This invention relates to reed switches, and more particularly to micro-miniaturized reed switches and batch microfabrication techniques used to fabricate micro-miniaturized reed switches.
Dry reed switches are commonly comprised of two overlapping soft ferromagnetic electrically conducting cantilevers (reeds) separated by a small gap and supported by a glass hermetic enclosure. Upon application of a magnetic field the two opposing cantilevers are attracted to each other and establish electrical contact between the reeds. In the absence of a magnetic field the cantilevers resort to their original separated and electrically insulating state. Numerous electromechanical and electrical variations of this basic “single-pole, single-throw” normally open switch are used as well.
Various dry and wet reed switch designs have been proposed, for example those described in U.S. Pat. No. 7,321,282 “MEM's reed switch array”; U.S. Pat. No. 7,227,436 “Modular reed switch assembly and method for making”; U.S. Pat. No. 5,883,556 “Reed switch”; U.S. Pat. No. 5,847,632 “Reed switch”; U.S. Pat. No. 4,837,537 “Reed switch device”; U.S. Pat. No. 4,329,670 “Mercury reed switch”; and U.S. Pat. No. 4,039,985 “Magnetic reed switch”.
Conventional reed switch designs, however, can be costly to produce, and can exhibit a wide range of operating parameters even in switches of the same design. They are also generally constrained to specific relative orientations of the external electrical contacts and the applied magnetic field. For example, conventional glass encapsulated reed switches are fabricated with their leads extending axially from a cylindrically shaped glass ampule and are most sensitive to an externally applied magnetic field oriented along the axis of the leads.
Microfabricated reed switches have been proposed, for example in U.S. Pat. Nos. 5,430,421; 5,605,614, and 6,040,748. These generally rely on beam motion normal to the plane of deposition, which can pose difficulties in fabrication and packaging, for example by stress gradients in the materials that make consistent performance difficult to realize. Such designs also can suffer from problems with beam stiffness (i.e., it is generally desirable that the beam have a predictable stiffness in the direction of desired bending, and a high stiffness in other directions). Such designs also typically have a small anchor spot of the beam, resulting in low sensitivity to applied magnetic fields and consequently unacceptable performance (especially in miniature switches). Such designs also typically have coplanar external electrical connections, which can be unwieldy for use in surface mount electronics assembly.
The integrated reed switch described in this invention can be constructed to have more arbitrary orientation of its sensitive axis and electrical leads that can be oriented normal to and directly beneath the reed switch structure.
Embodiments of the present invention can provide miniaturized reed switches with more consistent operating parameters that can be produced more efficiently than conventional reed switches. The present invention can also provide methods of making miniaturized reed switches using microfabrication techniques.
The present invention can use lithographic-based fabrication to enable monolithic construction of a reed switch. Batch lithographic-based microfabrication can provide high manufacturing volume and can contribute to improved repeatability by facilitating enhanced dimensional control. Microlithography can repeatedly form micrometer dimensions with tight tolerances over large arrays of devices which, if the patterns are translated into materials appropriate for electromechanical devices, can provide for repeatable and consistent electromechanical operation. For example, tight dimensional control of the gap between two reeds in a reed switch or a reed and a fixed contact can provide consistency of performance between reed switches. Thus, the present invention can allow the commonly regarded reed switch specification of sensitivity, or “Ampere-turns” required to close a reed switch, to be tightly controlled with a commensurate reduction in spread in sensitivity across reed switch production lots. Since the cost of a microfabricated device is generally proportional to the substrate area which it occupies, the present invention can provide microfabricated reed switches with small substrate footprints.
An important aspect to reed switch microfabrication is the tolerance of the blade thickness since the mechanical stiffness of the reed blade is proportional to the third power (cube) of its thickness in the direction of bending, while its width or dimension normal to the direction of bending has only a linear impact the stiffness of the reed blade. One approach to microlithographic construction of reed switches is to pattern the blade so that direction of motion is normal (perpendicular) to the plane of the microfabrication substrate. In this approach, the beam thickness and corresponding thickness tolerance is dictated by control of the blade material deposition rate and the blade width, which is its dimension normal to its motion, is lithographically determined. Therefore, the thin film surface microfabricated topology as depicted in
Reed switch miniaturization can involve several physical scaling constraints. Good reed switch performance can require, for example, low and repeatable contact resistance during electrical closure which in turn can require sufficiently high contact electromechanical force. As a reed switch is miniaturized and its total package volume decreases, however, the contact force decreases with area of the overlapping contacts for a constant excitation field. In addition, the coupling of a reed switch to an external magnetic field can suffer with diminishing scale.
The functional device, economic, and fabrication constraints for a microfabricated reed switch as briefly discussed above encourage planar fabrication that can support structure definition extending considerably (100s of micrometers) out of the plane of the manufacturing substrate. This type of processing can be referred to as “high aspect-ratio” processing where the thickness out of the processing plane of a device feature can be much larger than corresponding lateral or in-plane dimensions. This allows offsetting of some of the detriments of the volume scaling of a reed switch if it is fabricated with its compliant direction in the plane of the substrate since the width of the reed blades (height above the substrate) can be made several hundred micrometers. At the same time, the amount of substrate area required to accommodate the reed switch overlap area remains small and is unaffected by increased blade width and consequent blade overlap.
Reed switches according to the present invention can also provide for maintaining sensitivity at reduced size relative to other reed switches. Sensitivity of a reed switch relates to the amount of magnetic field required for activation. As a reed switch is reduced in size the ability to couple magnetic field into the reed switch gap is diminished. In order to maintain sensitivity of a reed switch at micro-miniature scale, example embodiments of the present invention incorporates a patterned base of ferromagnetic material extending out from and in some cases partially surrounding the reed cantilevers.
Maintaining force to in turn maintain low contact resistance for a miniaturized reed relay can also involve scaling dependences. Example embodiments of the present invention can incorporate a single cantilever with a stationary contact feature. For a constrained maximum device volume the use of a single cantilever can allow incorporation of more ferromagnetic material for enhanced coupling to an externally applied magnetic field. For a given switch gap the reaction difference between a single cantilever contacting a fixed contact and two cantilevers each deflecting half the gap to form contact can be described as follows. For a clamped-free cantilever of length l, thickness h, width b, Young's modulus E, and force at tip end P, the tip deflection is:
where the moment of inertia, l is,
For two cantilever reeds with gap g, and length l=lm/2, a deflection,
is needed for each cantilever and the corresponding force required to produce this deflection is,
For one cantilever with gap, g and l=lm, a deflection, δ=g, is needed and the corresponding force required to produce this deflection is,
or 4 times less force to deflect the single cantilever a given gap distance than for two cantilevers. Thus, if there exists sufficient reed spring stiffness to reliably disengage the reed cantilever from electrical contact and provide sufficiently for resistance to shock and vibration, a single cantilever switch will not diminish the contact force for a given reed gap as much as a dual cantilever reed switch.
The present invention can also provide another means to reduce the compliance of the reed cantilever in a reed switch by providing a locally reduced cross section in the reed near its base or mechanical anchor. Although this increases the magnetic reluctance of the blade and the ability therefore to couple magnetic field to the contact gap, in some applications this can be an acceptable tradeoff to enhance reed switch sensitivity. By using microlithographic patterning such a narrowed pattern can be constructed in a nearly arbitrary way with sub-micrometer tolerances and thus for typical blade thicknesses of 25-100 micrometers provide suitable blade stiffness accuracy and repeatability.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate one or more embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating one or more example embodiments of the invention and are not to be construed as limiting the invention.
Example Reed Switch Embodiments
Example embodiments of a microfabricated reed switch according to the present invention can comprise an electrically insulating substrate provided with electrical vias or feedthroughs, a reed switch mechanism, a cover to provide hermetic sealing of the reed switch, and electrically conducting pads to provide electrical connection to the reed switch. The figures generally show only a single example switch, comprising only a dice portion of a wafer or die pertaining to a single switch device. In production, many such switches (or other devices) can be fabricated on a single substrate.
In operation, a reed switch according to the present invention can be operated through the application of an external magnetic field. This field can, for example, be generated by a permanent magnet or electromagnetic coil. Under the application of a magnetic field, the soft ferromagnetic reeds couple the magnetic field to the reed gap which causes an attracting pressure to be exerted on the overlapping tips of the reed switch blades. In the case of several example embodiments here the reed gap can also comprise a moveable reed cantilever and fixed contact. If the magnetic field is sufficiently high, the reeds will deflect until they touch whereby electrical contact is established through contact metallurgy which coats the blades.
Conventional reed switches are typically fabricated with a hermetic cylindrical glass tube enclosure with electrical leads extending from the ends of the tube. In the conventional configuration, the reed switch is most sensitive along the axis of the cylinder and is thus most amenable to be operated by a co-axially located electromagnet or permanent magnet with its poles oriented along the axis of the cylinder of the reed switch. Example embodiments of an integrated reed switch according to the present invention can have electrical leads extending directly beneath the reed switch in nearly arbitrary locations. The orientation of the most sensitive switching axis can thus be adjusted relative to the location of the electrical connections. Furthermore, by tailoring the aspect ratio and location of the soft ferromagnetic bases as is enabled by this invention, the orientation of highest reed switch sensitivity can be adjusted relative to the package orientation. In addition, a reed switch with more uniform or nearly equal sensitivity across more directions can be provided by the present invention.
Example Method of Making
A description of fabrication of an integrated reed switch according to the present invention can begin with preparation of a suitable substrate. A variety of insulating substrates such as alumina, glass, glass-ceramic composite and oxidized silicon can be used. Electrical connection to the reed switch can be provided by vias, formed in holes, which can range in size with diameters of 0.002″ to 0.040″ for some applications. Such holes can be machined using laser or water jet drilling. The holes can be provided with electrically conductive material by a number of approaches. The selection of an approach can affect a level of hermeticity acceptable to reed switch longevity for the intended application. As examples, the holes can be provided with electrically conductive material by using thin film physical vapor deposition combined with electroplating or by using pressed, sintered, and fired metal powders or conductive plug paste in a ceramic slurry type of process. Suitable electrically conductive materials include gold, silver and copper, as examples. After hole formation and provision of electrically conductive material, a substrate such as that shown in
Alternatively, insulated vias can be provided on the substrate surface by use of multi-layer metal and inter-layer dielectric processing. An example implementation is shown in
Another step in the fabrication sequence can create electrical pads 806, 808 on the backside of the substrate as shown in
A complementary metal pattern depicted in
In order to create a hermetically sealed switch, a cap fabricated from a suitable hermetic material which surrounds the device is required. In a manner similar to the bonding of the ferromagnetic layer, a cap comprising cover 842 and sidewall 840 can be bonded to the bond ring 810 by a metal diffusion bond to create a hermetically sealed cavity around the reed switch as shown in
Example Embodiment with Sidewall and Cap
The particular sizes and equipment discussed above are cited merely to illustrate particular embodiments of the invention. It is contemplated that the use of the invention can involve components having different sizes and characteristics. It is intended that the scope of the invention be defined by the claims appended hereto.
This application claims priority to U.S. provisional application 61/038,340, filed Mar. 20, 2008, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2497547 | Hastings | Feb 1950 | A |
2931872 | Sprando | Apr 1960 | A |
3087125 | Scholefield | Apr 1963 | A |
3167625 | Russo | Jan 1965 | A |
3268839 | McFarland | Aug 1966 | A |
3486138 | Chalmers et al. | Dec 1969 | A |
3535663 | Herzog et al. | Oct 1970 | A |
3579158 | Kutyla | May 1971 | A |
3586809 | Santi | Jun 1971 | A |
3913054 | Wolfe | Oct 1975 | A |
4011533 | Santi | Mar 1977 | A |
4063203 | Fujiwara et al. | Dec 1977 | A |
5430421 | Bornand et al. | Jul 1995 | A |
6040748 | Gueissaz | Mar 2000 | A |
6094116 | Tai et al. | Jul 2000 | A |
6366186 | Hill et al. | Apr 2002 | B1 |
6410360 | Steenberge | Jun 2002 | B1 |
6917268 | Deligianni et al. | Jul 2005 | B2 |
6924966 | Prophet | Aug 2005 | B2 |
7191509 | Van Gastel | Mar 2007 | B2 |
7215229 | Shen et al. | May 2007 | B2 |
7864006 | Foster et al. | Jan 2011 | B2 |
20040150939 | Huff | Aug 2004 | A1 |
20060197635 | Christenson | Sep 2006 | A1 |
20090189720 | Debarnot et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
10031569 | Feb 2001 | DE |
Number | Date | Country | |
---|---|---|---|
20090237188 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
61038340 | Mar 2008 | US |