by using pre-steady state kinetic data. Biosensors & Bioelectronics 13:801-807.
Rivers et al. 2001. Central venous oxygen saturation monitoring in the critically ill patient. Current Opinion in Critical Care 7:204-211.
Sakakida et al. 1992. Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations. Artif Organs Today 2(2):145-158.
Sakakida et al. 1993. Ferrocene-Mediated Needle Type Glucose Sensor Covered with Newly Designed Biocompatible Membran. Sensors and Actuators B 13-14:319-322.
Salardi et al. 2002. The glucose area under the profiles obtained with continuous glucose monitoring system relationships with HbA1c in pediatric type 1 diabetic patients. Diabetes Care 25(10): 1840-1844.
Samuels, M.P. 2004. The effects of flight and altitude. Arch Dis Chil. 89 448-455.
San Diego Plastics, Inc. 2009. Polyethylene Data Sheet, http://www.sdplastics.com/polyeth.html.
Sansen et al., 1985. Glucose sensor with telemetry system. Chapter 12, pp. 167-175 in Ko, W. H. (Ed.). Implantable Sensors for Closed Loop Prosthetic Systems, Mount Kisco, NY: Futura Publishing Co.
Sansen et al. 1990. A smart sensor for the voltammetric measurement of oxygen or glucose concentrations. Sensors and Actuators B 1:298-302.
Schmidt et al. 1992. Calibration of a wearable glucose sensor. The International Journal of Artificial Organs 15(1 ):55-61.
Schmidt et al. 1993. Glucose concentration in subcutaneous extracellular space. Diabetes Care 16(5):695-700.
Schmidtke et al. Jan. 1998. Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. PNAS USA 95:294-299.
Schmidtke et al. May 1998. Accuracy of the one-point in vivo calibration of “wired” glucose oxidase electrodes implanted in jugular veins of rats in periods of rapid rise and decline of the glucose concentration. Analytical Chemistry 70(10):2149-2155.
Schoemaker et al. 2003. The SCGM1 system: Subcutaneous continuous glucose monitoring based on microdialysis technique. Diabetes Technology & Therapeutics 5(4):599-608.
Schoonen et al. 1990 Development of a potentially wearable glucose sensor for patients with diabetes meliitus: design and in-vitro evaluation. Biosensors & Bioelectronics 5:37-46.
Service et al. 1970. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes 19: 644-655.
Service et al. 1987. Measurements or glucose control. Diabetes Care 10:225-237.
Service, R. F. 2002. Can sensors make a home in the body? 29:962-963.
Sharkawy et al. 1997. Engineering the tissue which encapsulates subcutaneous implants. 1. Diffusion properties. J Biomed Mater Res 37:401-412.
Shaw et al. 1991. In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients. Biosensors & Bioelectronics 6:401-406.
Shichiri et al. 1982. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet 2:1129-1131.
Shichiri et al. 1985. Needle Type Glucose Sensor for Wearable Artificial Endocrine Pancreas. Chapter 15, pp. 197-210 in Implantable Sensors for Closed-Loop Prosthetic Systems, Ko (Ed), Futura Publishing Co., Mt. Kisko. NY.
Shichiri et al. 1985. Needle-Type Glucose Sensor for Wearable Artificial Endocrine Pancreas. Chapter 15, pp. 197-210 in Ko, Wen H. 1985. Implantable Sensors for Closed-Loop Prosthetic Systems, Futura Pub. Co., Inc., Mt. Kisco, NY.
Shichiri et al. 1986. Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals. Diabetes Care, Inc. 9(3):298-301.
Shults et al. 1994. A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Trans Biomed Eng (BME) 41(10):937-942.
Sigma-Aldrich Corp., 2005. Nation® 117 Solution Product Description, Product No. 70160, Sigma-Aldrich Corp., St. Louis, MO. Downloaded from https://www.signaaldrich.com/cgi-bin/hsrun/Suite7/Suite/HAHTpage/Suite.HsExternal Prod . . . on Apr. 7, 2005.
Skyler, J. S. 2000. The economic burden of diabetes and the benefits of improved glycemic control: The potential role of a continuous glucose monitoring system. Diabetes Technology & Therapeutics 2(Suppl 1):S7-S12.
Slater-Maclean et al. 2008. Accuracy of glycemic measurements in the critically ill. Diabetes Technology & Therapeutics 10:169-177.
Smith et al. 1998. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans Biomed Eng (BME) 45(4):463-475.
Sokol et al. 1980. Immobilized-enzyme rate-determination method for glucose analysis. Clin Chem 26(1 ):89-92.
Sokolov et al. 1995. Metrological opportunities of the dynamic mode of operating an enzyme amperometric biosensor. Med Eng Phys 17(6):471-476.
Sparacino et al. 2008. Continuous glucose monitoring time series and hypo/hyperglycemia prevention: requirements, methods, open problems. Current Diabetes Review, 4:181-192.
Sproule et al. 2002. Fuzzy pharmacology: Theory and applications. Trends in Pharmacological Sciences 23(9):412-417.
Sriyudthsak et al. 1996. Enzyme-epoxy membrane based glucose analyzing system and medical applications. Biosensors & Bioelectronics 11:735-742.
Steil et al. 2003. Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor. Diabetes Technology & Therapeutics 5(1 ):27-31.
Stern et al., 1957. Electrochemical polarization: 1. A theoretical analysis of the shape of polarization curves. J Electrochemical Soc.104(1):56-63.
Sternberg et al. 1996. Does fall in tissue glucose precede fall in blood glucose? Diabetologia 39:609-612.
Street et al. 1988. A note on computing robust regression extimates via iteratively reweighted least squares. The American Statistician 42(2):152-154.
Sumino, T. et al. 1998. Preliminary study of continuous glucose monitoring with a microdialysis technique. Proceedings of the IEEE, 20(4):1775-1778.
Takegami et al. 1992. Pervaporation of ethanol water mixtures using novel hydrophobic membranes containing polydimethylsiloxane. J Membrane Sci 75:93-105.
Tamura, T. et al. 2000. Preliminary study of continuous glucose monitoring with a microdialysis technique and a null method—a numerical analysis. Frontiers Med Biol Eng 10(2):147-156.
Tanenberg et al. 2000. Continuous glucose monitoring system: A new approach to the diagnosis of diabetic gastroparesis. Diabetes Technology & Therapeutics 2(Suppl 1):S73-S80.
Tatsuma et al. 1991. Oxidase/peroxidase bilayer-modified electrodes as sensors for lactate, pyruvate, cholesterol and uric acid. Analytica Chimica Acta 242:85-89.
TheraSense, Inc. 2002. Freestyle—Blood Glucose Monitoring System, Owner's Booklet, p. 68.
Thijssen et al. 1984. A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems, Part 1. Theory and Simulations. Anal Chim Acta 156:87-101.
Thijssen et al. 1985. A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems, Part 3. Variance Reduction. Anal Chim Acta 173:265-272.
Thijssen et al. 1985. A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems, Part 4. Flow Injection Analysis. Anal Chim Acta 174:27-40.
Thijssen, P.C. 1984. A Kalman Filder for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems, Part 2. Optimal Designs. Anal Chim Acta 162:253-262.
Thome et al. 1995. (Abstract) Can the decrease in subcutaneous glucose concentration precede the decrease in blood glucose level? Proposition for a push-pull kinetics hypothesis. Horm Metab Res 27:53.
Thome-Duret et al. 1996. Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue. D iabetes Metabolism 22:174-178.
Thome-Duret et al. 1996. Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood. Analytical Chemistry 68:3822-3826.
Thome-Duret et al. 1998. Continuous glucose monitoring in the free-moving rat. Metabolism 47:799-803.
Thompson et al. 1986. In Vivo Probes: Problems and Perspectives, Department of Chemistry, University of Toronoto, Canada, pp. 255-261.
Tierney et al. 2000. Effect of acetaminophen on the accuracy of glucose measurements obtained with the GlucoWatch biographer. Diabetes Technology & Therapeutics 2(2):199-207.
Tierney et al. 2000. The GlucoWatch® biographer: A frequent, automatic and noninvasive glucose monitor. Ann Med 32:632-641.
Tilbury et al. 2000. Receiver operating characteristic analysis for intelligent medical systems—A new approach for finding confidence intervals. IEEE Trans Biomed Eng (BME) 47(7):952-963.
Torjman et al. Mar. 2008. Glucose monitoring in acute care: technologies on the horizon. J Diabetes Science and Technology 2(2):178-181.
Trajanoski et al. 1998. Neural predictive controller for insulin delivery using the subcutaneous route. IEEE Trans Biomed Eng (BME) 45(9):1122-1134.
Trecroci, D. 2002. A Glimpse into the Future-Continuous Monitoring of Glucose with a Microfiber. Diabetes Interview 42-43.
Tse and Gough. 1987. Time-Dependent Inactivation of Immobilized Glucose Oxidase and Catalase. Biotechnol Bioeng 29:705-713.
Turner and Pickup 1985. Diabetes mellitus: biosensors for research and management. Biosensors 1:85-115.
Turner et al. 1984. Carbon Monoxide: Acceptor Oxidoreductase from Pseudomonas Thermocarboxydovorans Strain C2 and its use in a Carbon Monoxide Sensor. Analytica Chimica Acta 163:161-174.
Unger et al. 2004. Glucose control in the hospitalized patient. Emerg Med 36(9):12-18.
Updike et al. 1967. The enzyme electrode. Nature 214:986-988.
Updike et al. 1979. Continuous glucose monitor based on an immobilized enzyme electrode detector. J Lab Clin Med 93(4):518-527.
Updike et al. 1982. Implanting the glucose enzyme electrode: Problems, progress, and alternative solutions. Diabetes Care 5(3):207-212.
Updike et al. 1988. Laboratory Evaluation of New Reusable Blood Glucose Sensor. Diabetes Care 11:801-807.
Updike et al. 1994. Enzymatic glucose sensor: Improved long-term performance in vitro and in vivo. Asaio Journal 40(2):157-163.
Updike et al. 1997. Principles of long-term fully implanted sensors with emphasis on radiotelemetric monitoring of blood glucose form inside a subcutaneous foreign body capsule (FBC). Fraser, D.M. (Ed.), Biosensors in the Body. New York. John Wiley & Sons Ltd., pp. 117-137.
Updike et al. 2000. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration. Diabetes Care 23(2):208-214.
Utah Medical Products Inc., 2003. Blood Pressure Transducers product specifications 2003-2006 (6 pages).
Vadgama, P. Nov. 1981. Enzyme electrodes as practical biosensors. J Med Eng Tech 5(6):293-298.
Vadgama. 1988. Diffusion limited enzyme electrodes. NATO ASI Series: Series C, Math and Phys. Sci. 226:359-377.
Valdes et al. 2000. In vitro and in vivo degradation of glucose oxidase enzyme used for an implantable glucose biosensor. Diabetes Technology & Therapeutics 2:367-376.
Van den Berghe 2004. Tight blood glucose control with insulin in “real-life” intensive care. Mayo Clin Proc 79(8):977-978.
Velho et al. 1989. In vitro and in vivo stability of electrode potentials in needle-type glucose sensors. Influence of needle material. Diabetes 38:164-171.
Velho et al. 1989. Strategies for calibrating a subcutaneous glucose sensor. Biomed Biochim Acta 48(11/12):957-964.
Von Woedtke et al. 1989. In situ calibration of implanted electrochemical glucose sensors. Biomed Biochim. Acta 48(11/12):943-952.
Wagner et al. 1998. Continuous amperometric monitoring of glucose in a brittle diabetic chimpanzee with a miniature subcutaneous electrode. PNAS USA 95:6379-6382.
Wang et al. 1994. Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor, Analytical Chemistry 66:3600-3603.
Wang et al. 1997. Improved ruggedness for membrane-based amperometric sensors using a pulsed amperometric method. Analytical Chemistry 69:4482-4489.
Ward et al. 1999. Assessment of chronically implanted subcutaneous glucose sensors in dogs: The effect of surrounding fluid masses. ASAIO Journal 45:555-561.
Ward et al. 2000. Rise in background current overtime in a subcutaneous glucose sensor in the rabbit: Relevance to calibration and accuracy. Biosensors & Bioelectronics 15:53-61.
Ward et al. 2000. Understanding Spontaneous Output Fluctuations of an Amperometric Glucose Sensor: Effect of Inhalation Anesthesia and use of a Nonenzyme Containing Electrode. Asaio Journal 46:540-546.
Ward et al. 2002. A new amperometric glucose microsensor: In vitro and short-term in vivo evaluation. Biosensors & Bioelectronics 17:181-189.
Ward et al. 2004. A wire-based dual-analyte sensor for Glucose and Lactate: In Vitro and In Vivo Evaluation. Diabetes Technology & Therapeutics 6(3):389-401.
Wientjes, K. J. C. 2000. Development of a glucose sensor for diabetic patients (Ph.D. Thesis).
Wikinedia 2006. “Intravenous therapy,” http://en.wikipedia.org/wiki/Intravenous_therapy, Aug. 15, 2006 (6 pages).
Wiley Electrical and Electronics Engineering Dictionary. 2004. John Wiley & Sons, Inc. pp. 141, 142, 548, 549.
Wilkins et al. 1988. The coated wire electrode glucose sensor. Horm Metab Res Suppl 20:50-55.
Wilkins et al. 1995. Integrated implantable device for long-term glucose monitoring. Biosensors & Bioelectronics 10:485-494.
Wilkins et al. 1996. Glucose monitoring: state of the art and future possibilities. Med Eng Phys 18:273-288.
Wilson et al. 1992. Progress toward the development of an implantable sensor for glucose. Ciin Chem 38(9):1613-1617.
Wilson et al. 2000. Enzyme-based biosensors for in vivo measurements. Chem Rev 100:2693-2704.
Wood, W. et al. Mar. 1990. Hermetic Sealing with Epoxy. Mechanical Engineering 1-3.
Woodward. 1982. How Fibroblasts and Giant Cells Encapsulate Implants: Considerations in Design of Glucose Sensor. Diabetes Care 5:278-281.
Worsley et al. Mar. 2008. Measurement of glucose in blood with a phenylboronic acid optical sensor. J Diabetes Science and Technology 2(2):213-220.
Wright et al. 1999. Bioelectrochemical dehalogenations via direct electrochemistry of poly(ethylene oxide)-modified myoglobin. Electrochemistry Communications 1:603-611.
Wu et al. 1999. In situ electrochemical oxygen generation with an immunoisolation device. Annals New York Academy of Sciences, pp. 105-125.
Yamasaki et al. 1989. Direct measurement of whole blood glucose by a needle-type sensor. Clinica Chimica Acta 93:93-98.
Yamasaki, Yoshimitsu, Sep. 1984. The development of a needle-type glucose sensor for wearable artificial endocrine pancreas. Medical Journal of Osaka University 35(1-2):25-34.
Yang et al 1996. A glucose biosensor based on an oxygen electrode: In-vitro performances in a model buffer solution and in blood plasma. Biomedical Instrumentation & Technology 30:55-61.
Yang et al. 1998. Development of needle-type glucose sensor with high selectivity. Science and Actuators B 46:249-256.
Yanget al. 2004. A Comparison of Physical Properties and Fuel Cell Performance of Nafion® and Zirconium Phosphate/Nafion® Composite Membranes, J Membrane Science 237:145-161.
Ye et al. 1993. High Current Density Wired' Quinoprotein Glucose Dehydrogenase Electrode. Analytical Chemistry 65:238-241.
Zamzow et al. 1990. Development and evaluation of a wearable blood glucose monitor. Asaio Transactions 36(3):M588-M591.
Zavalkoff et al. 2002. Evaluation of conventional blood glucose monitoring as an indicator of integrated glucose values using a continuous subcutaneous sensor. Diabetes Care 25(9):1603-1606.
Zethelius et al. 2008. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. NEJM 358:2107-2116.
Zhang et al 1993. Electrochemical oxidation of H202 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H202-based biosensors. J. ElectroAnalytical Chemistry 345:253-271.
Zhang et al. 1993. In vitro and in vivo evaluation or oxygen effects on a glucose oxidase based implantable glucose sensor. Analytica Chimica Acta 281:513-520.
Zhang et al. 1994. Elimination of the acetaminophen interference in an implantable glucose sensor. Analytical Chemistry 66(7):1183-1188.
Zhu et al. 1994. Fabrication and characterization of glucose sensors based on a microarray H202 electrode. Biosensors & Bioelectronics 9: 295-300.
Zhu et al. 2002. Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on prussian blue layer. Sensors 2:127-136.
Ziaie et al. 1997. A single-channel implantable microstimulator for functional neuromuscular stimulation. IEEE Trans Biomed Eng (BME) 44(10):909-920.
EP 05723951.9 [037VEP]: EPO Communication dated Sep. 7, 2010.
EP 05723951.9 [037VEP]: EPO Communication dated Nov. 21, 2007.
EP 05771646.6, filed Jul. 13, 2005: EPO Communication dated Jun. 2, 2010.
EP 05771646.6, filed Jul. 13, 2005: EPO Communication dated Aug. 17, 2011.
EP 05771646.6, filed Jul. 13, 2005: EPO Communication dated Aug. 19, 2009.
EP 98908875.2, filed Mar. 3, 1998: European Search Report dated Apr. 29, 2004.
JP 2006-522016, filed Jul. 27, 2004: JIPO Office action dated Jun. 28, 2011.
JP 2006-522016, filed Jul. 27, 2004: JIPO Office action dated Aug. 31, 2010.
PCT/US2001/023850, filed Jul. 30, 2001: Written Opinion.
PCT/US2001/023850, filed Jul. 30, 2001: International Search Report dated Jan. 16, 2002.
PCT/US2001/023850, filed Jul. 30, 2001: International Preliminary Examination Report dated Jun. 4, 2003.
PCT/US2004/024263, filed Jul. 27, 2004: International Preliminary Report on Patentability dated Feb. 6, 2006.
PCT/US2004/024263, filed Jul. 27, 2004: International Search Report and Written Opinion dated Nov. 29, 2004.
PCT/US2004/038724, filed Nov. 17, 2004: International Preliminary Report on Patentability dated Mar. 5, 2009.
PCT/US2004/038724, filed Nov. 17, 2004: International Search Report and Written Opinion dated Jan. 9, 2006.
PCT/US2004/041095, filed Dec. 8, 2004: International Preliminary Report on Patentability.
PCT/US2005/006301, filed Feb. 24, 2005: International Preliminary Report on Patentability.
PCT/US2005/006301, filed Feb. 24, 2005: International Search Report and Written Opinion.
PCT/US2005/024993, filed Jul. 13, 2005: International Preliminary Report on Patentability dated Jan. 16, 2007.
PCT/US2005/024993, filed Jul. 13, 2005: International Search Report and Written Opinion dated Nov. 4, 2005.
PCT/US2006/024132, filed Jun. 20, 2006: International Preliminary Report on Patentability dated Dec. 24, 2007.
PCT/US2006/024132, filed Jun. 20, 2006: International Search Report and Written Opinion.
PCT/US2006/034284, filed Sep. 1, 2006: International Preliminary Report on Patentability.
PCT/US2006/034284, filed Sep. 1, 2006: International Search Report and Written Opinion.
PCT/US2008/058158, filed Mar. 25, 2008: International Preliminary Report on Patentability.
PCT/US2008/058158, filed Mar. 25, 2008: International Search Report and Written Opinion.
PCT/US2008/066600, filed Jun. 11, 2008: International Preliminary Report on Patentability dated Dec. 17, 2009.
PCT/US2008/066600, filed Jun. 11, 2008: International Search Report and Written Opinion dated Oct. 7, 2008.
PCT/US2004/041095, filed Dec. 8, 2004: International Search Report and Written Opinion dated Jun. 1, 2005.
U.S. Reexamination Control No. 95/001038 [025AX]: Office Action dated Jun. 17, 2008.
U.S. Reexamination Control No. 95/001038 [025AX]: Office Action dated May 28, 2010.
U.S. Reexamination Control No. 95/001038 [024AX]: Office Action dated May 29, 2008.
U.S. Appl. No. 11/077,740 [051A11]: Office Action dated Jul. 25, 2008.
U.S. Appl. No. 09/636,369 [008DP1]: Office Action dated Sep. 30, 2002.
U.S. Appl. No. 10/632,537 [024A]: Office Action dated Oct. 20, 2004.
U.S. Appl. No. 10/632,537 [024A]: Office Action dated Dec. 21, 2004.
U.S. Appl. No. 10/633,329 [026A]: Office Action dated Feb. 4, 2008.
U.S. Appl. No. 10/633,329 [026A]: Office Action dated Oct. 5, 2006.
U.S. Appl. No. 10/633,329 [026A]: Office Action dated Jun. 11, 2009.
U.S. Appl. No. 10/633,329 [026A]: Office Action dated Jun. 12, 2008.
U.S. Appl. No. 10/633,329 [026A]: Office Action dated Dec. 18, 2008.
U.S. Appl. No. 10/633,329 [026A]: Office Action dated Mar. 26, 2007.
U.S. Appl. No. 10/633,329 [026A]: Office Action dated Apr. 27, 2010.
U.S. Appl. No. 10/633,329 [026A]: Office Action dated Jul. 30, 2007.
U.S. Appl. No. 10/633,367 [016A]: Office Action dated Jun. 11, 2009.
U.S. Appl. No. 10/633,404 [025A]: Office Action dated Feb. 12, 2007.
U.S. Appl. No. 10/633,67 [016A]: Office Action dated Jul. 15, 2008.
U.S. Appl. No. 10/648,849 [027A]: Office Action dated Jun. 23, 2009.
U.S. Appl. No. 10/789,359 [037A]: Office Action dated Oct. 3, 2008.
U.S. Appl. No. 10/789,359 [037A]: Office Action dated Mar. 20, 2008.
U.S. Appl. No. 10/789,359 [037A]: Office Action dated Nov. 27, 2006.
U.S. Appl. No. 10/838,909 [044A]: Office Action dated Jun. 5, 2008.
U.S. Appl. No. 10/838,909 [044A]: Office Action dated Mar. 16, 2009.
U.S. Appl. No. 10/842,716 [012P1]: Office Action dated Jul. 9, 2010.
U.S. Appl. No. 10/991,966 [032A]: Office Action dated Jul. 22, 2008.
U.S. Appl. No. 10/991,966 [032A]: Office Action dated Nov. 28, 2007.
U.S. Appl. No. 10/991,966, filed Nov. 17, 2004 granted Apr. 14, 2009 as U.S. Pat. No. 7,519,408 [032A]: Partial Electronic File History, including Office Actions dated Nov. 28, 2007, Apr. 15, 2008, Jul. 22, 2008, Nov. 20, 2008, and Jan. 13, 2009, and Responses filed Jan. 28, 2008, Apr. 23, 2008, May 28, 2008, Sep. 22, 2008 and Dec. 9, 2008.
U.S. Appl. No. 11/007,920 [029A]: Office Action dated Jun. 24, 2008.
U.S. Appl. No. 11/038,340 [024C1]: Office Action dated Feb. 2, 2010.
U.S. Appl. No. 11/038,340 [024C1]: Office Action dated Jan. 5, 2009.
U.S. Appl. No. 11/038,340 [024C1]: Office Action dated Jun. 7, 2010.
U.S. Appl. No. 11/038,340 [029C1]: Office Action dated Nov. 9, 2009.
U.S. Appl. No. 11/038,340 [024C1]: Office Action dated Jun. 17, 2008.
U.S. Appl. No. 11/038,340 [024C1]: Office Action dated May 19, 2009.
U.S. Appl. No. 11/077,739 [051A10]: Office Action dated Mar. 1, 2010.
U.S. Appl. No. 11/077,739 [051A10]: Office Action dated Jul. 21, 2009.
U.S. Appl. No. 11/077,739 [051A10]: Office Action dated Dec. 29, 2009.
U.S. Appl. No. 11/077,740 [051A11]: Office Action dated Jun. 1, 2007.
U.S. Appl. No. 11/077,740 [051A11]: Office Action dated Nov. 1, 2007.
U.S. Appl. No. 11/077,740 [051A11]: Office Action dated Feb. 7, 2008.
U.S. Appl. No. 11/077,740 [051A11]: Office Action dated Apr. 28, 2009.
U.S. Appl. No. 11/077,759 [050A]: Office Action dated Jul. 10, 2008.
U.S. Appl. No. 11/077,759 [050A]: Office Action dated May 26, 2009.
U.S. Appl. No. 11/077,759 [050A]: Office Action dated Mar. 31, 2008.
U.S. Appl. No. 11/077,765 [051A12]: Office Action dated Feb. 3, 2010.
U.S. Appl. No. 11/077,765 [051A12]: Office Action dated May 16, 2008.
U.S. Appl. No. 11/077,765 [051A12]: Office Action dated Sep. 19, 2008.
U.S. Appl. No. 11/077,765 [051A12]: Office Action dated Jan. 23, 2009.
U.S. Appl. No. 11/077,765 [051A12]: Office Action dated Dec. 31, 2007.
U.S. Appl. No. 11/157,365 [061A1]: Office Action dated Jan. 7, 2009.
U.S. Appl. No. 11/157,365 [061A1]: Office Action dated Jan. 21, 2010.
U.S. Appl. No. 11/157,365 [061A1]: Office Action dated Jun. 26, 2008.
U.S. Appl. No. 11/157,365 [061A1]: Office Action dated Jul. 21, 2009.
U.S. Appl. No. 11/028,672 [010D1]: Office Action dated Oct. 29, 2009.
U.S. Appl. No. 11/334,876 [061P2]: Office Action dated May 2, 2008.
U.S. Appl. No. 11/334,876 [061P2]: Office Action dated Oct. 4, 2006.
U.S. Appl. No. 11/334,876 [061P2]: Office Action dated Aug. 24, 2009.
U.S. Appl. No. 11/334,876 [061P2]: Office Action dated Sep. 25, 2007.
U.S. Appl. No. 11/334,876 [061P2]: Office Action dated Aug. 26, 2008.
U.S. Appl. No. 11/360,252 [061P3]: Office Action dated Jan. 29, 2009.
U.S. Appl. No. 11/360,252 [061P3]: Office Action dated Jun. 30, 2008.
U.S. Appl. No. 11/360,252 [061P3]: Office Action dated Jul. 23, 2009.
U.S. Appl. No. 11/360,819 [061P4]: Office Action dated Sep. 2, 2010.
U.S. Appl. No. 11/360,819 [061P4]: Office Action dated Apr. 7, 2010.
U.S. Appl. No. 11/360,819 [061P4]: Office Action dated Aug. 11, 2008.
U.S. Appl. No. 11/360,819 [061P4]: Office Action dated Dec. 26, 2008.
U.S. Appl. No. 11/360,819 [061P4]: Office Action dated Oct. 29, 2009.
U.S. Appl. No. 11/373,628 [053A]: Office Action dated Aug. 10, 2010.
U.S. Appl. No. 12/055,098 [106A]: Office Action dated Oct. 5, 2010.
U.S. Appl. No. 12/098,353 [024C1D2]: Office Action dated Aug. 26, 2008.
U.S. Appl. No. 12/098,353, filed Apr. 4, 2008 [024C1D2]: Partial Electronic File History, including Office Actions dated Aug. 26, 2010 and May 4, 2010, and Applicant Responses filed Nov. 24, 2001 and Jun. 3, 2011.
U.S. Appl. No. 12/098,359 [024C1D1]: Office Action dated Jul. 7, 2010.
U.S. Appl. No. 12/102,654 [016D1]: Office Action dated Mar. 10, 2010.
U.S. Appl. No. 12/102,745 [016D3]: Office Action dated Dec. 23, 2008.
U.S. Appl. No. 12/133,738 [094A2]: Office Action dated Sep. 10, 2010.
U.S. Appl. No. 12/133,761 [094A3]: Office Action dated Sep. 7, 2010.
U.S. Appl. No. 12/182,008 [032D2]: Office Action dated Aug. 24, 2010.
U.S. Appl. No. 12/182,008, filed Jul. 29, 2008 [032D2]: Partial Electronic File History, including Office Actions dated May 3, 2010, Aug. 24, 2010, Jan. 25, 2011, Apr. 29, 2011 and Applicant Responses filed Jun. 2, 2010, Nov. 5, 2010, Mar. 23, 2011 and Jul. 28, 2011.
U.S. Appl. No. 12/182,073 [032C1]: Office Action dated Jun. 28, 2010.
U.S. Appl. No. 12/182,073, filed Jul. 29, 2008: Partial Electronic File History, Office Actions dated Jun. 28, 2010, Oct. 28, 2010, Jan. 14, 2011, and responses filed Oct. 9, 2009, Aug. 10, 2010, Dec. 22, 2010 and Feb. 28, 2011.
U.S. Appl. No. 12/182,083 [032D3]: Office Action dated Jun. 24, 2010.
U.S. Appl. No. 12/182,083, filed Jul. 29, 2008, granted Apr. 19, 2011 as U.S. Pat. No. 7,927,274 [032D3]: Partial Electronic File History, including Office Actions dated Jun. 24, 2010 and Oct. 20, 2010, and Applicant Responses filed Aug. 4, 2010 and Sep. 30, 2010.
U.S. Appl. No. 12/353,787 [027D1]: Office Action dated Aug. 6, 2010.
U.S. Appl. No. 12/353,799 [027D2]: Office Action dated Aug. 6, 2010.
U.S. Appl. No. 12/364,786 [061P2C3]: Office Action dated Jul. 29, 2010.
U.S. Appl. No. 12/536,852 [037D1]: Office Action dated Oct. 18, 2010.
U.S. Appl. No. 12/536,852 [037D1]: Office Action dated Jun. 25, 2010.
U.S. Appl. No. 12/579,385 [027C4]: Office Action dated Aug. 23, 2010.
U.S. Appl. No. 12/619,502 [038C1]: Office Action dated Sep. 7, 2010.
U.S. Appl. No. 12/731,965, filed Mar. 25, 2010 [032C1C1]: Partial Electronic File History, including Office Action dated Jun. 20, 2011 and Reponse filed Oct. 20, 2011.
U.S. Appl. No. 12/756,205, filed Sep. 23, 2009 [032D1D1]: Partial Electronic File History, including Office Action dated Jun. 13, 2011 and reponse filed Sep. 16, 2011.
Aalders, et al., “Development of a Wearable Glucose Sensor; Studies in Healthy Volunteers and in Diabetic Patients,” The International Journal of Artificial Organs, 1991, vol. 14, No. 2, pp. 102-108.
Abe, et al., “Characterization of Glucose Microsensors for Intracellular Measurements,” Analytical Chemistry, 1992, vol. 64, No. 18, pp. 2160-2163.
Baker D.A., et al., “Dynamic Concentration Challenges for Biosensor Characterization,” Biosensors & Bioelectronics, vol. 8, 1993, pp. 433-441.
Bindra D.S., et al., “Pulsed Amperometric Detection of Glucose in Biological Fluids at a Surface-Modified Gold Electrode,” Analytical Chemistry, vol. 61 (22), Nov. 15, 1989, pp. 2566-2570.
File History of U.S. Appl. No. 09/447,227, filed Nov. 22, 1999, 1184 pages.
File History of U.S. Appl. No. 10/838,658, filed May 3, 2004, 748 pages.
File History of U.S. Appl. No. 10/838,909, filed May 3, 2004, 356 pages.
File History of U.S. Appl. No. 10/838,912, filed May 3, 2004, 1288 pages.
File History of U.S. Appl. No. 10/885,476, filed Jul. 6, 2004, 226 pages.
File History of U.S. Appl. No. 10/896,312, filed Jul. 20, 2004, 237 pages.
File History of U.S. Appl. No. 12/133,738, filed Jun. 5, 2008, 557 pages.
File History of U.S. Appl. No. 12/133,761, filed Jun. 5, 2008, 585 pages.
File History of U.S. Appl. No. 12/133,786, filed Jun. 5, 2008, 814 pages.
File History of U.S. Appl. No. 12/536,852, filed Aug. 6, 2009, 480 pages.
File History of U.S. Appl. No. 12/579,385, filed Oct. 14, 2009, 558 pages.
Kiechle F.L., “The Impact of Continuous Glucose Monitoring on Hospital Point-of-Care Testing Programs,” Diabetes Technology and Therapeutics, vol. 3 (4), 2001, pp. 647-649.
Murphy S.M., et al., “Polymer Membranes in Clinical Sensor Applications, II. The Design and Fabrication of Permselective Hydrogels for Electrochemical Devices,” Biomaterials, 1992, vol. 13 (14), pp. 979-990.
Office Action for European Application No. 05723951.9, dated Jan. 28, 2011, 6 pages.
Office Action for U.S. Appl. No. 10/896,772, dated Dec. 14, 2005, 10 pages.
Office Action for U.S. Appl. No. 10/896,772, dated Jan. 11, 2005, 16 pages.
Office Action for U.S. Appl. No. 10/896,772, dated Jul. 19, 2005, 17 pages.
Office Action for U.S. Appl. No. 10/896,772, dated May 22, 2006, 31 pages.
Office Action for U.S. Appl. No. 11/007,635, dated Jan. 27, 2006, 9 pages.
Office Action for U.S. Appl. No. 11/034,344, dated Jan. 15, 2008, 5 pages.
Office Action for U.S. Appl. No. 11/077,714, dated Apr. 10, 2007, 16 pages.
Office Action for U.S. Appl. No. 11/077,714, dated Apr. 16, 2009, 12 pages.
Office Action for U.S. Appl. No. 11/077,714, dated Dec. 31, 2009, 8 pages.
Office Action for U.S. Appl. No. 11/077,714, dated Jan. 10, 2008, 18 pages.
Office Action for U.S. Appl. No. 11/077,714, dated Jan. 27, 2010, 9 pages.
Office Action for U.S. Appl. No. 11/077,714, dated Jul. 27, 2007, 13 pages.
Office Action for U.S. Appl. No. 11/077,714, dated Oct. 11, 2006, 9 pages.
Office Action for U.S. Appl. No. 11/077,714, dated Sep. 16, 2008, 16 pages.
Office Action for U.S. Appl. No. 11/077,759, dated May 17, 2007, 13 pages.
Office Action for U.S. Appl. No. 11/078,072, dated Feb. 18, 2010, 6 pages.
Office Action for U.S. Appl. No. 11/078,072, dated Jun. 10, 2010, 8 pages.
Office Action for U.S. Appl. No. 11/078,072, dated Sep. 2, 2009, 13 pages.
Office Action for U.S. Appl. No. 11/078,232, dated Apr. 27, 2010, 18 pages.
Office Action for U.S. Appl. No. 11/078,232, dated Jan. 5, 2010, 15 pages.
Office Action for U.S. Appl. No. 11/078,232, dated Jul. 21, 2009, 13 pages.
Office Action for U.S. Appl. No. 11/078,232, dated Mar. 5, 2009, 14 pages.
Office Action for U.S. Appl. No. 11/078,232, dated May 5, 2008, 21 pages.
Office Action for U.S. Appl. No. 11/078,232, dated Nov. 12, 2008, 28 pages.
Office Action for U.S. Appl. No. 11/333,837, dated Apr. 12, 2010, 10 pages.
Office Action for U.S. Appl. No. 11/333,837, dated Jul. 2, 2010, 7 pages.
Office Action for U.S. Appl. No. 11/333,837, dated Jun. 29, 2009, 13 pages.
Office Action for U.S. Appl. No. 11/333,837, dated Nov. 28, 2008, 11 pages.
Office Action for U.S. Appl. No. 12/102,654, dated Jul. 30, 2009, 9 pages.
Office Action for U.S. Appl. No. 12/102,729, dated Jul. 7, 2009, 7 pages.
Office Action for U.S. Appl. No. 12/113,508, dated Feb. 23, 2010, 9 pages.
Office Action for U.S. Appl. No. 12/113,724, dated Jun. 24, 2010, 12 pages.
Office Action for U.S. Appl. No. 12/133,786, dated Sep. 8, 2010, 12 pages.
Office Action for U.S. Appl. No. 12/264,160, dated Jun. 3, 2010, 5 pages.
Pickup J.C., et al., “Developing Glucose Sensors for In Vivo Use,” Elsevier Science Publishers Ltd (UK), Tibtech, vol. 11, 1993, pp. 285-291.
Selam J.L., “Management of Diabetes with Glucose Sensors and Implantable Insulin Pumps,” From the Dream of the 60s to the Realities of the 90s, Asaio Journal 1997, vol. 43, pp. 137-142.
Shichiri M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas,” Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor,” Diabetes Nutrition & Metabolism, vol. 2 (4), 1989, pp. 309-313.
Sternberg R., et al., “Study and Development of Multilayer Needle-type Enzyme Based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40.
U.S. Appl. No. 10/950,226, filed Sep. 23, 2004, 24 pages.
U.S. Appl. No. 11/618,706, filed Dec. 29, 2006, 35 pages.
U.S. Pat. No. 7,530,950, May 12, 2009, Brister et al. (withdrawn).
Related Publications (1)
Number Date Country
20170055889 A1 Mar 2017 US
Provisional Applications (3)
Number Date Country
60614683 Sep 2004 US
60587787 Jul 2004 US
60523840 Nov 2003 US
Continuations (3)
Number Date Country
Parent 12731965 Mar 2010 US
Child 15347687 US
Parent 12182073 Jul 2008 US
Child 12731965 US
Parent 10991966 Nov 2004 US
Child 12182073 US