Satellite communication systems are known and generally well understood. Consumer satellite communications systems such as satellite television and or internet communications typically use a first assembly, referred to as the Outdoor Unit (ODU), including receive electronics and/or transmit electronics, a feed horn and a diplexer or ortho-mode transducer (OMT) mounted on or proximate an antenna dish. The ODU is usually mounted proximate the exterior of a consumer's home, positioned in direct line of sight with a satellite. An Indoor Unit (IDU) is typically placed indoors and functions to interface the transceiver with end-user equipment. The IDU is coupled to the ODU via a communications link supplying power, control, upstream and or downstream signals over electrical and or optical cable(s).
The ODU includes an LNB (Low Noise Block Downconverter), which is a Low Noise Amplifier and downconverter that simultaneously converts the entire required frequency band received by the dish to a lower frequency for further signal processing and or distribution. The LNBF (an LNB integrated with a feed) and or LNB and feed are mounted upon the end of a boom arm that positions the feed at the focal point of the reflector dish. The prior ODUs, as shown for example in
The transceiver module typically includes a heat sink to shed heat generated by the transmitter. The heat sink(s) are sized to ensure that the junction temperature of the electronic devices does not rise to a point at which reliability is compromised.
The increasing competition for reflector antennas adapted for high volume consumer applications has focused attention on improving electrical performance as well as cost reductions resulting from reduced materials and manufacturing cost as well as service efficiencies. Overall aesthetics of an ODU are also a factor for commercial success.
Therefore, it is an object of the invention to provide an apparatus that overcomes deficiencies in the prior art.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the general and detailed descriptions of the invention appearing herein, serve to explain the principles of the invention.
A satellite interactive terminal ODU employing an integrated transceiver which incorporates transmit electronics, receive electronics, Orthogonal Mode Transducer (OMT) and transmit reject filter and which may be integrated into the structure of the satellite ODU assembly as the boom arm or attached end to end to a shortened boom arm. This affords a high level of integration, cutting installation time, inter module electrical losses and the overall cost of the ODU. Further, overall wind loads and associated structural moment arms of the resulting ODU are reduced.
The ODU integrated transceiver according to the invention may be used, for example, in a microwave or mm-wave, including Ka band satellite interactive terminal with the transmit electronics, receive electronics, (OMT) and transmit reject filter mounted on a satellite dish as a single environmentally sealed module.
As shown in
Also as shown in
In both the upconversion and downconversion circuits, the reference oscillator(s) may be phase locked to improve oscillator stability. A reference signal for locking the transmit chain may be available from the IDU. The transmit reference oscillator may be dual loop phase locked to provide immunity to any phase noise on the IDU reference signal(s).
As shown in
The environmentally sealed outer housing 85 of the ODU integrated transceiver module may be cost effectively formed as a cast metal component with internal chambers having waveguide and or microstrip interconnection pathways between them. Filter(s) 65 and or portions of the OMT 30 or diplexer and feed 40 horn may be cast or machined into pathways of the outer housing 85. To improve quality control and production yields, the low noise block portion of the circuitry may be formed as a single sub-block. The sub-block arrangement allowing separate sourcing, testing and or tuning of the low noise block portion prior to assembly of the ODU integrated transceiver 95.
The outer housing 85 also operates as a heat sink for heat dissipation. The position of the outer housing 85 away from the reflector in open air improves heat transfer without unacceptably increasing wind load characteristics of the ODU, overall. The outer surface(s) of the outer housing 85 may be provided with cooling fins to further optimize heat transfer away from the electrical circuitry.
The outer housing 85 may be truncated for attachment to the end of a shortened traditional boom arm 20 or, for example as shown in
The outer housing 85 has a longitudinal axis. The interconnection between the boom arm 20 and the outer housing 85 may be end to end such that the outer housing 85 and boom arm 20 share a common longitudinal axis. Thereby, the resulting ODU has a minimal cross sectional area and a highly aesthetic streamlined appearance. The feed 40 may be attached to an end of the outer housing 85 to a surface parallel to the longitudinal axis as shown for example in
The invention may also be configured in a dual optic configuration, for example as shown in
Because the components are applied in close proximity, prior requirements for multiple environmentally sealed inter-module interconnection(s) and the transmission losses and costs associated therewith are reduced. Also, because the ODU integrated transceiver is itself integrated into the boom arm, the mechanical structure forming the boom arm extension and or an end to end replacement thereof may be utilized as a heat sink advantageously located in the open air and having reduced wind load and or snow/ice accumulation characteristics. The shortened length required for the boom arm 20 will also be lower cost than a conventional full length boom arm. Further, the assembly requirements of an ODU according to the invention are significantly reduced as the prior plurality of fasteners previously applied between the separate components and the boom arm 20 are eliminated.
Finally, the aesthetics of the ODU are greatly increased, because the prior plurality of fasteners, inter-module cabling and clunky appearance in general of the separate modules slung along a significantly larger boom arm and or behind the reflector dish 90 has been eliminated.
Where in the foregoing description reference has been made to ratios, integers, components or modules having known equivalents then such equivalents are herein incorporated as if individually set forth.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 60/596,555, titled “Integrated Satellite Interactive Terminal”, filed Oct. 3, 2005 which is hereby incorporated by reference in the entirety.
Number | Date | Country | |
---|---|---|---|
60596555 | Oct 2005 | US |