Integrated security system with parallel processing architecture

Information

  • Patent Grant
  • 10127802
  • Patent Number
    10,127,802
  • Date Filed
    Tuesday, March 24, 2015
    9 years ago
  • Date Issued
    Tuesday, November 13, 2018
    6 years ago
Abstract
An integrated security system that includes a security coprocessor coupled to a conventional security system panel and an interactive security system. The integrated security system enables conventional security system features as well as the consumer-oriented interactive features and functions of an interactive security system without sacrificing reliability or the significant burden and cost associated with frequent software updates associated with conventional security systems. The integrated security system also minimizes or eliminates the need for new battery backup circuitry or larger batteries.
Description
TECHNICAL FIELD

The embodiments herein relate to security systems and, more particularly, premises intrusion alarm systems that effectuate a successful alarm report in the face of damage or equipment failure associated with the alarm reporting device.


BACKGROUND

Security alarm systems are well-known and have been around for decades. Some of the noteworthy large manufacturers of traditional security alarm systems are Honeywell, GE, DSC and Napco. These systems generally contain a low-power (i.e., 8-bit) processor, with no operating system, running small (i.e. tens or hundreds of kilobytes) embedded software. These security panels have a relatively compact and straightforward code base that is easily tested and maintained because updates to the embedded software are time-consuming and costly as they would require a new certification to be performed on the overall system and/or software before the deployment of the new code. Because of this, software updates are infrequent. These systems strive for the highest reliability possible and regulatory requirements often require them to pass stringent safety, reliability and fault tolerance tests before being allowed to be certified for sale to the public.



FIG. 23 is a block diagram of a security system panel of a conventional security system 100 under the prior art. A security panel 2302 monitors and communicates with wired and/or wireless sensors 2304, and alarm conditions are reported to a Central Monitoring Station (CMS) via a phone line 2306. The security panel 2303 is coupled to an external power source 2310 (e.g., alternating current (AC) source, direct current (DC) source, etc.) and a battery 2308, and the battery 2308 is generally trickle-charged by the panel 2302. The primary source of power for the security panel 2302 is the external power source 2310, and in the event of an interruption in the external power 2301, the panel 2302 automatically switches to the battery 2308 as its power source.


Underwriters Laboratories® Inc. (UL) requirements dictate the minimum system performance required under battery operation. The UL certification is also required for the software residing on the conventional security panel 2302 in order to meet minimum safety and reliability performance levels. As such, software updates for a conventional security panels occur very infrequently as they are costly and time consuming and involve highly-rigorous testing and regulatory certification.


Embedded monitoring, video and automation systems are also well known and have been around for some time. Due to the nature of their feature set they typically require larger processors and more sophisticated internal software to handle the more complex and bandwidth intensive operations. In addition, such systems are highly feature-rich and manufacturers are continually improving existing features and adding new ones in order to maintain their product competitiveness. As such, these systems often require software updates (either performed by the user or automatically performed in the background).


Creating a feature-rich system that combines both traditional security as well as consumer-oriented interactive features results in a product that is a superset of the two systems in terms of processing power and software. Consequently, when providing extended monitoring and automation features on top of such a security system, additional processing power and software is required. A larger code base inherently makes the overall system less reliable thereby making the reliability requirements imposed by security companies and security standards and an even more challenging hurdle. The additional software inherently reduces the reliability of the overall code and introduces more software code paths that can potentially fail. This can also be a disadvantage as it can require the entire system to go through a security certification process each time the system software is modified, even if the software changes are only related to the interactive and consumer-related portion of the code. Furthermore, the battery backup of this integrated system, including the larger processor and memory, would require a larger battery and potentially more sophisticated backup circuitry for supporting the larger power load.


INCORPORATION BY REFERENCE

Each patent, patent application, and/or publication mentioned in this specification is herein incorporated by reference in its entirety to the same extent as if each individual patent, patent application, and/or publication was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of the integrated security system, under an embodiment.



FIG. 2 is a block diagram of components of the integrated security system, under an embodiment.



FIG. 2A is a block diagram of an integrated security system comprising a security coprocessor (SCP), under an embodiment.



FIG. 3 is a block diagram of the gateway software or applications, under an embodiment.



FIG. 4 is a block diagram of the gateway components, under an embodiment.



FIG. 4A (collectively FIGS. 4A/1 and 4A/2) shows the orb icon and corresponding text summary display elements, under an embodiment.



FIG. 4B is a table of security state and the corresponding sensor status displayed on the SUI, under an embodiment.



FIG. 4C is a table of system state and the corresponding warning text displayed as system warnings on the SUI, under an embodiment.



FIG. 4D is a table of sensor state/sort order and the corresponding sensor name and status text of the SUI, under an embodiment.



FIG. 4E shows icons of the interesting sensors, under an embodiment.



FIG. 4F shows the quiet sensor icon, under an embodiment.



FIG. 4G is an example Home Management Mode (HMM) screen presented via the web portal SUI, under an embodiment.



FIG. 4H is an example Home Management Mode (HMM) screen presented via the mobile portal SUI, under an embodiment.



FIG. 41 is a block diagram of an iPhone® client device SUI, under an embodiment.



FIG. 4J is a first example iPhone® client device SUI, under an embodiment.



FIG. 4K is a second example iPhone® client device SUI, under an embodiment.



FIG. 4L is a block diagram of a mobile portal client device SUI, under an embodiment.



FIG. 4M is an example summary page or screen presented via the mobile portal SUI, under an embodiment.



FIG. 4N is an example security panel page or screen presented via the mobile portal SUI, under an embodiment.



FIG. 40 is an example sensor status page or screen presented via the mobile portal SUI, under an embodiment.



FIG. 4P is an example interface page or screen presented via the web portal SUI, under an embodiment.



FIG. 4Q is an example summary page or screen presented via the touchscreen SUI, under an embodiment.



FIG. 4R is an example sensor status page or screen presented via the touchscreen SUI, under an embodiment.



FIG. 5 is a block diagram of IP device integration with a premises network, under an embodiment.



FIG. 6 is a block diagram of IP device integration with a premises network, under an alternative embodiment.



FIG. 7 is a block diagram of a touchscreen, under an embodiment.



FIG. 8 is an example screenshot of a networked security touchscreen, under an embodiment.



FIG. 9 is a block diagram of network or premises device integration with a premises network, under an embodiment.



FIG. 10 is a block diagram of network or premises device integration with a premises network, under an alternative embodiment.



FIG. 11 is a flow diagram for a method of forming a security network including integrated security system components, under an embodiment.



FIG. 12 is a flow diagram for a method of forming a security network including integrated security system components and network devices, under an embodiment.



FIG. 13 is a flow diagram for installation of an IP device into a private network environment, under an embodiment.



FIG. 14 is a block diagram showing communications among IP devices of the private network environment, under an embodiment.



FIG. 15 is a flow diagram of a method of integrating an external control and management application system with an existing security system, under an embodiment.



FIG. 16 is a block diagram of an integrated security system wirelessly interfacing to proprietary security systems, under an embodiment.



FIG. 17 is a flow diagram for wirelessly ‘learning’ the gateway into an existing security system and discovering extant sensors, under an embodiment.



FIG. 18 is a block diagram of a security system in which the legacy panel is replaced with a wireless security panel wirelessly coupled to a gateway, under an embodiment.



FIG. 19 is a block diagram of a security system in which the legacy panel is replaced with a wireless security panel wirelessly coupled to a gateway, and a touchscreen, under an alternative embodiment.



FIG. 20 is a block diagram of a security system in which the legacy panel is replaced with a wireless security panel connected to a gateway via an Ethernet coupling, under another alternative embodiment.



FIG. 21 is a flow diagram for automatic takeover of a security system, under an embodiment.



FIG. 22 is a flow diagram for automatic takeover of a security system, under an alternative embodiment.



FIG. 23 is a block diagram of a security system panel of a conventional security system under the prior art.





DETAILED DESCRIPTION

An integrated security system is described that integrates broadband and mobile access and control with conventional security systems and premises devices to provide a tri-mode security network (broadband, cellular/GSM, POTS access) that enables users to remotely stay connected to their premises. The integrated security system, while delivering remote premises monitoring and control functionality to conventional monitored premises protection, complements existing premises protection equipment. The integrated security system integrates into the premises network and couples wirelessly with the conventional security panel, enabling broadband access to premises security systems. Automation devices (cameras, lamp modules, thermostats, etc.) can be added, enabling users to remotely see live video and/or pictures and control home devices via their personal web portal or webpage, mobile phone, and/or other remote client device. Users can also receive notifications via email or text message when happenings occur, or do not occur, in their home.


Although the detailed description herein contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the embodiments described herein. Thus, the following illustrative embodiments are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention. In accordance with the embodiments described herein, a wireless system (e.g. radio frequency (RF)) is provided that enables a security provider or consumer to extend the capabilities of an existing RF-capable security system or a non-RF-capable security system that has been upgraded to support RF capabilities. The system includes an RF-capable Gateway device (physically located within RF range of the RF-capable security system) and associated software operating on the Gateway device. The system also includes a web server, application server, and remote database providing a persistent store for information related to the system.


The security systems of an embodiment, referred to herein as the iControl security system or integrated security system, extend the value of traditional home security by adding broadband access and the advantages of remote home monitoring and home control through the formation of a security network including components of the integrated security system integrated with a conventional premises security system and a premises local area network (LAN). With the integrated security system, conventional home security sensors, cameras, touchscreen keypads, lighting controls, and/or Internet Protocol (IP) devices in the home (or business) become connected devices that are accessible anywhere in the world from a web browser, mobile phone or through content-enabled touchscreens. The integrated security system experience allows security operators to both extend the value proposition of their monitored security systems and reach new consumers that include broadband users interested in staying connected to their family, home and property when they are away from home.


The integrated security system of an embodiment includes security servers (also referred to herein as iConnect servers or security network servers) and an iHub gateway (also referred to herein as the gateway, the iHub, or the iHub client) that couples or integrates into a home network (e.g., LAN) and communicates directly with the home security panel, in both wired and wireless installations. The security system of an embodiment automatically discovers the security system components (e.g., sensors, etc.) belonging to the security system and connected to a control panel of the security system and provides consumers with full two-way access via web and mobile portals. The gateway supports various wireless protocols and can interconnect with a wide range of control panels offered by security system providers. Service providers and users can then extend the system's capabilities with the additional IP cameras, lighting modules or security devices such as interactive touchscreen keypads. The integrated security system adds an enhanced value to these security systems by enabling consumers to stay connected through email and SMS alerts, photo push, event-based video capture and rule-based monitoring and notifications. This solution extends the reach of home security to households with broadband access.


The integrated security system builds upon the foundation afforded by traditional security systems by layering broadband and mobile access, IP cameras, interactive touchscreens, and an open approach to home automation on top of traditional security system configurations. The integrated security system is easily installed and managed by the security operator, and simplifies the traditional security installation process, as described below.


The integrated security system provides an open systems solution to the home security market. As such, the foundation of the integrated security system customer premises equipment (CPE) approach has been to abstract devices, and allows applications to manipulate and manage multiple devices from any vendor. The integrated security system DeviceConnect technology that enables this capability supports protocols, devices, and panels from GE Security and Honeywell, as well as consumer devices using Z-Wave, IP cameras (e.g., Ethernet, wifi, and Homeplug), and IP touchscreens. The DeviceConnect is a device abstraction layer that enables any device or protocol layer to interoperate with integrated security system components. This architecture enables the addition of new devices supporting any of these interfaces, as well as add entirely new protocols.


The benefit of DeviceConnect is that it provides supplier flexibility. The same consistent touchscreen, web, and mobile user experience operate unchanged on whatever security equipment selected by a security system provider, with the system provider's choice of IP cameras, backend data center and central station software.


The integrated security system provides a complete system that integrates or layers on top of a conventional host security system available from a security system provider. The security system provider therefore can select different components or configurations to offer (e.g., CDMA, GPRS, no cellular, etc.) as well as have iControl modify the integrated security system configuration for the system provider's specific needs (e.g., change the functionality of the web or mobile portal, add a GE or Honeywell-compatible TouchScreen, etc.).


The integrated security system integrates with the security system provider infrastructure for central station reporting directly via Broadband and GPRS alarm transmissions. Traditional dial-up reporting is supported via the standard panel connectivity. Additionally, the integrated security system provides interfaces for advanced functionality to the CMS, including enhanced alarm events, system installation optimizations, system test verification, video verification, 2-way voice over IP and GSM.


The integrated security system is an IP centric system that includes broadband connectivity so that the gateway augments the existing security system with broadband and GPRS connectivity. If broadband is down or unavailable GPRS may be used, for example. The integrated security system supports GPRS connectivity using an optional wireless package that includes a GPRS modern in the gateway. The integrated security system treats the GPRS connection as a higher cost though flexible option for data transfers. In an embodiment the GPRS connection is only used to route alarm events (e.g., for cost), however the gateway can be configured (e.g., through the iConnect server interface) to act as a primary channel and pass any or all events over GPRS. Consequently, the integrated security system does not interfere with the current plain old telephone service (POTS) security panel interface. Alarm events can still be routed through POTS; however the gateway also allows such events to be routed through a broadband or GPRS connection as well. The integrated security system provides a web application interface to the CSR tool suite as well as XML web services interfaces for programmatic integration between the security system provider's existing call center products. The integrated security system includes, for example, application programming interfaces (API) that allow the security system provider to integrate components of the integrated security system into a custom call center interface. The APIs include XML web service APIs for integration of existing security system provider call center applications with the integrated security system service. All functionality available in the CSR Web application is provided with these API sets. The Java and XML-based APIs of the integrated security system support provisioning, billing, system administration, CSR, central station, portal user interfaces, and content management functions, to name a few. The integrated security system can provide a customized interface to the security system provider's billing system, or alternatively can provide security system developers with APIs and support in the integration effort.


The integrated security system provides or includes business component interfaces for provisioning, administration, and customer care to name a few. Standard templates and examples are provided with a defined customer professional services engagement to help integrate operations support system (OSS)/business support system (BSS) (OSS/BSS) systems of a Service Provider with the integrated security system.


The integrated security system components support and allow for the integration of customer account creation and deletion with a security system. The iConnect APIs provides access to the provisioning and account management system in iConnect and provide full support for account creation, provisioning, and deletion. Depending on the requirements of the security system provider, the iConnect APIs can be used to completely customize any aspect of the integrated security system backend operational system.


The integrated security system includes a gateway that supports the following standards-based interfaces, to name a few: Ethernet IP communications via Ethernet ports on the gateway, and standard XML/TCP/IP protocols and ports are employed over secured SSL sessions; USB 2.0 via ports on the gateway; 802.11b/g/n IP communications; GSM/GPRS RF WAN communications; CDMA 1×RTT RF WAN communications (optional, can also support EVDO and 3G technologies).


The gateway supports the following proprietary interfaces, to name a few: interfaces including Dialog RF network (319.5 MHz) and RS485 Superbus 2000 wired interface; RF mesh network (908 MHz); and interfaces including RF network (345 MHz) and RS485/RS232 bus wired interfaces.


Regarding security for the IP communications (e.g., authentication, authorization, encryption, anti-spoofing, etc), the integrated security system uses SSL to encrypt all IP traffic, using server and client-certificates for authentication, as well as authentication in the data sent over the SSL-encrypted channel. For encryption, integrated security system issues public/private key pairs at the time/place of manufacture, and certificates are not stored in any online storage in an embodiment.


The integrated security system does not need any special rules at the customer premises and/or at the security system provider central station because the integrated security system makes outgoing connections using TCP over the standard HTTP and HTTPS ports. Provided outbound TCP connections are allowed then no special requirements on the firewalls are necessary.



FIG. 1 is a block diagram of the integrated security system 100, under an embodiment. The integrated security system 100 of an embodiment includes the gateway 102 and the security servers 104 coupled to the conventional home security system 110. At a customer's home or business, the gateway 102 connects and manages the diverse variety of home security and self-monitoring devices. The gateway 102 communicates with the iConnect Servers 104 located in the service provider's data center 106 (or hosted in an integrated security system data center), with the communication taking place via a communication network 108 or other network (e.g., cellular network, internet, etc.). These servers 104 manage the system integrations necessary to deliver the integrated system service described herein. The combination of the gateway 102 and the iConnect servers 104 enable a wide variety of remote client devices 120 (e.g., PCs, mobile phones and PDAs) allowing users to remotely stay in touch with their home, business and family. In addition, the technology allows home security and self-monitoring information, as well as relevant third party content such as traffic and weather, to be presented in intuitive ways within the home, such as on advanced touchscreen keypads.


The integrated security system service (also referred to as iControl service) can be managed by a service provider via browser-based Maintenance and Service Management applications that are provided with the iConnect Servers. Or, if desired, the service can be more tightly integrated with existing OSS/BSS and service delivery systems via the iConnect web services-based XML APis.


The integrated security system service can also coordinate the sending of alarms to the home security Central Monitoring Station (CMS) 199. Alarms are passed to the CMS 199 using standard protocols such as Contact ID or SIA and can be generated from the home security panel location as well as by iConnect server 104 conditions (such as lack of communications with the integrated security system). In addition, the link between the security servers 104 and CMS 199 provides tighter integration between home security and self-monitoring devices and the gateway 102. Such integration enables advanced security capabilities such as the ability for CMS personnel to view photos taken at the time a burglary alarm was triggered. For maximum security, the gateway 102 and iConnect servers 104 support the use of a mobile network (both GPRS and CDMA options are available) as a backup to the primary broadband connection.


The integrated security system service is delivered by hosted servers running software components that communicate with a variety of client types while interacting with other systems. FIG. 2 is a block diagram of components of the integrated security system 100, under an embodiment. Following is a more detailed description of the components.


The iConnect servers 104 support a diverse collection of clients 120 ranging from mobile devices, to PCs, to in-home security devices, to a service provider's internal systems. Most clients 120 are used by end-users, but there are also a number of clients 120 that are used to operate the service.


Clients 120 used by end-users of the integrated security system 100 include, but are not limited to, the following:


Clients based on gateway client applications 202 (e.g., a processor-based device running the gateway technology that manages home security and automation devices).


A web browser 204 accessing a Web Portal application, performing end-user configuration and customization of the integrated security system service as well as monitoring of in-home device status, viewing photos and video, etc.


Device and user management can also be performed by this portal application.


A mobile device 206 (e.g., PDA, mobile phone, etc.) accessing the integrated security system Mobile Portal. This type of client 206 is used by end-users to view system status and perform operations on devices (e.g., turning on a lamp, arming a security panel, etc.) rather than for system configuration tasks such as adding a new device or user.


PC or browser-based “widget” containers 208 that present integrated security system service content, as well as other third-party content, in simple, targeted ways (e.g. a widget that resides on a PC desktop and shows live video from a single in-home camera). “Widget” as used herein means applications or programs in the system.


Touchscreen home security keypads 208 and advanced in-home devices that present a variety of content widgets via an intuitive touchscreen user interface.


Notification recipients 210 (e.g., cell phones that receive SMS-based notifications when certain events occur (or don't occur), email clients that receive an email message with similar information, etc.).


Custom-built clients (not shown) that access the iConnect web services XML API to interact with users' home security and self-monitoring information in new and unique ways. Such clients could include new types of mobile devices, or complex applications where integrated security system content is integrated into a broader set of application features.


In addition to the end-user clients, the iConnect servers 104 support PC browser-based Service Management clients that manage the ongoing operation of the overall service. These clients run applications that handle tasks such as provisioning, service monitoring, customer support and reporting.


There are numerous types of server components of the iConnect servers 104 of an embodiment including, but not limited to, the following: Business Components which manage information about all of the home security and self-monitoring devices; End-User Application Components which display that information for users and access the Business Components via published XML APis; and Service Management Application Components which enable operators to administer the service (these components also access the Business Components via the XML APis, and also via published SNMP MIBs).


The server components provide access to, and management of, the objects associated with an integrated security system installation. The top-level object is the “network.” It is a location where a gateway 102 is located, and is also commonly referred to as a site or premises; the premises can include any type of structure (e.g., home, office, warehouse, etc.) at which a gateway 102 is located. Users can only access the networks to which they have been granted permission. Within a network, every object monitored by the gateway 102 is called a device. Devices include the sensors, cameras, home security panels and automation devices, as well as the controller or processor-based device running the gateway applications.


Various types of interactions are possible between the objects in a system. Automations define actions that occur as a result of a change in state of a device. For example, take a picture with the front entry camera when the front door sensor changes to “open”. Notifications are messages sent to users to indicate that something has occurred, such as the front door going to “open” state, or has not occurred (referred to as an iWatch notification). Schedules define changes in device states that are to take place at predefined days and times. For example, set the security panel to “Armed” mode every weeknight at 11:00 p.m.


The iConnect Business Components are responsible for orchestrating all of the low-level service management activities for the integrated security system service. They define all of the users and devices associated with a network (site), analyze how the devices interact, and trigger associated actions (such as sending notifications to users). All changes in device states are monitored and logged. The Business Components also manage all interactions with external systems as required, including sending alarms and other related self-monitoring data to the home security Central Monitoring System (CMS) 199. The Business Components are implemented as portable Java J2EE Servlets, but are not so limited.


The following iConnect Business Components manage the main elements of the integrated security system service, but the embodiment is not so limited:


A Registry Manager 220 defines and manages users and networks. This component is responsible for the creation, modification and termination of users and networks. It is also where a user's access to networks is defined.


A Network Manager 222 defines and manages security and self-monitoring devices that are deployed on a network (site). This component handles the creation, modification, deletion and configuration of the devices, as well as the creation of automations, schedules and notification rules associated with those devices.


A Data Manager 224 manages access to current and logged state data for an existing network and its devices. This component specifically does not provide any access to network management capabilities, such as adding new devices to a network, which are handled exclusively by the Network Manager 222.


To achieve optimal performance for all types of queries, data for current device states is stored separately from historical state data (a.k.a. “logs”) in the database. A Log Data Manager 226 performs ongoing transfers of current device state data to the historical data log tables.


Additional iConnect Business Components handle direct communications with certain clients and other systems, for example:


An iHub Manager 228 directly manages all communications with gateway clients, including receiving information about device state changes, changing the configuration of devices, and pushing new versions of the gateway client to the hardware it is running on.


A Notification Manager 230 is responsible for sending all notifications to clients via SMS (mobile phone messages), email (via a relay server like an SMTP email server), etc.


An Alarm and CMS Manager 232 sends critical server-generated alarm events to the home security Central Monitoring Station (CMS) and manages all other communications of integrated security system service data to and from the CMS.


The Element Management System (EMS) 234 is an iControl Business Component that manages all activities associated with service installation, scaling and monitoring, and filters and packages service operations data for use by service management applications. The SNMP MIBs published by the EMS can also be incorporated into any third party monitoring system if desired.


The iConnect Business Components store information about the objects that they manage in the iControl Service Database 240 and in the iControl Content Store 242. The iControl Content Store is used to store media objects like video, photos and widget content, while the Service Database stores information about users, networks, and devices. Database interaction is performed via a JDBC interface. For security purposes, the Business Components manage all data storage and retrieval.


The iControl Business Components provide web services-based APis that application components use to access the Business Components' capabilities. Functions of application components include presenting integrated security system service data to end-users, performing administrative duties, and integrating with external systems and back-office applications.


The primary published APis for the iConnect Business Components include, but are not limited to, the following:


A Registry Manager API 252 provides access to the Registry Manager Business Component's functionality, allowing management of networks and users.


A Network Manager API 254 provides access to the Network Manager Business Component's functionality, allowing management of devices on a network.


A Data Manager API 256 provides access to the Data Manager Business Component's functionality, such as setting and retrieving (current and historical) data about device states.


A Provisioning API 258 provides a simple way to create new networks and configure initial default properties.


Each API of an embodiment includes two modes of access: Java API or XML APL. The XML APis are published as web services so that they can be easily accessed by applications or servers over a network. The Java APis are a programmer-friendly wrapper for the XML APis. Application components and integrations written in Java should generally use the Java APis rather than the XML APis directly.


The iConnect Business Components also have an XML-based interface 260 for quickly adding support for new devices to the integrated security system. This interface 260, referred to as DeviceConnect 260, is a flexible, standards-based mechanism for defining the properties of new devices and how they can be managed. Although the format is flexible enough to allow the addition of any type of future device, pre-defined XML profiles are currently available for adding common types of devices such as sensors (SensorConnect), home security panels (PanelConnect) and IP cameras (CameraConnect).


The iConnect End-User Application Components deliver the user interfaces that run on the different types of clients supported by the integrated security system service. The components are written in portable Java J2EE technology (e.g., as Java Servlets, as JavaServer Pages (JSPs), etc.) and they all interact with the iControl Business Components via the published APis.


The following End-User Application Components generate CSS-based HTML/JavaScript that is displayed on the target client. These applications can be dynamically branded with partner-specific logos and URL links (such as Customer Support, etc.). The End-User Application Components of an embodiment include, but are not limited to, the following:


An iControl Activation Application 270 that delivers the first application that a user sees when they set up the integrated security system service. This wizard-based web browser application securely associates a new user with a purchased gateway and the other devices included with it as a kit (if any). It primarily uses functionality published by the Provisioning APL.


An iControl Web Portal Application 272 runs on PC browsers and delivers the web-based interface to the integrated security system service. This application allows users to manage their networks (e.g. add devices and create automations) as well as to view/change device states, and manage pictures and videos. Because of the wide scope of capabilities of this application, it uses three different Business Component AP is that include the Registry Manager API, Network Manager API, and Data Manager API, but the embodiment is not so limited.


An iControl Mobile Portal 274 is a small-footprint web-based interface that runs on mobile phones and PDAs. This interface is optimized for remote viewing of device states and pictures/videos rather than network management. As such, its interaction with the Business Components is primarily via the Data Manager APL Custom portals and targeted client applications can be provided that leverage the same Business Component APis used by the above applications.


A Content Manager Application Component 276 delivers content to a variety of clients. It sends multimedia-rich user interface components to widget container clients (both PC and browser-based), as well as to advanced touchscreen keypad clients. In addition to providing content directly to end-user devices, the Content Manager 276 provides widget-based user interface components to satisfy requests from other Application Components such as the iControl Web 272 and Mobile 274 portals.


A number of Application Components are responsible for overall management of the service. These pre-defined applications, referred to as Service Management Application Components, are configured to offer off-the-shelf solutions for production management of the integrated security system service including provisioning, overall service monitoring, customer support, and reporting, for example. The Service Management Application Components of an embodiment include, but are not limited to, the following:


A Service Management Application 280 allows service administrators to perform activities associated with service installation, scaling and monitoring/alerting. This application interacts heavily with the Element Management System (EMS) Business Component to execute its functionality, and also retrieves its monitoring data from that component via protocols such as SNMP MIBs.


A Kitting Application 282 is used by employees performing service provisioning tasks. This application allows home security and self-monitoring devices to be associated with gateways during the warehouse kitting process.


A CSR Application and Report Generator 284 is used by personnel supporting the integrated security system service, such as CSRs resolving end-user issues and employees enquiring about overall service usage. Pushes of new gateway firmware to deployed gateways is also managed by this application.


The iConnect servers 104 also support custom-built integrations with a service provider's existing OSS/BSS, CSR and service delivery systems 290. Such systems can access the iConnect web services XML API to transfer data to and from the iConnect servers 104. These types of integrations can compliment or replace the PC browser-based Service Management applications, depending on service provider needs.


As described above, the integrated security system of an embodiment includes a gateway, or iHub. The gateway of an embodiment includes a device that is deployed in the home or business and couples or connects the various third-party cameras, home security panels, sensors and devices to the iConnect server over a WAN connection as described in detail herein. The gateway couples to the home network and communicates directly with the home security panel in both wired and wireless sensor installations. The gateway is configured to be low-cost, reliable and thin so that it complements the integrated security system network-based architecture.


The gateway supports various wireless protocols and can interconnect with a wide range of home security control panels. Service providers and users can then extend the system's capabilities by adding IP cameras, lighting modules and additional security devices. The gateway is configurable to be integrated into many consumer appliances, including set-top boxes, routers and security panels. The small and efficient footprint of the gateway enables this portability and versatility, thereby simplifying and reducing the overall cost of the deployment.


The integrated security system of an embodiment comprises a security coprocessor that couples to a conventional security system panel and an interactive security system. Under this architecture, the integrated security system enables conventional security system features as well as the consumer-oriented interactive features and functions of an interactive security system without sacrificing reliability or the significant burden and cost associated with frequent software updates associated with conventional security systems. The integrated security system also minimizes or eliminates the need for new battery backup circuitry or larger batteries.



FIG. 2A is a block diagram of an integrated security system 200A comprising a security coprocessor (SCP) 204A, under an embodiment. The SCP 204A of the integrated security system 200A couples or connects to a security panel 202A and to an interactive security system 206A. Communication channels or paths 230A are formed between the SCP 204A and the security panel 202A and the interactive security system 206A, and the SCP 204A controls the communication channels 230A and therefore the communications among the security panel 202A and the interactive security system 206A.


Wired or wireless sensors 212A (e.g., door sensor, window sensors, infrared sensors, heat sensors, smoke sensors, etc.) are monitored by the security panel 202A, which is a component of a security system. The security panel 202A connects to the phone line for reporting alarms to the CMS, as described above. The security panel also incorporates a battery with associated charging and switch-over circuitry.


The interactive security system 206A communicates with wired and/or wireless devices or components 216A (e.g., Internet Protocol (IP) devices, cameras, touchscreen input/output devices, thermostats, controllers, etc.). A battery 210A is coupled to the security panel 202A and the interactive security system 206A. The integrated security system 200A comprises a power switch 208A coupled to the security panel 202A, SCP 204A, and the interactive security system 206A.


The SCP 204A orchestrates the behavior of the integrated security system 200A during external power interruptions. The SCP 204A also coordinates the communication between the security panel 202A and the processor of the interactive security system 206A, ensuring a stable flow of data between these systems or components. Further examples of components, configurations and operations of the integrated security system 200A can be found in the Related Applications.


Power flows from the external power source 220A into the security panel 202A, which then controls or supplies power to the SCP 204A and, via a power switch 208A, to the interactive security system 206A processor. In the event of an external power failure, the security panel 202A communicates the failure condition to the SCP 204A. The SCP 204A signals the power switch 208A to turn off power to the interactive security system 206A processor, thereby reducing the overall system power consumption. Critical power during power failures is now only applied to the key subsystems that are required to be up and running, namely the security panel 202A, the SCP 204A and the communications radio or device (e.g., Global System for Mobile Communications (GSM) radio, etc.) of the interactive security system 206A (for backup in case the phone line goes down).


Much like the security panel 202A, software of the SCP 204A is relatively small and thus more easily tested and maintained. The processor code of the interactive security system 206A is usually relatively larger, but because it does not have to adhere to UL requirements it can be modified and remotely updated as frequently as necessary.


In an embodiment, the gateway described herein is or includes the interactive security system, but the embodiment is not so limited. In an alternative embodiment, the gateway described herein is or includes the interactive security system and the security coprocessor, but the embodiment is not so limited. In another alternative embodiment, the touchscreen described herein is or includes the interactive security system, but the embodiment is not so limited. In yet another alternative embodiment, the touchscreen described herein is or includes the interactive security system and the security coprocessor, but the embodiment is not so limited.



FIG. 3 is a block diagram of the gateway 102 including gateway software or applications, under an embodiment. The gateway software architecture is relatively thin and efficient, thereby simplifying its integration into other consumer appliances such as set-top boxes, routers, touch screens and security panels. The software architecture also provides a high degree of security against unauthorized access. This section describes the various key components of the gateway software architecture.


The gateway application layer 302 is the main program that orchestrates the operations performed by the gateway. The Security Engine 304 provides robust protection against intentional and unintentional intrusion into the integrated security system network from the outside world (both from inside the premises as well as from the WAN). The Security Engine 304 of an embodiment comprises one or more sub-modules or components that perform functions including, but not limited to, the following:


Encryption including 128-bit SSL encryption for gateway and iConnect server communication to protect user data privacy and provide secure communication.


Bi-directional authentication between the gateway and iConnect server in order to prevent unauthorized spoofing and attacks. Data sent from the iConnect server to the gateway application (or vice versa) is digitally signed as an additional layer of security. Digital signing provides both authentication and validation that the data has not been altered in transit.


Camera SSL encapsulation because picture and video traffic offered by off-the-shelf networked IP cameras is not secure when traveling over the Internet. The gateway provides for 128-bit SSL encapsulation of the user picture and video data sent over the internet for complete user security and privacy.


802.11b/g/n with WPA-2 security to ensure that wireless camera communications always takes place using the strongest available protection.


A gateway-enabled device is assigned a unique activation key for activation with an iConnect server. This ensures that only valid gateway-enabled devices can be activated for use with the specific instance of iConnect server in use. Attempts to activate gateway-enabled devices by brute force are detected by the Security Engine. Partners deploying gateway-enabled devices have the knowledge that only a gateway with the correct serial number and activation key can be activated for use with an iConnect server. Stolen devices, devices attempting to masquerade as gateway-enabled devices, and malicious outsiders (or insiders as knowledgeable but nefarious customers) cannot affect other customers' gateway-enabled devices.


As standards evolve, and new encryption and authentication methods are proven to be useful, and older mechanisms proven to be breakable, the security manager can be upgraded “over the air” to provide new and better security for communications between the iConnect server and the gateway application, and locally at the premises to remove any risk of eavesdropping on camera communications.


A Remote Firmware Download module 306 allows for seamless and secure updates to the gateway firmware through the iControl Maintenance Application on the server 104, providing a transparent, hassle-free mechanism for the service provider to deploy new features and bug fixes to the installed user base. The firmware download mechanism is tolerant of connection loss, power interruption and user interventions (both intentional and unintentional). Such robustness reduces down time and customer support issues. Gateway firmware can be remotely download either for one gateway at a time, a group of gateways, or in batches.


The Automations engine 308 manages the user-defined rules of interaction between the different devices (e.g. when door opens turn on the light). Though the automation rules are programmed and reside at the portal/server level, they are cached at the gateway level in order to provide short latency between device triggers and actions.


DeviceConnect 310 includes definitions of all supported devices (e.g., cameras, security panels, sensors, etc.) using a standardized plug-in architecture. The DeviceConnect module 310 offers an interface that can be used to quickly add support for any new device as well as enabling interoperability between devices that use different technologies/protocols. For common device types, pre-defined sub-modules have been defined, making supporting new devices of these types even easier. SensorConnect 312 is provided for adding new sensors, CameraConnect 316 for adding IP cameras, and PanelConnect 314 for adding home security panels.


The Schedules engine 318 is responsible for executing the user defined schedules (e.g., take a picture every five minutes; every day at Sam set temperature to 65 degrees Fahrenheit, etc.). Though the schedules are programmed and reside at the iConnect server level they are sent to the scheduler within the gateway application. The Schedules Engine 318 then interfaces with SensorConnect 312 to ensure that scheduled events occur at precisely the desired time.


The Device Management module 320 is in charge of all discovery, installation and configuration of both wired and wireless IP devices (e.g., cameras, etc.) coupled or connected to the system. Networked IP devices, such as those used in the integrated security system, require user configuration of many IP and security parameters—to simplify the user experience and reduce the customer support burden, the device management module of an embodiment handles the details of this configuration. The device management module also manages the video routing module described below.


The video routing engine 322 is responsible for delivering seamless video streams to the user with zero-configuration. Through a multi-step, staged approach the video routing engine uses a combination of UPnP port-forwarding, relay server routing and STUN/TURN peer-to-peer routing.



FIG. 4 is a block diagram of components of the gateway 102, under an embodiment. Depending on the specific set of functionality desired by the service provider deploying the integrated security system service, the gateway 102 can use any of a number of processors 402, due to the small footprint of the gateway application firmware. In an embodiment, the gateway could include the Broadcom BCM5354 as the processor for example. In addition, the gateway 102 includes memory (e.g., FLASH 404, RAM 406, etc.) and any number of input/output (I/O) ports 408.


Referring to the WAN portion 410 of the gateway 102, the gateway 102 of an embodiment can communicate with the iConnect server using a number of communication types and/or protocols, for example Broadband 412, GPRS 414 and/or Public Switched Telephone Network (PTSN) 416 to name a few. In general, broadband communication 412 is the primary means of connection between the gateway 102 and the iConnect server 104 and the GPRS/CDMA 414 and/or PSTN 416 interfaces acts as back-up for fault tolerance in case the user's broadband connection fails for whatever reason, but the embodiment is not so limited.


Referring to the LAN portion 420 of the gateway 102, various protocols and physical transceivers can be used to communicate to off-the-shelf sensors and cameras. The gateway 102 is protocol-agnostic and technology-agnostic and as such can easily support almost any device networking protocol. The gateway 102 can, for example, support GE and Honeywell security RF protocols 422, Z-Wave 424, serial (RS232 and RS485) 426 for direct connection to security panels as well as WiFi 428 (802.11b/g) for communication to WiFi cameras.


The system of an embodiment uses or includes a system user interface (SUI) that provides an iconic, at-a-glance representation of security system status. The SUI is for use across all client types as described above with reference to FIG. 1. The SUI includes a number of display elements that are presented across all types of client devices used to monitor status of the security system. The clients of an embodiment include, but are not limited to, the iPhone®, a mobile portal, a web portal, and a touchscreen. The display elements of the SUI of an embodiment include, but are not limited to, an orb icon, text summary, security button, device and system warnings, interesting sensors, and quiet sensors, as described in detail below. The SUI thus provides system status summary information (e.g., security and sensors) uniformly across all clients. Additionally, the SUI provides consistent iconography, terminology, and display rules across all clients as well as consistent sensor and system detail across clients.


Following is a description of the various states of the iControl sensors, and how these states are indicated uniformly across all clients using the SUI and other sensor information displays such as sensor lists and timelines.


Regarding the display elements of the SUI, the orb icon visually indicates the current arm state and sensor status of a single site. FIG. 4A (collectively FIGS. 4A/1 and 4A/2) shows the orb icon and corresponding text summary display elements, under an embodiment. Across all clients, when sensor detail is shown in a list or timeline, state is indicated using the proper icon, text summary and grouping. The orb icons and text summary elements of an embodiment generally represent system state 4001 to include the following states: “Disarmed” or “Subdisarmed”, “Armed (Doors and Windows, Stay, Away, All, Night Stay, Instant, Motion, Maximum)”; “Disarmed”, or “Subdisarmed” (sensor absent; sensor tripped; sensor tampered; low battery; uncleared alarm); “Armed (Doors and Windows, Stay, Away, All, Night Stay, Instant, Motion, Maximum)” (sensor absent; sensor tripped; sensor tampered; low battery); “Alarm”; and “No iHub Connection” (broadband offline, etc.) (no security panel connection). In addition to representing system state, the orb icons and text summary elements of an embodiment generally represent system status 4002 to include the following status: “All Quiet”; “Motion”; “Open”; “Open & Motion”.


Using various combinations of system state 4001 and status 4002, the orb icons of an embodiment indicate or represent numerous system states.


When the system state 4001 is “Disarmed” or “Subdisarmed”, the orb icons of an embodiment indicate or represent status 4002 as follows: Disarmed (status: all quiet) 4010 (e.g., icon color is green); Disarmed (status: motion) 4011 (e.g., icon color is green); Disarmed, (number of sensors open) Sensor(s) Open (status: open) 4012 (e.g., icon color is green, bottom region for sensor number is yellow); Disarmed, (number of sensors open) Sensor(s) Open (status: open and motion) 4013 (e.g., icon color is green, bottom region for sensor number is yellow).


When the system state 4001 is “Armed (Doors and Windows, Stay, Away, All, Night Stay, Instant, Motion, Maximum)”, the orb icons of an embodiment indicate or represent status 4002 as follows: Armed Doors & Windows (status: all quiet) 4014 (e.g., icon color is red); Armed Doors & Windows (status: motion) 4015 (e.g., icon color is red); Armed Doors & Windows, (number of sensors open) Sensor(s) Open (status: open) 4016 (e.g., icon color is red, bottom region for sensor number is yellow); Armed Doors & Windows, (number of sensors open) Sensor(s) Open (status: open and motion) 4017 (e.g., icon color is red, bottom region for sensor number is yellow).


When the system state 4001 is “Disarmed”, or “Subdisarmed” (sensor absent; sensor tripped; sensor tampered; low battery; uncleared alarm), the orb icons of an embodiment indicate or represent status 4002 as follows: Disarmed, sensor problem (status: all quiet) 4018 (e.g., icon color is green, badge in top region with “!” symbol is red); Disarmed, sensor problem (status: motion) 4019 (e.g., icon color is green, badge in top region with “!” symbol is red); Disarmed, sensor problem (status: open) 4020 (e.g., icon color is green, badge in top region with “!” symbol is red, bottom region for sensor number is yellow); Disarmed, sensor problem (status: open and motion) 4021 (e.g., icon color is green, badge in top region with “!” symbol is red, bottom region for sensor number is yellow).


When the system state 4001 is “Armed (Doors and Windows, Stay, Away, All, Night Stay, Instant, Motion, Maximum)” (sensor absent; sensor tripped; sensor tampered; low battery), the orb icons of an embodiment indicate or represent status 4002 as follows: Armed Doors & Windows, sensor problem (status: all quiet) 4022 (e.g., icon color is red, badge in top region with “!” symbol is red); Armed Doors & Windows, sensor problem (status: motion) 4023 (e.g., icon color is red, badge in top region with “!” symbol is red); Armed Doors & Windows, sensor problem (status: open) 4024 (e.g., icon color is red, badge in top region with “!” symbol is red, bottom region for sensor number is yellow); Armed Doors & Windows, sensor problem (status: open & motion) 4025 (e.g., icon color is red, badge in top region with “!” symbol is red, bottom region for sensor number is yellow).


When the system state 4001 is “Alarm”, the orb icons of an embodiment indicate or represent status 4002 as follows: Armed Away/Stay, (alarm type) ALARM 4026 (e.g., icon color is red).


When the system state 4001 is “No iHub Connection” (broadband offline, etc.) (no security panel connection), the orb icons of an embodiment indicate or represent status 4002 as follows: Status Unavailable 4027 (e.g., icon color is grey).


When the client of an embodiment is a touchscreen, a mini orb is presented at the bottom of the touch screen in all widgets and settings screens. The mini orb is green when the security panel is disarmed, and it is red when the security panel is armed, but is not so limited. The form factor of the mini orb, and the text corresponding to the mini orb, is the same or similar to that described above as corresponding to the orb icon on the home screen.


The orb icons of an embodiment include motion indicators that animate to indicate motion detected by a corresponding sensor or detector. Furthermore, the orb icons of an embodiment show an animation during the exit delay when arming the security system and, additionally, indicate a countdown time showing the time remaining before the security system is fully armed. Moreover, selection of the orb of an embodiment causes additional information (e.g., list of sensors, etc.) of the security system and/or premises to be displayed.


The text summary display element of the SUI includes or displays information including a direct description of the current state of the security system to support the visual appearance of the orb icon. In an embodiment, two phrases are shown, including a first phrase for security state and a second phrase for sensor status (e.g., “Armed Stay. All Quiet”), as described herein. FIG. 4B is a table of security state and the corresponding sensor status displayed on the SUI, under an embodiment. The possible values for the text summary are (in priority order): Status Unavailable; if the security panel and control box are online and there are no current alarms, the text summary section is a combination of one phrase from each of the security state 4030 and the sensor status 4032. The security state 4030 of an embodiment is selected from among the following, but is not so limited: Armed Doors & Windows; Armed All; Armed Stay; Armed Away; Disarmed; Armed Maximum; Armed Night Stay; Armed Stay Instant; Armed Away Instant; Armed Motion; Subdisarmed. The sensor status 4032 of an embodiment is selected from among the following, but is not so limited: Uncleared Alarm; Sensor Tripped; Sensor Problem; Sensor(s) Bypassed; Motion; All Quiet; (number of sensors open) Sensor(s) Open.


The display elements of the SUI also include security buttons. The security buttons are used to control or arm/disarm the security panel. A single arm button (e.g., button labeled “Arm”) can be used on the SUI of a first client device type (e.g., Touchscreen, iPhone®, etc.). Two different buttons (e.g., buttons labeled “Arm Away/Arm Stay” or “Arm All/Doors and Windows”) can be used on the SUI of a second client device type (e.g., web portal, mobile portal, etc.). In either embodiment, when the system is armed, the arm button (e.g., “Arm”, “Arm Stay” and “Arm Away”) label will change to a “Disarm” label. If the system is in the process of arming, the button is disabled.


The display elements of the SUI include system and device warnings, as described above. The system and device warning are informational warnings that are not associated with specific sensors, and involve more detail than can be displayed in the text summary display element. FIG. 4C is a table of system state and the corresponding icons and warning text displayed as system warnings on the SUI, under an embodiment. Where an icon is displayed, an embodiment uses a red color for the icon, but it is not so limited. The system states/warnings of an embodiment include, but are not limited to, the following: primary connection is broadband, broadband is down, cellular is being used/using cellular connection; primary connection is broadband, broadband and cellular are down/no cellular connection; primary connection is broadband, broadband is down, no cellular backup installed/broadband connection unknown; primary connection is cellular, cellular is down/no cellular connection; security panel not connected to AC power/security panel AC power loss; security panel low battery/security panel low battery; security panel tampered/security panel tampered; sensor(s) bypassed/sensor bypassed.


The device warnings of an embodiment include, but are not limited to, the following: camera(s) offline; light(s) offline; thermostat(s) offline. The device and system warnings may be combined into one box, or indicated separately in respective regions or portions of the SUI, depending on a type of the client device (e.g., combined into one box on a web portal or a mobile portal, but indicated in separate boxes on a Touchscreen or iPhone® device).


The device and system warnings display element is cumulative (e.g., built up in a list), but is not so limited. On the web and mobile portals the system and device warnings of an embodiment are combined into one area, but are not so limited. On the touchscreen device and mobile phone (e.g., iPhone®), device warnings are indicated separately so that, in an embodiment, the iPhone® tab bar and the touchscreen home screen indicate device warnings with icon badges, and system warnings are placed on the sensors screen.


The list of all sensors includes, but is not limited to, door/window sensors, motion detectors, smoke, flood, fire, glass break, etc. The list of all sensors of an embodiment does not include cameras or locks, or non-security related devices such as lights, thermostats, energy, water etc. The list of sensors is split into groups that, in an embodiment, include interesting sensors as a first group, and quiet sensors as a second group. The interesting sensor group is positioned above or sorted to the top portion of the sensor list and the quiet sensors are sorted to the bottom portion of the sensor list. Any sensor that is triggered (e.g. open, motion, etc.) is categorized as an interesting sensor and placed in the interesting sensor group and list. Additionally, other sensor states such as tampered, tripped, absent, installing, low battery, or bypassed make a sensor “interesting” regardless of their state.



FIG. 4D is a table of sensor state/sort order and the corresponding icon, sensor name and status text of the SUI, under an embodiment. Generally, the list of interesting sensors is sorted according to the following categories: motion; open/tripped; tampered; low battery; offline; installing; bypassed. Sensors are sorted alphabetically by sensor name within each category or interest type when multiple interesting sensors have the same state. The sensor state/sort order of an embodiment includes, but is not limited to, the following: breached & any sensor state (e.g., red icon) (interesting sensor); tripped (smoke, water, gas, freeze, etc.) (e.g., red icon) (interesting sensor); tampered (e.g., red icon) (interesting sensor); low battery (e.g., red icon) (interesting sensor); offline/AWOL (e.g., red icon) (interesting sensor); unknown (if the iHub or Security Panel is offline, all sensors have a grey diamond icon and “Unknown” for the status text) (e.g., grey icon) (interesting sensor); installing (e.g., grey icon) (interesting sensor); open (e.g., yellow icon) (interesting sensor); motion (e.g., yellow icon) (interesting sensor); bypassed (e.g., yellow or green icon) (interesting sensor); okay, closed, no motion (e.g., green icon) (quiet sensor).


The interesting sensors are shown or displayed with an icon. FIG. 4E shows icons of the interesting sensors, under an embodiment. A red diamond bang icon represents tamper, offline, bypassed, installing, and/or battery. A yellow triangle icon represents open or triggered. A wavy lines icon represents motion. It is possible for an interesting sensor to have a green/closed icon (e.g., any quiet sensor that has been bypassed).


Following the state icon and the sensor name an embodiment displays status text. The status of an embodiment includes, but is not limited to, the following: ALARM, (sensor state); tripped; tampered, (sensor state); low battery, (sensor state); offline; unknown; installing; bypassed, (sensor state). If a sensor is offline or tampered, it will show that text; otherwise the status text will show the tripped state: open, motion, tripped, etc. In addition, if a sensor is bypassed its state is “Bypassed, (sensor state)”. For example, a bypassed motion sensor that has recently detected motion would have the status: “Motion, bypassed”. If a sensor has a low battery its state does not change, but it still joins the interesting sensors group.


The quiet sensors include the remaining sensors that are not currently active, and so are not categorized as interesting sensors. Quiet sensor states of an embodiment include closed, no motion or otherwise not tripped or faulted. FIG. 4F shows the quiet sensor icon, under an embodiment. A green circle icon is a quiet sensor icon in an embodiment, and represents closed/no motion/okay/quiet. In addition to the state icon and sensor name, each quiet sensor shows status text as follows: if a door/window sensor is closed its state is “closed”; if a motion sensor has not recently detected motion then its state is “no motion”; other sensors, such as a smoke detector, indicate “quiet” or “okay”. Quiet sensors are listed alphabetically.


The SUI of an embodiment includes control icons for a Home Management Mode (HMM). If the user deselects the “Set home management modes automatically” setting via the web portal, then the Home Management Mode (HMM) screen will appear in the web and mobile Portals. FIG. 4G is an example Home Management Mode (HMM) screen presented via the web portal SUI, under an embodiment. The HMM screen includes an orb icon and corresponding text summary display elements, along with security buttons that control or arm/disarm the security panel. Furthermore, the HMM screen includes sensor status information (e.g., “Door”, status is “open”, icon is yellow; “Basement Motion”, status is “motion”, icon is yellow; “Family Room North Motion”, status is “motion”, icon is yellow; “Water”, status is “okay”, icon is green).



FIG. 4H is an example Home Management Mode (HMM) screen presented via the mobile portal SUI, under an embodiment. The HMM screen of the mobile portal includes an orb icon and corresponding text summary display elements, along with security buttons that control or arm/disarm the security panel.


The SUI of an embodiment is supported on numerous client types, for example, mobile telephones (e.g., iPhone®, etc.), client access via mobile portal, client access via web portal, and touchscreen to name a few. All clients types supported in an embodiment have the same status related sections, but their locations change slightly depending on the client. The status related sections of an embodiment include the following: orb; arm state/sensor summary; change mode; device summary and system warnings; interesting sensors; and quiet sensors.



FIG. 41 is a block diagram of an iPhone® client device SUI, under an embodiment. The client interface of the iPhone®, as one example client, has the orb on the security page. The text summary is below the orb. The security button (e.g., arm, disarm, etc.) is below the text summary. A tab bar is presented at the bottom of the screen. The SUI of an embodiment represents device warnings by the icons in the bottom horizontal tab bar. If a camera, light, lock, or thermostat is offline then a red circle will badge the corresponding icon in the tab bar. The number of offline devices is shown in the badge. FIG. 4J is a first example iPhone® client device SUI, under an embodiment. In this first example screenshot, the security page indicates one camera is offline, as indicated by the “I” in a “circle” badge displayed corresponding to the “camera” icon in the tab bar.


System warnings appear as a group in an area (e.g., yellow area) at the top of the sensor status screen. This area at the top of the sensor status screen appears only when there is a device or system warning; otherwise, it is not presented. Multiple messages appear as a vertical list with one message on each line. The yellow bar will grow in length to fit additional messages. If there are no system warnings then the interesting sensors group is at the top of the sensor status screen. Interesting sensors are presented below system warnings. Quiet sensors are presented below interesting sensors. FIG. 4K is a second example iPhone® client device SUI, under an embodiment. In this second example screenshot, the sensor status page indicates at least one sensor is bypassed, as indicated by the “Sensor(s) bypassed” message displayed at the top of the sensor status screen.



FIG. 4L is a block diagram of a mobile portal client device SUI, under an embodiment. The mobile portal of an embodiment comprises three (3) pages or screens presented to the client, including a summary page (“summary”), a security panel page (“security panel”), and a sensor status page (“sensors status”), but the embodiment is not so limited. The client interface of the mobile portal, as one example client, has the orb at the top of the summary page below the site name. The text summary is below the orb. The security buttons (e.g., arm, disarm, etc.) (plural on mobile portal) are on the security panel page (accessible via the “Security” link on the summary page). Device and system warnings are presented in an area (e.g., yellow area) below the text summary; in an embodiment this area is presented only when device or system warnings are present. Interesting sensors presented are at the top of the sensor status page. Quiet sensors are presented below interesting sensors on the sensor status page.



FIG. 4M is an example summary page or screen presented via the mobile portal SUI, under an embodiment. FIG. 4N is an example security panel page or screen presented via the mobile portal SUI, under an embodiment. FIG. 40 is an example sensor status page or screen presented via the mobile portal SUI, under an embodiment.



FIG. 4P is an example interface page or screen presented via the web portal SUI, under an embodiment. The client interface of the web portal, as one example client, has the orb in the center of the security widget. The text summary is below the orb. The security button (plurality in the web portal) is adjacent to the orb's right side. System warnings are presented in an area (e.g., yellow area) below the text summary; in an embodiment this area is presented only when device or system warnings are present. Multiple system warning messages are presented as a vertical list with one message on each line, and the area dedicated to the system warnings grows in length to accommodate additional messages. Interesting sensors span across the entire security widget below the text summary. Quiet sensors span across the entire security widget below interesting sensors.



FIG. 4Q is an example summary page or screen presented via the touchscreen SUI, under an embodiment. The summary page of the touchscreen, as one example, has the orb in the center of the security bar. The text summary is split into sections or parts on each side of the orb. The security button is presented on the right side of the security bar.


In addition to the orb, text summary, and security button, the summary page also includes one or more icons that enable a transfer of content to and from the remote network, as described in detail herein. The touchscreen integrates the content with access and control of the security system. The content includes interactive content in the form of internet widgets. The summary page of an embodiment also comprises at least one icon enabling communication and control of the premises devices coupled to the subnetwork. The summary page also comprises one or more icons enabling access to live video from a camera, wherein the camera is an Internet Protocol (IP) camera.



FIG. 4R is an example sensor status page or screen presented via the touchscreen SUI, under an embodiment. The sensor status page of the touchscreen, as one example, displays widget badges or icons representing device warnings. System warnings are at the top of the sensor status screen; in an embodiment this area is presented only when system warnings are present. Multiple system warning messages are presented as a vertical list with one message on each line, and the area dedicated to the system warnings grows in length to accommodate additional messages. Interesting sensors are below system warnings. Quiet sensors are below interesting sensors. The sensors screen also includes the mini-orb which indicates the arm state with text and color.


The integrated security system includes couplings or connections among a variety of IP devices or components, and the device management module is in charge of the discovery, installation and configuration of the IP devices coupled or connected to the system, as described above. The integrated security system of an embodiment uses a “sandbox” network to discover and manage all IP devices coupled or connected as components of the system. The IP devices of an embodiment include wired devices, wireless devices, cameras, interactive touchscreens, and security panels to name a few. These devices can be wired via ethernet cable or Wifi devices, all of which are secured within the sandbox network, as described below. The “sandbox” network is described in detail below.



FIG. 5 is a block diagram 500 of network or premises device integration with a premises network 250, under an embodiment. In an embodiment, network devices 255, 257, 556 are coupled to the gateway 102 using a secure network coupling or connection such as SSL over an encrypted 802.11 link (utilizing for example WPA-2 security for the wireless encryption). The network coupling or connection between the gateway 102 and the network devices 255, 257, 556 is a private coupling or connection in that it is segregated from any other network couplings or connections. The gateway 102 is coupled to the premises router/firewall 552 via a coupling with a premises LAN 250. The premises router/firewall 552 is coupled to a broadband modem 251, and the broadband modem 251 is coupled to a WAN 200 or other network outside the premises. The gateway 102 thus enables or forms a separate wireless network, or sub-network, that includes some number of devices and is coupled or connected to the LAN 250 of the host premises. The gateway sub-network can include, but is not limited to, any number of other devices like WiFi IP cameras, security panels (e.g., IP-enabled), and security touchscreens, to name a few. The gateway 102 manages or controls the sub-network separately from the LAN 250 and transfers data and information between components of the sub-network and the LAN 250/WAN 200, but is not so limited. Additionally, other network devices 554 can be coupled to the LAN 250 without being coupled to the gateway 102.



FIG. 6 is a block diagram 600 of network or premises device integration with a premises network 250, under an alternative embodiment. The network or premises devices 255, 257, 556 are coupled to the gateway 102. The network coupling or connection between the gateway 102 and the network devices 255, 257, 556 is a private coupling or connection in that it is segregated from any other network couplings or connections. The gateway 102 is coupled or connected between the premises router/firewall 552 and the broadband modem 251. The broadband modem 251 is coupled to a WAN 200 or other network outside the premises, while the premises router/firewall 552 is coupled to a premises LAN 250. As a result of its location between the broadband modern 251 and the premises router/firewall 552, the gateway 102 can be configured or function as the premises router routing specified data between the outside network (e.g., WAN 200) and the premises router/firewall 552 of the LAN 250. As described above, the gateway 102 in this configuration enables or forms a separate wireless network, or sub-network, that includes the network or premises devices 255, 257, 556 and is coupled or connected between the LAN 250 of the host premises and the WAN 200. The gateway sub-network can include, but is not limited to, any number of network or premises devices 255, 257, 556 like WiFi IP cameras, security panels (e.g., IP-enabled), and security touchscreens, to name a few. The gateway 102 manages or controls the sub-network separately from the LAN 250 and transfers data and information between components of the sub-network and the LAN 250/WAN 200, but is not so limited. Additionally, other network devices 554 can be coupled to the LAN 250 without being coupled to the gateway 102.


The examples described above with reference to FIGS. 5 and 6 are presented only as examples of IP device integration. The integrated security system is not limited to the type, number and/or combination of 1P devices shown and described in these examples, and any type, number and/or combination of IP devices is contemplated within the scope of this disclosure as capable of being integrated with the premises network.


The integrated security system of an embodiment includes a touchscreen (also referred to as the iControl touchscreen or integrated security system touchscreen), as described above, which provides core security keypad functionality, content management and presentation, and embedded systems design. The networked security touchscreen system of an embodiment enables a consumer or security provider to easily and automatically install, configure and manage the security system and touchscreen located at a customer premises. Using this system the customer may access and control the local security system, local IP devices such as cameras, local sensors and control devices (such as lighting controls or pipe freeze sensors), as well as the local security system panel and associated security sensors (such as door/window, motion, and smoke detectors). The customer premises may be a home, business, and/or other location equipped with a wired or wireless broadband IP connection.


The system of an embodiment includes a touchscreen with a configurable software user interface and/or a gateway device (e.g., iHub) that couples or connects to a premises security panel through a wired or wireless connection, and a remote server that provides access to content and information from the premises devices to a user when they are remote from the home. The touchscreen supports broadband and/or WAN wireless connectivity. In this embodiment, the touchscreen incorporates an IP broadband connection (e.g., Wifi radio, Ethernet port, etc.), and/or a cellular radio (e.g., GPRS/GSM, CDMA, WiMax, etc.). The touchscreen described herein can be used as one or more of a security system interface panel and a network user interface (UI) that provides an interface to interact with a network (e.g., LAN, WAN, internet, etc.).


The touchscreen of an embodiment provides an integrated touchscreen and security panel as an all-in-one device. Once integrated using the touchscreen, the touchscreen and a security panel of a premises security system become physically co-located in one device, and the functionality of both may even be co-resident on the same CPU and memory (though this is not required).


The touchscreen of an embodiment also provides an integrated IP video and touchscreen UI. As such, the touchscreen supports one or more standard video CODECs/players (e.g., H.264, Flash Video, MOV, MPEG4, M-JPEG, etc.). The touchscreen UI then provides a mechanism (such as a camera or video widget) to play video. In an embodiment the video is streamed live from an IP video camera. In other embodiments the video comprises video clips or photos sent from an IP camera or from a remote location.


The touchscreen of an embodiment provides a configurable user interface system that includes a configuration supporting use as a security touchscreen. In this embodiment, the touchscreen utilizes a modular user interface that allows components to be modified easily by a service provider, an installer, or even the end user. Examples of such a modular approach include using Flash widgets, HTML-based widgets, or other downloadable code modules such that the user interface of the touchscreen can be updated and modified while the application is running. In an embodiment the touchscreen user interface modules can be downloaded over the internet. For example, a new security configuration widget can be downloaded from a standard web server, and the touchscreen then loads such configuration app into memory, and inserts it in place of the old security configuration widget. The touchscreen of an embodiment is configured to provide a self-install user interface.


Embodiments of the networked security touchscreen system described herein include a touchscreen device with a user interface that includes a security toolbar providing one or more functions including arm, disarm, panic, medic, and alert. The touchscreen therefore includes at least one screen having a separate region of the screen dedicated to a security toolbar. The security toolbar of an embodiment is present in the dedicated region at all times that the screen is active.


The touchscreen of an embodiment includes a home screen having a separate region of the screen allocated to managing home-based functions. The home-based functions of an embodiment include managing, viewing, and/or controlling IP video cameras. In this embodiment, regions of the home screen are allocated in the form of widget icons; these widget icons (e.g. for cameras, thermostats, lighting, etc) provide functionality for managing home systems. So, for example, a displayed camera icon, when selected, launches a Camera Widget, and the Camera widget in turn provides access to video from one or more cameras, as well as providing the user with relevant camera controls (take a picture, focus the camera, etc.)


The touchscreen of an embodiment includes a home screen having a separate region of the screen allocated to managing, viewing, and/or controlling internet-based content or applications. For example, the Widget Manager UI presents a region of the home screen (up to and including the entire home screen) where internet widgets icons such as weather, sports, etc. may be accessed). Each of these icons may be selected to launch their respective content services.


The touchscreen of an embodiment is integrated into a premises network using the gateway, as described above. The gateway as described herein functions to enable a separate wireless network, or sub-network, that is coupled, connected, or integrated with another network (e.g., WAN, LAN of the host premises, etc.). The sub-network enabled by the gateway optimizes the installation process for IP devices, like the touchscreen, that couple or connect to the sub-network by segregating these IP devices from other such devices on the network. This segregation of the IP devices of the sub-network further enables separate security and privacy policies to be implemented for these IP devices so that, where the IP devices are dedicated to specific functions (e.g., security), the security and privacy policies can be tailored specifically for the specific functions. Furthermore, the gateway and the sub-network it forms enables the segregation of data traffic, resulting in faster and more efficient data flow between components of the host network, components of the sub-network, and between components of the sub-network and components of the network.


The touchscreen of an embodiment includes a core functional embedded system that includes an embedded operating system, required hardware drivers, and an open system interface to name a few. The core functional embedded system can be provided by or as a component of a conventional security system (e.g., security system available from GE Security). These core functional units are used with components of the integrated security system as described herein. Note that portions of the touchscreen description below may include reference to a host premises security system (e.g., GE security system), but these references are included only as an example and do not limit the touchscreen to integration with any particular security system.


As an example, regarding the core functional embedded system, a reduced memory footprint version of embedded Linux forms the core operating system in an embodiment, and provides basic TCP/IP stack and memory management functions, along with a basic set of low-level graphics primitives. A set of device drivers is also provided or included that offer low-level hardware and network interfaces. In addition to the standard drivers, an interface to the RS 485 bus is included that couples or connects to the security system panel (e.g., GE Concord panel). The interface may, for example, implement the Superbus 2000 protocol, which can then be utilized by the more comprehensive transaction-level security functions implemented in PanelConnect technology (e.g SetAlarmLevel (int level, int partition, char *accessCode)). Power control drivers are also provided.



FIG. 7 is a block diagram of a touchscreen 700 of the integrated security system, under an embodiment. The touchscreen 700 generally includes an application/presentation layer 702 with a resident application 704, and a core engine 706. The touchscreen 700 also includes one or more of the following, but is not so limited: applications of premium services 710, widgets 712, a caching proxy 714, network security 716, network interface 718, security object 720, applications supporting devices 722, PanelConnect API 724, a gateway interface 726, and one or more ports 728.


More specifically, the touchscreen, when configured as a home security device, includes but is not limited to the following application or software modules: RS 485 and/or RS-232 bus security protocols to conventional home security system panel (e.g., GE Concord panel); functional home security classes and interfaces (e.g. Panel ARM state, Sensor status, etc.); Application/Presentation layer or engine; Resident Application; Consumer Home Security Application; installer home security application; core engine; and System bootloader/Software Updater. The core Application engine and system bootloader can also be used to support other advanced content and applications. This provides a seamless interaction between the premises security application and other optional services such as weather widgets or IP cameras.


An alternative configuration of the touchscreen includes a first Application engine for premises security and a second Application engine for all other applications. The integrated security system application engine supports content standards such as HTML, XML, Flash, etc. and enables a rich consumer experience for all ‘widgets’, whether security-based or not. The touchscreen thus provides service providers the ability to use web content creation and management tools to build and download any ‘widgets’ regardless of their functionality.


As discussed above, although the Security Applications have specific low-level functional requirements in order to interface with the premises security system, these applications make use of the same fundamental application facilities as any other ‘widget’, application facilities that include graphical layout, interactivity, application handoff, screen management, and network interfaces, to name a few.


Content management in the touchscreen provides the ability to leverage conventional web development tools, performance optimized for an embedded system, service provider control of accessible content, content reliability in a consumer device, and consistency between ‘widgets’ and seamless widget operational environment. In an embodiment of the integrated security system, widgets are created by web developers and hosted on the integrated security system Content Manager (and stored in the Content Store database). In this embodiment the server component caches the widgets and offers them to consumers through the web-based integrated security system provisioning system. The servers interact with the advanced touchscreen using HTTPS interfaces controlled by the core engine and dynamically download widgets and updates as needed to be cached on the touchscreen. In other embodiments widgets can be accessed directly over a network such as the Internet without needing to go through the iControl Content Manager.


Referring to FIG. 7, the touchscreen system is built on a tiered architecture, with defined interfaces between the Application/Presentation Layer (the Application Engine) on the top, the Core Engine in the middle, and the security panel and gateway APis at the lower level. The architecture is configured to provide maximum flexibility and ease of maintenance.


The application engine of the touchscreen provides the presentation and interactivity capabilities for all applications (widgets) that run on the touchscreen, including both core security function widgets and third party content widgets. FIG. 8 is an example screenshot 800 of a networked security touchscreen, under an embodiment. This example screenshot 800 includes three interfaces or user interface (UI) components 802-806, but is not so limited. A first UI 802 of the touchscreen includes icons by which a user controls or accesses functions and/or components of the security system (e.g., “Main”, “Panic”, “Medic”, “Fire”, state of the premises alarm system (e.g., disarmed, armed, etc.), etc.); the first UI 802, which is also referred to herein as a security interface, is always presented on the touchscreen. A second UI 804 of the touchscreen includes icons by which a user selects or interacts with services and other network content (e.g., clock, calendar, weather, stocks, news, sports, photos, maps, music, etc.) that is accessible via the touchscreen. The second UI 804 is also referred to herein as a network interface or content interface. A third UI 806 of the touchscreen includes icons by which a user selects or interacts with additional services or components (e.g., intercom control, security, cameras coupled to the system in particular regions (e.g., front door, baby, etc.) available via the touchscreen.


A component of the application engine is the Presentation Engine, which includes a set of libraries that implement the standards-based widget content (e.g., XML, HTML, JavaScript, Flash) layout and interactivity. This engine provides the widget with interfaces to dynamically load both graphics and application logic from third parties, support high level data description language as well as standard graphic formats. The set of web content-based functionality available to a widget developer is extended by specific touchscreen functions implemented as local web services by the Core Engine.


The resident application of the touchscreen is the master service that controls the interaction of all widgets in the system, and enforces the business and security rules required by the service provider. For example, the resident application determines the priority of widgets, thereby enabling a home security widget to override resource requests from a less critical widget (e.g. a weather widget). The resident application also monitors widget behavior, and responds to client or server requests for cache updates.


The core engine of the touchscreen manages interaction with other components of the integrated security system, and provides an interface through which the resident application and authorized widgets can get information about the home security system, set alarms, install sensors, etc. At the lower level, the Core Engine's main interactions are through the PanelConnect API, which handles all communication with the security panel, and the gateway Interface, which handles communication with the gateway. In an embodiment, both the iHub Interface and PanelConnect API are resident and operating on the touchscreen. In another embodiment, the PanelConnect API runs on the gateway or other device that provides security system interaction and is accessed by the touchscreen through a web services interface.


The Core Engine also handles application and service level persistent and cached memory functions, as well as the dynamic provisioning of content and widgets, including but not limited to: flash memory management, local widget and content caching, widget version management (download, cache flush new/old content versions), as well as the caching and synchronization of user preferences. As a portion of these services the Core engine incorporates the bootloader functionality that is responsible for maintaining a consistent software image on the touchscreen, and acts as the client agent for all software updates. The bootloader is configured to ensure full update redundancy so that unsuccessful downloads cannot corrupt the integrated security system.


Video management is provided as a set of web services by the Core Engine. Video management includes the retrieval and playback of local video feeds as well as remote control and management of cameras (all through iControl CameraConnect technology).


Both the high level application layer and the mid-level core engine of the touchscreen can make calls to the network. Any call to the network made by the application layer is automatically handed off to a local caching proxy, which determines whether the request should be handled locally. Many of the requests from the application layer are web services API requests; although such requests could be satisfied by the iControl servers, they are handled directly by the touchscreen and the gateway. Requests that get through the caching proxy are checked against a white list of acceptable sites, and, if they match, are sent off through the network interface to the gateway. Included in the Network Subsystem is a set of network services including HTTP, HTTPS, and server-level authentication functions to manage the secure client-server interface. Storage and management of certificates is incorporated as a part of the network services layer.


Server components of the integrated security system servers support interactive content services on the touchscreen. These server components include, but are not limited to the content manager, registry manager, network manager, and global registry, each of which is described herein.


The Content Manager oversees aspects of handling widget data and raw content on the touchscreen. Once created and validated by the service provider, widgets are ‘ingested’ to the Content Manager, and then become available as downloadable services through the integrated security system Content Management APis. The Content manager maintains versions and timestamp information, and connects to the raw data contained in the backend Content Store database. When a widget is updated (or new content becomes available) all clients registering interest in a widget are systematically updated as needed (a process that can be configured at an account, locale, or system-wide level).


The Registry Manager handles user data, and provisioning accounts, including information about widgets the user has decided to install, and the user preferences for these widgets.


The Network Manager handles getting and setting state for all devices on the integrated security system network (e.g., sensors, panels, cameras, etc.). The Network manager synchronizes with the gateway, the advanced touchscreen, and the subscriber database.


The Global Registry is a primary starting point server for all client services, and is a logical referral service that abstracts specific server locations/addresses from clients (touchscreen, gateway 102, desktop widgets, etc.). This approach enables easy scaling/migration of server farms.


The touchscreen of an embodiment operates wirelessly with a premises security system. The touchscreen of an embodiment incorporates an RF transceiver component that either communicates directly with the sensors and/or security panel over the panel's proprietary RF frequency, or the touchscreen communicates wirelessly to the gateway over 802.11, Ethernet, or other IP-based communications channel, as described in detail herein. In the latter case the gateway implements the PanelConnect interface and communicates directly to the security panel and/or sensors over wireless or wired networks as described in detail above.


The touchscreen of an embodiment is configured to operate with multiple security systems through the use of an abstracted security system interface. In this embodiment, the PanelConnect API can be configured to support a plurality of proprietary security system interfaces, either simultaneously or individually as described herein. In one embodiment of this approach, the touchscreen incorporates multiple physical interfaces to security panels (e.g. GE Security RS-485, Honeywell RF, etc.) in addition to the PanelConnect API implemented to support multiple security interfaces. The change needed to support this in PanelConnect is a configuration parameter specifying the panel type connection that is being utilized.


So for example, the setARMState( ) function is called with an additional parameter (e.g., Armstate=setARMState(type=“ARM STAY! ARM AWAYj DISARM”, Parameters=“ExitDelay=30 ILights=OFF”, panelType=“GE Concord4 RS485”)). The ‘panelType’ parameter is used by the setARMState function (and in practice by all of the Panel Connect functions) to select an algorithm appropriate to the specific panel out of a plurality of algorithms.


The touchscreen of an embodiment is self-installable. Consequently, the touchscreen provides a ‘wizard’ approach similar to that used in traditional computer installations (e.g. InstallShield). The wizard can be resident on the touchscreen, accessible through a web interface, or both. In one embodiment of a touchscreen self-installation process, the service provider can associate devices (sensors, touchscreens, security panels, lighting controls, etc.) remotely using a web-based administrator interface.


The touchscreen of an embodiment includes a battery backup system for a security touchscreen. The touchscreen incorporates a standard Li-ion or other battery and charging circuitry to allow continued operation in the event of a power outage. In an embodiment the battery is physically located and connected within the touchscreen enclosure. In another embodiment the battery is located as a part of the power transformer, or in between the power transformer and the touchscreen.


The example configurations of the integrated security system described above with reference to FIGS. 5 and 6 include a gateway that is a separate device, and the touchscreen couples to the gateway. However, in an alternative embodiment, the gateway device and its functionality can be incorporated into the touchscreen so that the device management module, which is now a component of or included in the touchscreen, is in charge of the discovery, installation and configuration of the IP devices coupled or connected to the system, as described above. The integrated security system with the integrated touchscreen/gateway uses the same “sandbox” network to discover and manage all IP devices coupled or connected as components of the system.


The touchscreen of this alternative embodiment integrates the components of the gateway with the components of the touchscreen as described herein. More specifically, the touchscreen of this alternative embodiment includes software or applications described above with reference to FIG. 3. In this alternative embodiment, the touchscreen includes the gateway application layer 302 as the main program that orchestrates the operations performed by the gateway. A Security Engine 304 of the touchscreen provides robust protection against intentional and unintentional intrusion into the integrated security system network from the outside world (both from inside the premises as well as from the WAN). The Security Engine 304 of an embodiment comprises one or more sub-modules or components that perform functions including, but not limited to, the following:


Encryption including 128-bit SSL encryption for gateway and iConnect server communication to protect user data privacy and provide secure communication. Bi-directional authentication between the touchscreen and iConnect server in order to prevent unauthorized spoofing and attacks. Data sent from the iConnect server to the gateway application (or vice versa) is digitally signed as an additional layer of security. Digital signing provides both authentication and validation that the data has not been altered in transit.


Camera SSL encapsulation because picture and video traffic offered by off-the-shelf networked IP cameras is not secure when traveling over the Internet. The touchscreen provides for 128-bit SSL encapsulation of the user picture and video data sent over the internet for complete user security and privacy.


802.11b/g/n with WPA-2 security to ensure that wireless camera communications always takes place using the strongest available protection.


A touchscreen-enabled device is assigned a unique activation key for activation with an iConnect server. This ensures that only valid gateway-enabled devices can be activated for use with the specific instance of iConnect server in use. Attempts to activate gateway-enabled devices by brute force are detected by the Security Engine. Partners deploying touchscreen-enabled devices have the knowledge that only a gateway with the correct serial number and activation key can be activated for use with an iConnect server. Stolen devices, devices attempting to masquerade as gateway-enabled devices, and malicious outsiders (or insiders as knowledgeable but nefarious customers) cannot effect other customers' gateway-enabled devices.


As standards evolve, and new encryption and authentication methods are proven to be useful, and older mechanisms proven to be breakable, the security manager can be upgraded “over the air” to provide new and better security for communications between the iConnect server and the gateway application, and locally at the premises to remove any risk of eavesdropping on camera communications.


A Remote Firmware Download module 306 of the touchscreen allows for seamless and secure updates to the gateway firmware through the iControl Maintenance Application on the server 104, providing a transparent, hassle-free mechanism for the service provider to deploy new features and bug fixes to the installed user base. The firmware download mechanism is tolerant of connection loss, power interruption and user interventions (both intentional and unintentional). Such robustness reduces down time and customer support issues. Touchscreen firmware can be remotely download either for one touchscreen at a time, a group of touchscreen, or in batches.


The Automations engine 308 of the touchscreen manages the user-defined rules of interaction between the different devices (e.g. when door opens turn on the light). Though the automation rules are programmed and reside at the portal/server level, they are cached at the gateway level in order to provide short latency between device triggers and actions.


DeviceConnect 310 of the touchscreen includes definitions of all supported devices (e.g., cameras, security panels, sensors, etc.) using a standardized plug-in architecture. The DeviceConnect module 310 offers an interface that can be used to quickly add support for any new device as well as enabling interoperability between devices that use different technologies/protocols. For common device types, pre-defined sub-modules have been defined, making supporting new devices of these types even easier. SensorConnect 312 is provided for adding new sensors, CameraConnect 316 for adding IP cameras, and PanelConnect 314 for adding home security panels.


The Schedules engine 318 of the touchscreen is responsible for executing the user defined schedules (e.g., take a picture every five minutes; every day at 8 am set temperature to 65 degrees Fahrenheit, etc.). Though the schedules are programmed and reside at the iConnect server level they are sent to the scheduler within the gateway application of the touchscreen. The Schedules Engine 318 then interfaces with SensorConnect 312 to ensure that scheduled events occur at precisely the desired time.


The Device Management module 320 of the touchscreen is in charge of all discovery, installation and configuration of both wired and wireless IP devices (e.g., cameras, etc.) coupled or connected to the system. Networked IP devices, such as those used in the integrated security system, require user configuration of many IP and security parameters, and the device management module of an embodiment handles the details of this configuration. The device management module also manages the video routing module described below.


The video routing engine 322 of the touchscreen is responsible for delivering seamless video streams to the user with zero-configuration. Through a multi-step, staged approach the video routing engine uses a combination of UPnP port-forwarding, relay server routing and STUN/TURN peer-to-peer routing. The video routing engine is described in detail in the Related Applications.



FIG. 9 is a block diagram 900 of network or premises device integration with a premises network 250, under an embodiment. In an embodiment, network devices 255, 556, 957 are coupled to the touchscreen 902 using a secure network connection such as SSL over an encrypted 802.11 link (utilizing for example WPA-2 security for the wireless encryption), and the touchscreen 902 coupled to the premises router/firewall 552 via a coupling with a premises LAN 250. The premises router/firewall 552 is coupled to a broadband modem 251, and the broadband modem 251 is coupled to a WAN 200 or other network outside the premises. The touchscreen 902 thus enables or forms a separate wireless network, or sub-network, that includes some number of devices and is coupled or connected to the LAN 250 of the host premises. The touchscreen sub-network can include, but is not limited to, any number of other devices like WiFi IP cameras, security panels (e.g., IP-enabled), and IP devices, to name a few. The touchscreen 902 manages or controls the sub-network separately from the LAN 250 and transfers data and information between components of the sub-network and the LAN 250/WAN 200, but is not so limited. Additionally, other network devices 554 can be coupled to the LAN 250 without being coupled to the touchscreen 902.



FIG. 10 is a block diagram 1000 of network or premises device integration with a premises network 250, under an alternative embodiment. The network or premises devices 255, 556, 1057 are coupled to the touchscreen 1002, and the touchscreen 1002 is coupled or connected between the premises router/firewall 552 and the broadband modem 251. The broadband modem 251 is coupled to a WAN 200 or other network outside the premises while the premises router/firewall 552 is coupled to a premises LAN 250. As a result of its location between the broadband modem 251 and the premises router/firewall 552, the touchscreen 1002 can be configured or function as the premises router routing specified data between the outside network (e.g., WAN 200) and the premises router/firewall 552 of the LAN 250. As described above, the touchscreen 1002 in this configuration enables or forms a separate wireless network, or sub-network, that includes the network or premises devices 255, 556, 1057 and is coupled or connected between the LAN 250 of the host premises and the WAN 200. The touchscreen sub-network can include, but is not limited to, any number of network or premises devices 255, 556, 1057 like WiFi IP cameras, security panels (e.g., IP-enabled), and security touchscreens, to name a few. The touchscreen 1002 manages or controls the sub-network separately from the LAN 250 and transfers data and information between components of the sub-network and the LAN 250/WAN 200, but is not so limited. Additionally, other network devices 554 can be coupled to the LAN 250 without being coupled to the touchscreen 1002.


The gateway of an embodiment, whether a stand-along component or integrated with a touchscreen, enables couplings or connections and thus the flow or integration of information between various components of the host premises and various types and/or combinations of IP devices, where the components of the host premises include a network (e.g., LAN) and/or a security system or subsystem to name a few. Consequently, the gateway controls the association between and the flow of information or data between the components of the host premises. For example, the gateway of an embodiment forms a sub-network coupled to another network (e.g., WAN, LAN, etc.), with the sub-network including IP devices. The gateway further enables the association of the IP devices of the sub-network with appropriate systems on the premises (e.g., security system, etc.). Therefore, for example, the gateway can form a sub-network of IP devices configured for security functions, and associate the sub-network only with the premises security system, thereby segregating the IP devices dedicated to security from other IP devices that may be coupled to another network on the premises.


The gateway of an embodiment, as described herein, enables couplings or connections and thus the flow of information between various components of the host premises and various types and/or combinations of IP devices, where the components of the host premises include a network, a security system or subsystem to name a few. Consequently, the gateway controls the association between and the flow of information or data between the components of the host premises. For example, the gateway of an embodiment forms a sub-network coupled to another network (e.g., WAN, LAN, etc.), with the sub-network including IP devices. The gateway further enables the association of the IP devices of the sub-network with appropriate systems on the premises (e.g., security system, etc.). Therefore, for example, the gateway can form a sub-network of IP devices configured for security functions, and associate the sub-network only with the premises security system, thereby segregating the IP devices dedicated to security from other IP devices that may be coupled to another network on the premises.



FIG. 11 is a flow diagram for a method 1100 of forming a security network including integrated security system components, under an embodiment. Generally, the method comprises coupling 1102 a gateway comprising a connection management component to a local area network in a first location and a security server in a second location. The method comprises forming 1104 a security network by automatically establishing a wireless coupling between the gateway and a security system using the connection management component. The security system of an embodiment comprises security system components located at the first location. The method comprises integrating 1106 communications and functions of the security system components into the security network via the wireless coupling.



FIG. 12 is a flow diagram for a method 1200 of forming a security network including integrated security system components and network devices, under an embodiment. Generally, the method comprises coupling 1202 a gateway to a local area network located in a first location and a security server in a second location. The method comprises automatically establishing 1204 communications between the gateway and security system components at the first location, the security system including the security system components. The method comprises automatically establishing 1206 communications between the gateway and premises devices at the first location. The method comprises forming 1208 a security network by electronically integrating, via the gateway, communications and functions of the premises devices and the security system components.


In an example embodiment, FIG. 13 is a flow diagram 1300 for integration or installation of an IP device into a private network environment, under an embodiment. The IP device includes any IP-capable device which, for example, includes the touchscreen of an embodiment. The variables of an embodiment set at time of installation include, but are not limited to, one or more of a private SSID/Password, a gateway identifier, a security panel identifier, a user account TS, and a Central Monitoring Station account identification.


An embodiment of the IP device discovery and management begins with a user or installer activating 1302 the gateway and initiating 1304 the install mode of the system. This places the gateway in an install mode. Once in install mode, the gateway shifts to a default (Install) Wifi configuration. This setting will match the default setting for other integrated security system-enabled devices that have been pre-configured to work with the integrated security system. The gateway will then begin to provide 1306 DHCP addresses for these IP devices. Once the devices have acquired a new DHCP address from the gateway, those devices are available for configuration into a new secured Wifi network setting.


The user or installer of the system selects 1308 all devices that have been identified as available for inclusion into the integrated security system. The user may select these devices by their unique IDs via a web page, Touchscreen, or other client interface. The gateway provides 1310 data as appropriate to the devices. Once selected, the devices are configured 1312 with appropriate secured Wifi settings, including SSID and WPA/WPA-2 keys that are used once the gateway switches back to the secured sandbox configuration from the “Install” settings. Other settings are also configured as appropriate for that type of device. Once all devices have been configured, the user is notified and the user can exit install mode. At this point all devices will have been registered 1314 with the integrated security system servers.


The installer switches 1316 the gateway to an operational mode, and the gateway instructs or directs 1318 all newly configured devices to switch to the “secured” Wifi sandbox settings. The gateway then switches 1320 to the “secured” Wifi settings. Once the devices identify that the gateway is active on the “secured” network, they request new DHCP addresses from the gateway which, in response, provides 1322 the new addresses. The devices with the new addresses are then operational 1324 on the secured network.


In order to ensure the highest level of security on the secured network, the gateway can create or generate a dynamic network security configuration based on the unique ID and private key in the gateway, coupled with a randomizing factor that can be based on online time or other inputs. This guarantees the uniqueness of the gateway secured network configuration.


To enable the highest level of performance, the gateway analyzes the RF spectrum of the 802.11x network and determines which frequency band/channel it should select to run.


An alternative embodiment of the camera/IP device management process leverages the local ethernet connection of the sandbox network on the gateway. This alternative process is similar to the Wifi discovery embodiment described above, except the user connects the targeted device to the ethernet port of the sandbox network to begin the process. This alternative embodiment accommodates devices that have not been pre-configured with the default “Install” configuration for the integrated security system.


This alternative embodiment of the IP device discovery and management begins with the user/installer placing the system into install mode. The user is instructed to attach an IP device to be installed to the sandbox Ethernet port of the gateway. The IP device requests a DHCP address from the gateway which, in response to the request, provides the address. The user is presented the device and is asked if he/she wants to install the device. If yes, the system configures the device with the secured Wifi settings and other device-specific settings (e.g., camera settings for video length, image quality etc.). The user is next instructed to disconnect the device from the ethernet port. The device is now available for use on the secured sandbox network.



FIG. 14 is a block diagram showing communications among integrated IP devices of the private network environment, under an embodiment. The IP devices of this example include a security touchscreen 1403, gateway 1402 (e.g., “iHub”), and security panel (e.g., “Security Panel 1”, “Security Panel 2”, “Security Panel n”), but the embodiment is not so limited. In alternative embodiments any number and/or combination of these three primary component types may be combined with other components including IP devices and/or security system components. For example, a single device which comprises an integrated gateway, touchscreen, and security panel is merely another embodiment of the integrated security system described herein. The description that follows includes an example configuration that includes a touchscreen hosting particular applications. However, the embodiment is not limited to the touchscreen hosting these applications, and the touchscreen should be thought of as representing any IP device.


Referring to FIG. 14, the touchscreen 1403 incorporates an application 1410 that is implemented as computer code resident on the touchscreen operating system, or as a web-based application running in a browser, or as another type of scripted application (e.g., Flash, Java, Visual Basic, etc.). The touchscreen core application 1410 represents this application, providing user interface and logic for the end user to manage their security system or to gain access to networked information or content (Widgets). The touchscreen core application 1410 in turn accesses a library or libraries of functions to control the local hardware (e.g. screen display, sound, LEDs, memory, etc.) as well as specialized librarie(s) to couple or connect to the security system.


In an embodiment of this security system connection, the touchscreen 1403 communicates to the gateway 1402, and has no direct communication with the security panel. In this embodiment, the touchscreen core application 1410 accesses the remote service APis 1412 which provide security system functionality (e.g. ARM/DISARM panel, sensor state, get/set panel configuration parameters, initiate or get alarm events, etc.). In an embodiment, the remote service APis 1412 implement one or more of the following functions, but the embodiment is not so limited: Armstate=setARMState(type=“ARM STAYI ARM AWAYI DISARM”, Parameters=“ExitDelay=30 ILights=OFF”); sensorState=getSensors(type=“ALLI SensorName I SensorNameList”); result=setSensorState(SensorName, parameters=“Option 1, Options2, . . . Option n”); interruptHandler=SensorEvent( ) and, interruptHandler=alarmEvent( ).


Functions of the remote service APIs 1412 of an embodiment use a remote PanelConnect API 1424 which resides in memory on the gateway 1402. The touchscreen 1403 communicates with the gateway 1402 through a suitable network interface such as an Ethernet or 802.11 RF connection, for example. The remote PanelConnect API 1424 provides the underlying Security System Interfaces 1426 used to communicate with and control one or more types of security panel via wired link 1430 and/or RF link 3. The PanelConnect API 1224 provides responses and input to the remote services APis 1426, and in turn translates function calls and data to and from the specific protocols and functions supported by a specific implementation of a Security Panel (e.g. a GE Security Simon XT or Honeywell Vista 20P). In an embodiment, the PanelConnect API 1224 uses a 345 MHz RF transceiver or receiver hardware/firmware module to communicate wirelessly to the security panel and directly to a set of 345 MHz RF-enabled sensors and devices, but the embodiment is not so limited.


The gateway of an alternative embodiment communicates over a wired physical coupling or connection to the security panel using the panel's specific wired hardware (bus) interface and the panel's bus-level protocol.


In an alternative embodiment, the Touchscreen 1403 implements the same PanelConnect API 1414 locally on the Touchscreen 1403, communicating directly with the Security Panel 2 and/or Sensors 2 over the proprietary RF link or over a wired link for that system. In this embodiment the Touchscreen 1403, instead of the gateway 1402, incorporates the 345 MHz RF transceiver to communicate directly with Security Panel 2 or Sensors 2 over the RF link 2. In the case of a wired link the Touchscreen 1403 incorporates the real-time hardware (e.g. a PIC chip and RS232-variant serial link) to physically connect to and satisfy the specific bus-level timing requirements of the SecurityPanel2.


In yet another alternative embodiment, either the gateway 1402 or the Touchscreen 1403 implements the remote service APis. This embodiment includes a Cricket device (“Cricket”) which comprises but is not limited to the following components: a processor (suitable for handling 802.11 protocols and processing, as well as the bus timing requirements of SecurityPanel 1); an 802.11 (WiFi) client IP interface chip; and, a serial bus interface chip that implements variants of RS232 or RS485, depending on the specific Security Panel.


The Cricket also implements the full PanelConnect APis such that it can perform the same functions as the case where the gateway implements the PanelConnect APis. In this embodiment, the touchscreen core application 1410 calls functions in the remote service APis 1412 (such as setArmState( )). These functions in turn couple or connect to the remote Cricket through a standard IP connection (“Cricket IP Link”) (e.g., Ethernet, Homeplug, the gateway's proprietary Wifi network, etc.). The Cricket in turn implements the PanelConnect API, which responds to the request from the touchscreen core application, and performs the appropriate function using the proprietary panel interface. This interface uses either the wireless or wired proprietary protocol for the specific security panel and/or sensors.



FIG. 15 is a flow diagram of a method of integrating an external control and management application system with an existing security system, under an embodiment. Operations begin when the system is powered on 1510, involving at a minimum the power-on of the gateway device, and optionally the power-on of the connection between the gateway device and the remote servers. The gateway device initiates 1520 a software and RF sequence to locate the extant security system. The gateway and installer initiate and complete 1530 a sequence to ‘learn’ the gateway into the security system as a valid and authorized control device. The gateway initiates 1540 another software and RF sequence of instructions to discover and learn the existence and capabilities of existing RF devices within the extant security system, and store this information in the system. These operations under the system of an embodiment are described in further detail below.


Unlike conventional systems that extend an existing security system, the system of an embodiment operates utilizing the proprietary wireless protocols of the security system manufacturer. In one illustrative embodiment, the gateway is an embedded computer with an IP LAN and WAN connection and a plurality of RF transceivers and software protocol modules capable of communicating with a plurality of security systems each with a potentially different RF and software protocol interface. After the gateway has completed the discovery and learning 1540 of sensors and has been integrated 1550 as a virtual control device in the extant security system, the system becomes operational. Thus, the security system and associated sensors are presented 1550 as accessible devices to a potential plurality of user interface subsystems.


The system of an embodiment integrates 1560 the functionality of the extant security system with other non-security devices including but not limited to IP cameras, touchscreens, lighting controls, door locking mechanisms, which may be controlled via RF, wired, or powerline-based networking mechanisms supported by the gateway or servers.


The system of an embodiment provides a user interface subsystem 1570 enabling a user to monitor, manage, and control the system and associated sensors and security systems. In an embodiment of the system, a user interface subsystem is an HTML/XML/Javascript/Java/AJAX/Flash presentation of a monitoring and control application, enabling users to view the state of all sensors and controllers in the extant security system from a web browser or equivalent operating on a computer, PDA, mobile phone, or other consumer device.


In another illustrative embodiment of the system described herein, a user interface subsystem is an HTML/XML/Javascript/Java/AJAX presentation of a monitoring and control application, enabling users to combine the monitoring and control of the extant security system and sensors with the monitoring and control of non-security devices including but not limited to IP cameras, touchscreens, lighting controls, door locking mechanisms.


In another illustrative embodiment of the system described herein, a user interface subsystem is a mobile phone application enabling users to monitor and control the extant security system as well as other non-security devices.


In another illustrative embodiment of the system described herein, a user interface subsystem is an application running on a keypad or touchscreen device enabling users to monitor and control the extant security system as well as other non-security devices.


In another illustrative embodiment of the system described herein, a user interface subsystem is an application operating on a TV or set-top box connected to a TV enabling users to monitor and control the extant security system as well as other non-security devices.



FIG. 16 is a block diagram of an integrated security system 1600 wirelessly interfacing to proprietary security systems, under an embodiment. A security system 1610 is coupled or connected to a Gateway 1620, and from Gateway 1620 coupled or connected to a plurality of information and content sources across a network 1630 including one or more web servers 1640, system databases 1650, and applications servers 1660. While in one embodiment network 1630 is the Internet, including the World Wide Web, those of skill in the art will appreciate that network 1630 may be any type of network, such as an intranet, an extranet, a virtual private network (VPN), a mobile network, or a non-TCP/IP based network.


Moreover, other elements of the system of an embodiment may be conventional, well-known elements that need not be explained in detail herein. For example, security system 1610 could be any type home or business security system, such devices including but not limited to a standalone RF home security system or a non-RF-capable wired home security system with an add-on RF interface module. In the integrated security system 1600 of this example, security system 1610 includes an RF-capable wireless security panel (WSP) 1611 that acts as the master controller for security system 1610. Well-known examples of such a WSP include the GE Security Concord, Networx, and Simon panels, the Honeywell Vista and Lynx panels, and similar panels from DSC and Napco, to name a few. A wireless module 1614 includes the RF hardware and protocol software necessary to enable communication with and control of a plurality of wireless devices 1613. WSP 1611 may also manage wired devices 1614 physically connected to WSP 1611 with an RS232 or RS485 or Ethernet connection or similar such wired interface.


In an implementation consistent with the systems and methods described herein, Gateway 1620 provides the interface between security system 1610 and LAN and/or WAN for purposes of remote control, monitoring, and management. Gateway 1620 communicates with an external web server 1640, database 1650, and application server 1660 over network 1630 (which may comprise WAN, LAN, or a combination thereof). In this example system, application logic, remote user interface functionality, as well as user state and account are managed by the combination of these remote servers. Gateway 1620 includes server connection manager 1621, a software interface module responsible for all server communication over network 1630. Event manager 1622 implements the main event loop for Gateway 1620, processing events received from device manager 1624 (communicating with non-security system devices including but not limited to IP cameras, wireless thermostats, or remote door locks). Event manager 1622 further processes events and control messages from and to security system 1610 by utilizing WSP manager 1623.


WSP manager 1623 and device manager 1624 both rely upon wireless protocol manager 1626 which receives and stores the proprietary or standards-based protocols required to support security system 1610 as well as any other devices interfacing with gateway 1620. WSP manager 1623 further utilizes the comprehensive protocols and interface algorithms for a plurality of security systems 1610 stored in the WSP DB client database associated with wireless protocol manager 1626. These various components implement the software logic and protocols necessary to communicate with and manager devices and security systems 1610. Wireless Transceiver hardware modules 1625 are then used to implement the physical RF communications link to such devices and security systems 1610. An illustrative wireless transceiver 1625 is the GE Security Dialog circuit board, implementing a 319.5 MHz two-way RF transceiver module. In this example, RF Link 1670 represents the 319.5 MHz RF communication link, enabling gateway 1620 to monitor and control WSP 1611 and associated wireless and wired devices 1613 and 1614, respectively.


In one embodiment, server connection manager 1621 requests and receives a set of wireless protocols for a specific security system 1610 (an illustrative example being that of the GE Security Concord panel and sensors) and stores them in the WSP DB portion of the wireless protocol manager 1626. WSP manager 1623 then utilizes such protocols from wireless protocol manager 1626 to initiate the sequence of processes detailed in FIG. 15 and FIG. 16 for learning gateway 1620 into security system 1610 as an authorized control device. Once learned in, as described with reference to FIG. 16 (and above), event manager 1622 processes all events and messages detected by the combination of WSP manager 1623 and the GE Security wireless transceiver module 1625.


In another embodiment, gateway 1620 incorporates a plurality of wireless transceivers 1625 and associated protocols managed by wireless protocol manager 1626. In this embodiment events and control of multiple heterogeneous devices may be coordinated with WSP 1611, wireless devices 1613, and wired devices 1614. For example a wireless sensor from one manufacturer may be utilized to control a device using a different protocol from a different manufacturer.


In another embodiment, gateway 1620 incorporates a wired interface to security system 1610, and incorporates a plurality of wireless transceivers 1625 and associated protocols managed by wireless protocol manager 1626. In this embodiment events and control of multiple heterogeneous devices may be coordinated with WSP 1611, wireless devices 1613, and wired devices 1614.


Of course, while an illustrative embodiment of an architecture of the system of an embodiment is described in detail herein with respect to FIG. 16, one of skill in the art will understand that modifications to this architecture may be made without departing from the scope of the description presented herein. For example, the functionality described herein may be allocated differently between client and server, or amongst different server or processor-based components. Likewise, the entire functionality of the gateway 1620 described herein could be integrated completely within an existing security system 1610. In such an embodiment, the architecture could be directly integrated with a security system 1610 in a manner consistent with the currently described embodiments.



FIG. 17 is a flow diagram for wirelessly ‘learning’ the Gateway into an existing security system and discovering extant sensors, under an embodiment. The learning interfaces gateway 1620 with security system 1610. Gateway 1620 powers up 1710 and initiates software sequences 1720 and 1725 to identify accessible WSPs 1611 and wireless devices 1613, respectively (e.g., one or more WSPs and/or devices within range of gateway 1620). Once identified, WSP 1611 is manually or automatically set into ‘learn mode’ 1730, and gateway 1620 utilizes available protocols to add 1740 itself as an authorized control device in security system 1610. Upon successful completion of this task, WSP 1611 is manually or automatically removed from ‘learn mode’ 1750.


Gateway 1620 utilizes the appropriate protocols to mimic 1760 the first identified device 1614. In this operation gateway 1620 identifies itself using the unique or pseudo-unique identifier of the first found device 1614, and sends an appropriate change of state message over RF Link 1670. In the event that WSP 1611 responds to this change of state message, the device 1614 is then added 1770 to the system in database 1650. Gateway 1620 associates 1780 any other information (such as zone name or token-based identifier) with this device 1614 in database 1650, enabling gateway 1620, user interface modules, or any application to retrieve this associated information.


In the event that WSP 1611 does not respond to the change of state message, the device 1614 is not added 1770 to the system in database 1650, and this device 1614 is identified as not being a part of security system 1610 with a flag, and is either ignored or added as an independent device, at the discretion of the system provisioning rules. Operations hereunder repeat 1785 operations 1760, 1770, 1780 for all devices 1614 if applicable. Once all devices 1614 have been tested in this way, the system begins operation 1790.


In another embodiment, gateway 1620 utilizes a wired connection to WSP 1611, but also incorporates a wireless transceiver 1625 to communicate directly with devices 1614. In this embodiment, operations under 1720 above are removed, and operations under 1740 above are modified so the system of this embodiment utilizes wireline protocols to add itself as an authorized control device in security system 1610.


A description of an example embodiment follows in which the Gateway (FIG. 16, element 1620) is the iHub available from iControl Networks, Palo Alto, Calif., and described in detail herein. In this example the gateway is “automatically” installed with a security system.


The automatic security system installation begins with the assignment of an authorization key to components of the security system (e.g., gateway, kit including the gateway, etc.). The assignment of an authorization key is done in lieu of creating a user account. An installer later places the gateway in a user's premises along with the premises security system. The installer uses a computer to navigate to a web portal (e.g., integrated security system web interface), logs in to the portal, and enters the authorization key of the installed gateway into the web portal for authentication. Once authenticated, the gateway automatically discovers devices at the premises (e.g., sensors, cameras, light controls, etc.) and adds the discovered devices to the system or “network”. The installer assigns names to the devices, and tests operation of the devices back to the server (e.g., did the door open, did the camera take a picture, etc.). The security device information is optionally pushed or otherwise propagated to a security panel and/or to the server network database. The installer finishes the installation, and instructs the end user on how to create an account, username, and password. At this time the user enters the authorization key which validates the account creation (uses a valid authorization key to associate the network with the user's account). New devices may subsequently be added to the security network in a variety of ways (e.g., user first enters a unique ID for each device/sensor and names it in the server, after which the gateway can automatically discover and configure the device).


A description of another example embodiment follows in which the security system (FIG. 16, element 1610) is a Dialog system and the WSP (FIG. 16, element 1611) is a SimonXT available from General Electric Security, and the Gateway (FIG. 16, element 1620) is the iHub available from iControl Networks, Palo Alto, Calif., and described in detail herein. Descriptions of the install process for the SimonXT and iHub are also provided below.


GE Security's Dialog network is one of the most widely deployed and tested wireless security systems in the world. The physical RF network is based on a 319.5 MHz unlicensed spectrum, with a bandwidth supporting up to 19 Kbps communications. Typical use of this bandwidth—even in conjunction with the integrated security system—is far less than that. Devices on this network can support either one-way communication (either a transmitter or a receiver) or two-way communication (a transceiver). Certain GE Simon, Simon XT, and Concord security control panels incorporate a two-way transceiver as a standard component. The gateway also incorporates the same two-way transceiver card. The physical link layer of the network is managed by the transceiver module hardware and firmware, while the coded payload bitstreams are made available to the application layer for processing.


Sensors in the Dialog network typically use a 60-bit protocol for communicating with the security panel transceiver, while security system keypads and the gateway use the encrypted 80-bit protocol. The Dialog network is configured for reliability, as well as low-power usage. Many devices are supervised, i.e. they are regularly monitored by the system ‘master’ (typically a GE security panel), while still maintaining excellent power usage characteristics. A typical door window sensor has a battery life in excess of 5-7 years.


The gateway has two modes of operation in the Dialog network: a first mode of operation is when the gateway is configured or operates as a ‘slave’ to the GE security panel; a second mode of operation is when the gateway is configured or operates as a ‘master’ to the system in the event a security panel is not present. In both configurations, the gateway has the ability to ‘listen’ to network traffic, enabling the gateway to continually keep track of the status of all devices in the system. Similarly, in both situations the gateway can address and control devices that support setting adjustments (such as the GE wireless thermostat).


In the configuration in which the gateway acts as a ‘slave’ to the security panel, the gateway is ‘learned into’ the system as a GE wireless keypad. In this mode of operation, the gateway emulates a security system keypad when managing the security panel, and can query the security panel for status and ‘listen’ to security panel events (such as alarm events).


The gateway incorporates an RF Transceiver manufactured by GE Security, but is not so limited. This transceiver implements the Dialog protocols and handles all network message transmissions, receptions, and timing. As such, the physical, link, and protocol layers of the communications between the gateway and any GE device in the Dialog network are totally compliant with GE Security specifications.


At the application level, the gateway emulates the behavior of a GE wireless keypad utilizing the GE Security 80-bit encrypted protocol, and only supported protocols and network traffic are generated by the gateway. Extensions to the Dialog RF protocol of an embodiment enable full control and configuration of the panel, and iControl can both automate installation and sensor enrollment as well as direct configuration downloads for the panel under these protocol extensions.


As described above, the gateway participates in the GE Security network at the customer premises. Because the gateway has intelligence and a two-way transceiver, it can ‘hear’ all of the traffic on that network. The gateway makes use of the periodic sensor updates, state changes, and supervisory signals of the network to maintain a current state of the premises. This data is relayed to the integrated security system server (e.g., FIG. 2, element 260) and stored in the event repository for use by other server components. This usage of the GE Security RF network is completely non-invasive; there is no new data traffic created to support this activity.


The gateway can directly (or indirectly through the Simon XT panel) control two-way devices on the network. For example, the gateway can direct a GE Security Thermostat to change its setting to ‘Cool’ from ‘Off’, as well as request an update on the current temperature of the room. The gateway performs these functions using the existing GE Dialog protocols, with little to no impact on the network; a gateway device control or data request takes only a few dozen bytes of data in a network that can support 19 Kbps.


By enrolling with the Simon XT as a wireless keypad, as described herein, the gateway includes data or information of all alarm events, as well as state changes relevant to the security panel. This information is transferred to the gateway as encrypted packets in the same way that the information is transferred to all other wireless keypads on the network.


Because of its status as an authorized keypad, the gateway can also initiate the same panel commands that a keypad can initiate. For example, the gateway can arm or disarm the panel using the standard Dialog protocol for this activity. Other than the monitoring of standard alarm events like other network keypads, the only incremental data traffic on the network as a result of the gateway is the infrequent remote arm/disarm events that the gateway initiates, or infrequent queries on the state of the panel.


The gateway is enrolled into the Simon XT panel as a ‘slave’ device which, in an embodiment, is a wireless keypad. This enables the gateway for all necessary functionality for operating the Simon XT system remotely, as well as combining the actions and information of non-security devices such as lighting or door locks with GE Security devices. The only resource taken up by the gateway in this scenario is one wireless zone (sensor ID).


The gateway of an embodiment supports three forms of sensor and panel enrollment/installation into the integrated security system, but is not limited to this number of enrollment/installation options. The enrollment/installation options of an embodiment include installer installation, kitting, and panel, each of which is described below.


Under the installer option, the installer enters the sensor IDs at time of installation into the integrated security system web portal or iScreen. This technique is supported in all configurations and installations.


Kits can be pre-provisioned using integrated security system provisioning applications when using the kitting option. At kitting time, multiple sensors are automatically associated with an account, and at install time there is no additional work required.


In the case where a panel is installed with sensors already enrolled (i.e. using the GE Simon XT enrollment process), the gateway has the capability to automatically extract the sensor information from the system and incorporate it into the user account on the integrated security system server.


The gateway and integrated security system of an embodiment uses an auto-learn process for sensor and panel enrollment in an embodiment. The deployment approach of an embodiment can use additional interfaces that GE Security is adding to the Simon XT panel. With these interfaces, the gateway has the capability to remotely enroll sensors in the panel automatically. The interfaces include, but are not limited to, the following: EnrollDevice(ID, type, name, zone, group); SetDeviceParameters(ID, type, Name, zone, group), GetDeviceParameters(zone); and RemoveDevice(zone).


The integrated security system incorporates these new interfaces into the system, providing the following install process. The install process can include integrated security system logistics to handle kitting and pre-provisioning. Pre-kitting and logistics can include a pre-provisioning kitting tool provided by integrated security system that enables a security system vendor or provider (“provider”) to offer pre-packaged initial ‘kits’. This is not required but is recommended for simplifying the install process. This example assumes a ‘Basic’ kit is preassembled and includes one (1) Simon XT, three (3) Door/window sensors, one (1) motion sensor, one (1) gateway, one (1) keyfob, two (2) cameras, and ethernet cables. The kit also includes a sticker page with all Zones (1-24) and Names (full name list).


The provider uses the integrated security system kitting tool to assemble ‘Basic’ kit packages. The contents of different types of starter kits may be defined by the provider. At the distribution warehouse, a worker uses a bar code scanner to scan each sensor and the gateway as it is packed into the box. An ID label is created that is attached to the box. The scanning process automatically associates all the devices with one kit, and the new ID label is the unique identifier of the kit. These boxes are then sent to the provider for distribution to installer warehouses. Individual sensors, cameras, etc. are also sent to the provider installer warehouse. Each is labeled with its own barcode/ID.


An installation and enrollment procedure of a security system including a gateway is described below as one example of the installation process.

  • 1. Order and Physical Install Process
    • a. Once an order is generated in the iControl system, an account is created and an install ticket is created and sent electronically to the provider for assignment to an installer.
    • b. The assigned installer picks up his/her ticket(s) and fills his/her truck with Basic and/or Advanced starter kits. He/she also keeps a stock of individual sensors, cameras, iHubs, Simon XTs, etc. Optionally, the installer can also stock homeplug adapters for problematic installations.
    • c. The installer arrives at the address on the ticket, and pulls out the Basic kit. The installer determines sensor locations from a tour of the premises and discussion with the homeowner. At this point assume the homeowner requests additional equipment including an extra camera, two (2) additional door/window sensors, one (1) glass break detector, and one (I) smoke detector.
    • d. Installer mounts SimonXT in the kitchen or other location in the home as directed by the homeowner, and routes the phone line to Simon XT if available. GPRS and Phone numbers pre-programmed in SimonXT to point to the provider Central Monitoring Station (CMS).
    • e. Installer places gateway in the home in the vicinity of a router and cable modern. Installer installs an ethernet line from gateway to router and plugs gateway into an electrical outlet.
  • 2. Associate and Enroll Gateway into SimonXT
    • a. Installer uses either his/her own laptop plugged into router, or homeowners computer to go to the integrated security system web interface and log in with installer ID/pass.
    • b. Installer enters ticket number into admin interface, and clicks ‘New Install’ button. Screen prompts installer for kit ID (on box's barcode label).
    • c. Installer clicks ‘Add SimonXT’. Instructions prompt installer to put Simon XT into install mode, and add gateway as a wireless keypad. It is noted that this step is for security only and can be automated in an embodiment.
    • d. Installer enters the installer code into the Simon XT. Installer Learns ‘gateway’ into the panel as a wireless keypad as a group 1 device.
    • e. Installer goes back to Web portal, and clicks the ‘Finished Adding SimonXT’ button.
  • 3. Enroll Sensors into SimonXT Via iControl
    • a. All devices in the Basic kit are already associated with the user's account.
    • b. For additional devices, Installer clicks ‘Add Device’ and adds the additional camera to the user's account (by typing in the camera ID/Serial #).
    • c. Installer clicks ‘Add Device’ and adds other sensors (two (2) door/window sensors, one (1) glass break sensor, and one (1) smoke sensor) to the account (e.g., by typing in IDs).
    • d. As part of Add Device, Installer assigns zone, name, and group to the sensor. Installer puts appropriate Zone and Name sticker on the sensor temporarily.
    • e. All sensor information for the account is pushed or otherwise propagated to the iConnect server, and is available to propagate to CMS automation software through the CMS application programming interface (API).
    • f. Web interface displays ‘Installing Sensors in System . . . ’ and automatically adds all of the sensors to the Simon XT panel through the GE RF link.
    • g. Web interface displays ‘Done Installing’→all sensors show green.
  • 4. Place and Tests Sensors in Home
    • a. Installer physically mounts each sensor in its desired location, and removes the stickers.
    • b. Installer physically mounts WiFi cameras in their location and plugs into AC power. Optional fishing of low voltage wire through wall to remove dangling wires. Camera transformer is still plugged into outlet but wire is now inside the wall.
    • c. Installer goes to Web interface and is prompted for automatic camera install. Each camera is provisioned as a private, encrypted Wifi device on the gateway secured sandbox network, and firewall NAT traversal is initiated. Upon completion the customer is prompted to test the security system.
    • d. Installer selects the ‘Test System’ button on the web portal—the SimonXT is put into Test mode by the gateway over GE RF.
    • e. Installer manually tests the operation of each sensor, receiving an audible confirmation from SimonXT.
    • f. gateway sends test data directly to CMS over broadband link, as well as storing the test data in the user's account for subsequent report generation.
    • g. Installer exits test mode from the Web portal.
  • 5. Installer instructs customer on use of the Simon XT, and shows customer how to log into the iControl web and mobile portals. Customer creates a username/password at this time.
  • 6. Installer instructs customer how to change Simon XT user code from the Web interface. Customer changes user code which is pushed to SimonXT automatically over GE RF.


An installation and enrollment procedure of a security system including a gateway is described below as an alternative example of the installation process. This installation process is for use for enrolling sensors into the SimonXT and integrated security system and is compatible with all existing GE Simon panels.


The integrated security system supports all pre-kitting functionality described in the installation process above. However, for the purpose of the following example, no kitting is used.

    • 1. Order and Physical Install Process
      • a. Once an order is generated in the iControl system, an account is created and an install ticket is created and sent electronically to the security system provider for assignment to an installer.
      • b. The assigned installer picks up his/her ticket(s) and fills his/her truck with individual sensors, cameras, iHubs, Simon XTs, etc. Optionally, the installer can also stock homeplug adapters for problematic installations.
      • c. The installer arrives at the address on the ticket, and analyzes the house and talks with the homeowner to determine sensor locations. At this point assume the homeowner requests three (3) cameras, five (5) door/window sensors, one (1) glass break detector, one (1) smoke detector, and one (1) keyfob.
      • d. Installer mounts SimonXT in the kitchen or other location in the home. The installer routes a phone line to Simon XT if available. GPRS and Phone numbers are pre-programmed in SimonXT to point to the provider CMS.e. Installer places gateway in home in the vicinity of a router and cable modem, and installs an ethernet line from gateway to the router, and plugs gateway into an electrical outlet.
    • 2. Associate and Enroll gateway into SimonXT
      • a. Installer uses either his/her own laptop plugged into router, or homeowners computer to go to the integrated security system web interface and log in with an installer ID/pass.
      • b. Installer enters ticket number into admin interface, and clicks ‘New Install’ button. Screen prompts installer to add devices.
      • c. Installer types in ID of gateway, and it is associated with the user's account.
      • d. Installer clicks ‘Add Device’ and adds the cameras to the user's account (by typing in the camera ID/Serial #).
      • e. Installer clicks ‘Add SimonXT’. Instructions prompt installer to put Simon XT into install mode, and add gateway as a wireless keypad.
      • f. Installer goes to Simon XT and enters the installer code into the Simon XT. Learns ‘gateway’ into the panel as a wireless keypad as group 1 type sensor.
      • g. Installer returns to Web portal, and clicks the ‘Finished Adding SimonXT’ button.
      • h. Gateway now is alerted to all subsequent installs over the security system RF.
    • 3. Enroll Sensors into SimonXT via iControl
      • a. Installer clicks ‘Add Simon XT Sensors’—Displays instructions for adding sensors to Simon XT.
      • b. Installer goes to Simon XT and uses Simon XT install process to add each sensor, assigning zone, name, group. These assignments are recorded for later use.
      • c. The gateway automatically detects each sensor addition and adds the new sensor to the integrated security system.
      • d. Installer exits install mode on the Simon XT, and returns to the Web portal.
      • e. Installer clicks ‘Done Adding Devices’.
      • f. Installer enters zone/sensor naming from recorded notes into integrated security system to associate sensors to friendly names.
      • g. All sensor information for the account is pushed to the iConnect server, and is available to propagate to CMS automation software through the CMS APL
    • 4. Place and Tests Sensors in Home
      • a. Installer physically mounts each sensor in its desired location.
      • b. Installer physically mounts Wifi cameras in their location and plugs into AC power. Optional fishing of low voltage wire through wall to remove dangling wires. Camera transformer is still plugged into outlet but wire is now inside the wall.
      • c. Installer puts SimonXT into Test mode from the keypad.
      • d. Installer manually tests the operation of each sensor, receiving an audible confirmation from SimonXT.
      • e. Installer exits test mode from the Simon XT keypad.
      • f. Installer returns to web interface and is prompted to automatically set up cameras. After waiting for completion cameras are now provisioned and operational.
    • 5. Installer instructs customer on use of the Simon XT, and shows customer how to log into the integrated security system web and mobile portals. Customer creates a username/password at this time.
    • 6. Customer and Installer observe that all sensors/cameras are green.
    • 7. Installer instructs customer how to change Simon XT user code from the keypad. Customer changes user code and stores in SimonXT.
    • 8. The first time the customer uses the web portal to Arm/Disarm system the web interface prompts the customer for the user code, which is then stored securely on the server. In the event the user code is changed on the panel the web interface once again prompts the customer.


The panel of an embodiment can be programmed remotely. The CMS pushes new programming to SimonXT over a telephone or GPRS link. Optionally, iControl and GE provide a broadband link or coupling to the gateway and then a link from the gateway to the Simon XT over GE RF.


In addition to the configurations described above, the gateway of an embodiment supports takeover configurations in which it is introduced or added into a legacy security system. A description of example takeover configurations follow in which the security system (FIG. 2, element 210) is a Dialog system and the WSP (FIG. 2, element 211) is a GE Concord panel (e.g., equipped with POTS, GE RF, and Superbus 2000 RS485 interface (in the case of a Lynx takeover the Simon XT is used) available from General Electric Security. The gateway (FIG. 2, element 220) in the takeover configurations is an iHub (e.g., equipped with built-in 802.11b/g router, Ethernet Hub, GSM/GPRS card, RS485 interface, and iControl Honeywell-compatible RF card) available from iControl Networks, Palo Alto, Calif. While components of particular manufacturers are used in this example, the embodiments are not limited to these components or to components from these vendors.


The security system can optionally include RF wireless sensors (e.g., GE wireless sensors utilizing the GE Dialog RF technology), IP cameras, a GE-iControl Touchscreen (the touchscreen is assumed to be an optional component in the configurations described herein, and is thus treated separately from the iHub; in systems in which the touchscreen is a component of the base security package, the integrated iScreen (available from Control Networks, Palo Alto, Calif.) can be used to combine iHub technology with the touchscreen in a single unit), and Z-Wave devices to name a few.


The takeover configurations described below assume takeover by a “new” system of an embodiment of a security system provided by another third party vendor, referred to herein as an “original” or “legacy” system. Generally, the takeover begins with removal of the control panel and keypad of the legacy system. A GE Concord panel is installed to replace the control panel of the legacy system along with an iHub with GPRS Modem. The legacy system sensors are then connected or wired to the Concord panel, and a GE keypad or touchscreen is installed to replace the control panel of the legacy system. The iHub includes the iControl RF card, which is compatible with the legacy system. The iHub finds and manages the wireless sensors of the legacy system, and learns the sensors into the Concord by emulating the corresponding GE sensors. The iHub effectively acts as a relay for legacy wireless sensors.


Once takeover is complete, the new security system provides a homogeneous system that removes the compromises inherent in taking over or replacing a legacy system. For example, the new system provides a modem touchscreen that may include additional functionality, new services, and supports integration of sensors from various manufacturers. Furthermore, lower support costs can be realized because call centers, installers, etc. are only required to support one architecture. Additionally, there is minimal install cost because only the panel is required to be replaced as a result of the configuration flexibility offered by the iHub.


The system takeover configurations described below include but are not limited to a dedicated wireless configuration, a dedicated wireless configuration that includes a touchscreen, and a fished Ethernet configuration. Each of these configurations is described in detail below.



FIG. 18 is a block diagram of a security system in which the legacy panel is replaced with a GE Concord panel wirelessly coupled to an iHub, under an embodiment. All existing wired and RF sensors remain in place. The iHub is located near the Concord panel, and communicates with the panel via the 802.11 link, but is not so limited. The iHub manages cameras through a built-in 802.11 router. The iHub listens to the existing RF HW sensors, and relays sensor information to the Concord panel (emulating the equivalent GE sensor). The wired sensors of the legacy system are connected to the wired zones on the control panel.



FIG. 19 is a block diagram of a security system in which the legacy panel is replaced with a GE Concord panel wirelessly coupled to an iHub, and a GE-iControl Touchscreen, under an embodiment. All existing wired and RF sensors remain in place. The iHub is located near the Concord panel, and communicates with the panel via the 802.11 link, but is not so limited. The iHub manages cameras through a built-in 802.11 router. The iHub listens to the existing RF HW sensors, and relays sensor information to the Concord panel (emulating the equivalent GE sensor). The wired sensors of the legacy system are connected to the wired zones on the control panel.


The GE-iControl Touchscreen can be used with either of an 802.11 connection or Ethernet connection with the iHub. Because the takeover involves a GE Concord panel (or Simon XT), the touchscreen is always an option. No extra wiring is required for the touchscreen as it can use the 4-wire set from the replaced keypad of the legacy system. This provides power, battery backup (through Concord), and data link (RS485 Superbus 2000) between Concord and touchscreen. The touchscreen receives its broadband connectivity through the dedicated 802.11 link to the iHub.



FIG. 20 is a block diagram of a security system in which the legacy panel is replaced with a GE Concord panel connected to an iHub via an Ethernet coupling, under an embodiment. All existing wired and RF sensors remain in place. The iHub is located near the Concord panel, and wired to the panel using a 4-wire Superbus 2000 (RS485) interface, but is not so limited. The iHub manages cameras through a built-in 802.11 router. The iHub listens to the existing RF HW sensors, and relays sensor information to the Concord panel (emulating the equivalent GE sensor). The wired sensors of the legacy system are connected to the wired zones on the control panel.


The takeover installation process is similar to the installation process described above, except the control panel of the legacy system is replaced; therefore, only the differences with the installation described above are provided here. The takeover approach of an embodiment uses the existing RS485 control interfaces that GE Security and iControl support with the iHub, touchscreen, and Concord panel. With these interfaces, the iHub is capable of automatically emolling sensors in the panel. The exception is the leverage of an iControl RF card compatible with legacy systems to ‘takeover’ existing RF sensors. A description of the takeover installation process follows.


During the installation process, the iHub uses an RF Takeover Card to automatically extract all sensor IDs, zones, and names from the legacy panel. The installer removes connections at the legacy panel from hardwired wired sensors and labels each with the zone. The installer pulls the legacy panel and replaces it with the GE Concord panel. The installer also pulls the existing legacy keypad and replaces it with either a GE keypad or a GE-iControl touchscreen. The installer connects legacy hardwired sensors to appropriate wired zone (from labels) on the Concord. The installer connects the iHub to the local network and connects the iHub RS485 interface to the Concord panel. The iHub automatically ‘emolls’ legacy RF sensors into the Concord panel as GE sensors (maps IDs), and pushes or otherwise propagates other information gathered from HW panel (zone, name, group). The installer performs a test of all sensors back to CMS. In operation, the iHub relays legacy sensor data to the Concord panel, emulating equivalent GE sensor behavior and protocols.


The areas of the installation process particular to the legacy takeover include how the iHub extracts sensor info from the legacy panel and how the iHub automatically emolls legacy RF sensors and populates Concord with wired zone information. Each of these areas is described below.


In having the iHub extract sensor information from the legacy panel, the installer ‘emolls’ iHub into the legacy panel as a wireless keypad (use install code and house ID—available from panel). The iHub legacy RF Takeover Card is a compatible legacy RF transceiver. The installer uses the web portal to place iHub into ‘Takeover Mode’, and the web portal the automatically instructs the iHub to begin extraction. The iHub queries the panel over the RF link (to get all zone information for all sensors, wired and RF). The iHub then stores the legacy sensor information received during the queries on the iConnect server.


The iHub also automatically enrolls legacy RF sensors and populates Concord with wired zone information. In so doing, the installer selects ‘Enroll legacy Sensors into Concord’ (next step in ‘Takeover’ process on web portal). The iHub automatically queries the iConnect server, and downloads legacy sensor information previously extracted. The downloaded information includes an ID mapping from legacy ID to ‘spoofed’ GE ID. This mapping is stored on the server as part of the sensor information (e.g., the iConnect server knows that the sensor is a legacy sensor acting in GE mode). The iHub instructs Concord to go into install mode, and sends appropriate Superbus 2000 commands for sensor learning to the panel. For each sensor, the ‘spoofed’ GE ID is loaded, and zone, name, and group are set based on information extracted from legacy panel. Upon completion, the iHub notifies the server, and the web portal is updated to reflect next phase of Takeover (e.g., ‘Test Sensors’).


Sensors are tested in the same manner as described above. When a HW sensor is triggered, the signal is captured by the iHub legacy RF Takeover Card, translated to the equivalent GE RF sensor signal, and pushed to the panel as a sensor event on the SuperBus 2000 wires.


In support of remote programming of the panel, CMS pushes new programming to Concord over a phone line, or to the iConnect CMS/Alarm Server API, which in turn pushes the programming to the iHub. The iHub uses the Concord Superbus 2000 RS485 link to push the programming to the Concord panel.



FIG. 21 is a flow diagram for automatic takeover 2100 of a security system, under an embodiment. Automatic takeover includes establishing 2102 a wireless coupling between a takeover component running under a processor and a first controller of a security system installed at a first location. The security system includes some number of security system components coupled to the first controller. The automatic takeover includes automatically extracting 2104 security data of the security system from the first controller via the takeover component. The automatic takeover includes automatically transferring 2106 the security data to a second controller and controlling loading of the security data into the second controller. The second controller is coupled to the security system components and replaces the first controller.



FIG. 22 is a flow diagram for automatic takeover 2200 of a security system, under an alternative embodiment. Automatic takeover includes automatically forming 2202 a security network at a first location by establishing a wireless coupling between a security system and a gateway. The gateway of an embodiment includes a takeover component. The security system of an embodiment includes security system components. The automatic takeover includes automatically extracting 2204 security data of the security system from a first controller of the security system. The automatic takeover includes automatically transferring 2206 the security data to a second controller. The second controller of an embodiment is coupled to the security system components and replaces the first controller.


Embodiments described herein include a system comprising a security coprocessor. The security coprocessor is coupled to a security system at a premises. The security system includes security system components. The system of an embodiment comprises an interactive security system at the premises coupled to the security coprocessor and to a remote network. The security coprocessor controls communications between the security system and the interactive security system. The interactive security system generates in the premises a subnetwork comprising network components. The interactive security system controls communications between the security system components, the network components, and the remote network.


Embodiments described herein include a system comprising: a security coprocessor, wherein the security coprocessor is coupled to a security system at a premises, the security system including security system components; and an interactive security system at the premises coupled to the security coprocessor and to a remote network, wherein the security coprocessor controls communications between the security system and the interactive security system, the interactive security system generating in the premises a subnetwork comprising network components, wherein the interactive security system controls communications between the security system components, the network components, and the remote network.


The security system of an embodiment is coupled to supply power to the security coprocessor.


The system of an embodiment comprises a power switch coupled to the security system, the security coprocessor, and the interactive security system.


The security system of an embodiment supplies power to the interactive security system via the power switch.


The security system of an embodiment signals the security coprocessor of an external power failure and, in response, the security coprocessor signals the power switch to terminate power to the interactive security system.


The interactive security system of an embodiment automatically establishes a coupling with the security system and forms a security network by electronically integrating communications and functions of the network components and the security system components.


The interactive security system of an embodiment comprises an interface for control of the security system components and the network components.


The interactive security system of an embodiment provides access to the communications and the functions of the security network via remote client devices.


The remote client devices of an embodiment include one or more of personal computers, personal digital assistants, cellular telephones, and mobile computing devices.


The interactive security system of an embodiment automatically discovers the security system components.


The interactive security system of an embodiment uses protocols of the security system to discover the security system components.


The interactive security system of an embodiment automatically establishes a coupling with the security system components.


The security system of an embodiment is coupled to a central monitoring station via a primary communication link, wherein the interactive security system is coupled to the central monitoring station via the remote network that is different than the primary communication link, wherein the central monitoring station is located at a third location different from the first location and the second location.


The interactive security system of an embodiment transmits event data of at least one of the security system components and the network components to the central monitoring station over the remote network.


The event data of an embodiment comprises changes in device states of the security system components, data of the security system components, and data received by the security system components.


The event data of an embodiment comprises changes in device states of the network components, data of the network components, and data received by the network components.


The remote network of an embodiment includes a broadband coupling.


The remote network of an embodiment includes a General Packet Radio Service (GPRS) coupling.


The interactive security system of an embodiment transmits messages comprising event data of at least one of the security system components and the network components to remote client devices over the remote network.


The event data of an embodiment comprises changes in device states of the security system components, data of the security system components, and data received by the security system components.


The event data of an embodiment comprises changes in device states of the network components, data of the network components, and data received by the network components.


The interactive security system of an embodiment receives control data for control of at least one of the security system components and the network components from remote client devices via the secondary communication link.


The interactive security system of an embodiment automatically discovers the network components.


The interactive security system of an embodiment automatically installs the network devices in the security network.


The interactive security system of an embodiment receives control data for control of the network devices from remote client devices.


The network component of an embodiment is an Internet Protocol device. The network component of an embodiment is a camera.


The network component of an embodiment is a touchscreen.


The network component of an embodiment is a device controller that controls an attached device.


The network component of an embodiment is a sensor.


The security system components of an embodiment include one or more of sensors, cameras, input/output (I/O) devices, and accessory controllers.


The system of an embodiment comprises a touchscreen, wherein the interactive security system is a component of the touchscreen.


The system of an embodiment comprises segregating via the touchscreen data traffic between the security system, the subnetwork and the remote network, the segregating comprising using separate security and privacy policies for components coupled to the security system, the subnetwork and the remote network.


The system of an embodiment comprises simultaneously presenting a plurality of interfaces on the touchscreen, the plurality of interfaces including a security interface for accessing and controlling the security system and the security system components, wherein the security system interface is ever present in a dedicated region of the touchscreen.


The plurality of interfaces of an embodiment include a subnetwork interface for accessing and controlling the network components, and a remote network interface for accessing the remote network.


The system of an embodiment comprises enabling interaction among at least one of the security system components and the network components via the plurality of interfaces.


The system of an embodiment comprises electronically retrieving content via the touchscreen and the remote network, and integrating the content in at least one of the touchscreen, the security system, the security system components, and the network components, wherein the content includes a software application and interactive content in the form of internet widgets.


The system of an embodiment comprises an application engine coupled to the touchscreen, wherein the application engine controls a plurality of applications, wherein the plurality of applications includes a resident application that manages interactions between the plurality of applications.


The resident application of an embodiment determines a priority of each application of the plurality of applications and manages the plurality of applications according to the priority.


The system of an embodiment comprises a security server at a second location different from the first location, wherein security server is coupled to the interactive security system.


The interactive security system of an embodiment controls communications between the network devices, the security system components, and the security server.


The security server of an embodiment performs creation, modification, deletion and configuration of at least one of the security components and the network components.


The security server of an embodiment creates automations, schedules and notification rules associated with at least one of the security components and the network components.


The security server of an embodiment manages access to current and logged state data for at least one of the security components and the network components.


The security server of an embodiment manages access to current and logged state data for couplings between the interactive security system and at least one of the security components and the network components.


The security server of an embodiment manages communications with at least one of the security components and the network components.


The security server of an embodiment creates, modifies and terminates users corresponding to the security system.


The security server of an embodiment generates and transfers notifications to remote client devices, the notifications comprising event data.


The notifications of an embodiment include one or more of short message service messages and electronic mail messages.


Embodiments described herein include a system comprising a security coprocessor. The security coprocessor is coupled to a security system at a premises. The security system includes security system components. The system of an embodiment comprises a touchscreen comprising an interactive security system coupled to the security coprocessor and to a remote network. The security coprocessor controls communications between the security system and the touchscreen. The touchscreen generates in the premises a subnetwork comprising network components. The touchscreen controls communications between the security system components, the network components, and the remote network.


Embodiments described herein include a system comprising: a security coprocessor, wherein the security coprocessor is coupled to a security system at a premises, the security system including security system components; and a touchscreen comprising an interactive security system coupled to the security coprocessor and to a remote network, wherein the security coprocessor controls communications between the security system and the touchscreen, the touchscreen generating in the premises is a subnetwork comprising network components, wherein the touchscreen controls communications between the security system components, the network components, and the remote network.


Embodiments described herein include a system comprising a security coprocessor. The security coprocessor is coupled to a security system at a premises. The security system includes security system components and is coupled to a central monitoring station via a first communication link. The system of an embodiment includes an interactive security system at the premises coupled to the security coprocessor and to a remote network via a second communication link different from the first communication link. The security coprocessor controls communications between the security system and the interactive security system. The interactive security system generates in the premises a subnetwork comprising network components. The interactive security system controls communications between the security system components, the network components, and the remote network.


Embodiments described herein include a system comprising: a security coprocessor, wherein the security coprocessor is coupled to a security system at a premises, the security system including security system components and coupled to a central monitoring station via a first communication link; and an interactive security system at the premises; coupled to the security coprocessor and to a remote network via a second communication link different from the first communication link, wherein the security coprocessor controls communications between the security system and the interactive security system, the interactive security system generating in the premises a subnetwork comprising network components, wherein the interactive security system controls communications between the security system components, the network components, and the remote network.


Embodiments described herein include a method comprising generating a security network at a premises by coupling a security coprocessor to a security system and to an interactive security system. The security system includes security system components. The interactive security system is coupled to a remote network. The method of an embodiment comprises controlling communications between the security system and the interactive security system with the security coprocessor. The method of an embodiment comprises generating with the interactive security system a subnetwork in the premises comprising network components. The method of an embodiment comprises controlling communications between the security system components, the network components, and the remote network with the interactive security system.


Embodiments described herein include a method comprising: generating a security network at a premises by coupling a security coprocessor to a security system and to an interactive security system, wherein the security system includes security system components, wherein the interactive security system is coupled to a remote network; controlling communications between the security system and the interactive security system with the security coprocessor; generating with the interactive security system a subnetwork in the premises comprising network components; and controlling communications between the security system components, the network components, and the remote network with the interactive security system.


The method of an embodiment comprises supplying power to the security coprocessor from the security system.


The method of an embodiment comprises coupling a power switch to the security system, the security coprocessor, and the interactive security system.


The method of an embodiment comprises supplying power to the interactive security system from the security system via the power switch.


The method of an embodiment comprises receiving a signal at the security coprocessor from the security system signaling of an external power failure and, in response, signaling the power switch to terminate power to the interactive security system.


The method of an embodiment comprises forming the interactive security system as a component of a touchscreen.


The method of an embodiment comprises segregating via the touchscreen data traffic between the security system, the subnetwork and the remote network, the segregating comprising using separate security and privacy policies for components coupled to the security system, the subnetwork and the remote network.


The method of an embodiment comprises simultaneously presenting a plurality of interfaces on the touchscreen, the plurality of interfaces including a security interface for accessing and controlling the security system and the security system components, wherein the security system interface is ever present in a dedicated region of the touchscreen.


The plurality of interfaces of an embodiment includes a subnetwork interface for accessing and controlling the network components, and a remote network interface for accessing the remote network.


The method of an embodiment comprises enabling interaction among at least one of the security system components and the network components via the plurality of interfaces.


The method of an embodiment comprises electronically retrieving content via the touchscreen and the remote network, and integrating the content in at least one of the touchscreen, the security system, the security system components, and the network components, wherein the content includes a software application and interactive content in the form of internet widgets.


The method of an embodiment comprises an application engine coupled to the touchscreen, wherein the application engine controls a plurality of applications, wherein the plurality of applications includes a resident application that manages interactions between the plurality of applications.


The resident application of an embodiment determines a priority of each application of the plurality of applications and manages the plurality of applications according to the priority.


The method of an embodiment comprises the interactive security system automatically establishing a coupling with the security system and forming a security network by electronically integrating communications and functions of the network components and the security system components.


The method of an embodiment comprises presenting a control interface through the interactive security system for control of the security system components and the network components.


The method of an embodiment comprises accessing with remote client devices the communications and the functions of the security network via the interactive security system.


The remote client devices of an embodiment include one or more of personal computers, personal digital assistants, cellular telephones, and mobile computing devices.


The interactive security system of an embodiment automatically discovers the security system components.


The interactive security system of an embodiment uses protocols of the security system to discover the security system components.


The interactive security system of an embodiment automatically establishes a coupling with the security system components.


The security system of an embodiment is coupled to a central monitoring station via a primary communication link, wherein the interactive security system is coupled to the central monitoring station via the remote network that is different than the primary communication link, wherein the central monitoring station is located at a third location different from the first location and the second location.


The interactive security system of an embodiment transmits event data of at least one of the security system components and the network components to the central monitoring station over the remote network.


The event data of an embodiment comprises changes in device states of the security system components, data of the security system components, and data received by the security system components.


The event data of an embodiment comprises changes in device states of the network components, data of the network components, and data received by the network components.


The remote network of an embodiment includes a broadband coupling.


The remote network of an embodiment includes a General Packet Radio Service (GPRS) coupling.


The interactive security system of an embodiment transmits messages comprising event data of at least one of the security system components and the network components to remote client devices over the remote network.


The event data of an embodiment comprises changes in device states of the security system components, data of the security system components, and data received by the security system components.


The event data of an embodiment comprises changes in device states of the network components, data of the network components, and data received by the network components.


The interactive security system of an embodiment receives control data for control of at least one of the security system components and the network components from remote client devices via the secondary communication link.


The interactive security system of an embodiment automatically discovers the network components.


The interactive security system of an embodiment automatically installs the network devices in the security network.


The interactive security system of an embodiment receives control data for control of the network devices from remote client devices.


The network component of an embodiment is at least one of an Internet Protocol device, a camera, a touchscreen, a device controller that controls an attached device, a sensor.


The security system components of an embodiment include one or more of sensors, cameras, input/output (I/O) devices, and accessory controllers.


The method of an embodiment comprises coupling a security server at a second location to the interactive security system, wherein the second location is different from the first location.


The method of an embodiment comprises controlling via the interactive security system communications between the network devices, the security system components, and the security server.


The security server of an embodiment creates, modifies, deletes and configures at least one of the security components and the network components.


The security server of an embodiment creates automations, schedules and notification rules associated with at least one of the security components and the network components.


The security server of an embodiment manages access to current and logged state data for at least one of the security components and the network components.


The security server of an embodiment manages access to current and logged state data for couplings between the interactive security system and at least one of the security components and the network components.


The security server of an embodiment manages communications with at least one of the security components and the network components.


The security server of an embodiment creates, modifies and terminates users corresponding to the security system.


The security server of an embodiment generates and transfers notifications to remote client devices, the notifications comprising event data.


The notifications of an embodiment include one or more of short message service messages and electronic mail messages.


As described above, computer networks suitable for use with the embodiments described herein include local area networks (LAN), wide area networks (WAN), Internet, or other connection services and network variations such as the world wide web, the public internet, a private internet, a private computer network, a public network, a mobile network, a cellular network, a value-added network, and the like. Computing devices coupled or connected to the network may be any microprocessor controlled device that permits access to the network, including terminal devices, such as personal computers, workstations, servers, mini computers, main-frame computers, laptop computers, mobile computers, palm top computers, hand held computers, mobile phones, TV set-top boxes, or combinations thereof. The computer network may include one of more LANs, WANs, Internets, and computers. The computers may serve as servers, clients, or a combination thereof.


The integrated security system can be a component of a single system, multiple systems, and/or geographically separate systems. The integrated security system can also be a subcomponent or subsystem of a single system, multiple systems, and/or geographically separate systems. The integrated security system can be coupled to one or more other components (not shown) of a host system or a system coupled to the host system.


One or more components of the integrated security system and/or a corresponding system or application to which the integrated security system is coupled or connected includes and/or runs under and/or in association with a processing system. The processing system includes any collection of processor-based devices or computing devices operating together, or components of processing systems or devices, as is known in the art. For example, the processing system can include one or more of a portable computer, portable communication device operating in a communication network, and/or a network server. The portable computer can be any of a number and/or combination of devices selected from among personal computers, personal digital assistants, portable computing devices, and portable communication devices, but is not so limited. The processing system can include components within a larger computer system.


The processing system of an embodiment includes at least one processor and at least one memory device or subsystem. The processing system can also include or be coupled to at least one database. The term “processor” as generally used herein refers to any logic processing unit, such as one or more central processing units (CPUs), digital signal processors (DSPs), application-specific integrated circuits (ASIC), etc. The processor and memory can be monolithically integrated onto a single chip, distributed among a number of chips or components, and/or provided by some combination of algorithms. The methods described herein can be implemented in one or more of software algorithm(s), programs, firmware, hardware, components, circuitry, in any combination.


The components of any system that includes the integrated security system can be located together or in separate locations. Communication paths couple the components and include any medium for communicating or transferring files among the components. The communication paths include wireless connections, wired connections, and hybrid wireless/wired connections. The communication paths also include couplings or connections to networks including local area networks (LANs), metropolitan area networks (MANs), wide area networks (WANs), proprietary networks, interoffice or backend networks, and the Internet. Furthermore, the communication paths include removable fixed mediums like floppy disks, hard disk drives, and CD-ROM disks, as well as flash RAM, Universal Serial Bus (USB) connections, RS-232 connections, telephone lines, buses, and electronic mail messages.


Aspects of the integrated security system and corresponding systems and methods described herein may be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (PLDs), such as field programmable gate arrays (FPGAs), programmable array logic (PAL) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits (ASICs). Some other possibilities for implementing aspects of the integrated security system and corresponding systems and methods include: microcontrollers with memory (such as electronically erasable programmable read only memory (EEPROM)), embedded microprocessors, firmware, software, etc. Furthermore, aspects of the integrated security system and corresponding systems and methods may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. Of course the underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, etc.


It should be noted that any system, method, and/or other components disclosed herein may be described using computer aided design tools and expressed (or represented), as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof. Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the Internet and/or other computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, etc.). When received within a computer system via one or more computer-readable media, such data and/or instruction-based expressions of the above described components may be processed by a processing entity (e.g., one or more processors) within the computer system in conjunction with execution of one or more other computer programs.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.


The above description of embodiments of the integrated security system and corresponding systems and methods is not intended to be exhaustive or to limit the systems and methods to the precise forms disclosed. While specific embodiments of, and examples for, the integrated security system and corresponding systems and methods are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the systems and methods, as those skilled in the relevant art will recognize. The teachings of the integrated security system and corresponding systems and methods provided herein can be applied to other systems and methods, not only for the systems and methods, not only for the systems and methods described above.


The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the integrated security system and corresponding systems and methods in light of the above detailed description.

Claims
  • 1. An apparatus comprising: a first communication component configured to: receive, from a premises security system, first data associated with a premises safety feature of the premises security system, andreceive, from at least one premises device, second data associated with one or more premises content features of the at least one premises device;a second communication component configured to send, to a remote monitoring device, the first data and the second data;a premises power supply configured to cause output of power to at least one of the premises security system or the at least one premises device; anda back-up power supply configured to cause, based on failure of the premises power supply, output of power to at least one of the premises security system or the at least one premises device;wherein the apparatus is configured to: determine the failure of the premises power supply, andcause, based at least on a duration of the failure of the premises power supply, selective disablement of at least one premises content feature of the one or more premises content features.
  • 2. The apparatus of claim 1, wherein the apparatus is configured to cause selective disablement of the at least one premises content feature by causing the back-up power supply to terminate output of power to the at least one premises content feature.
  • 3. The apparatus of claim 1, wherein the premises safety feature is configured to remain enabled while the at least one premises content feature is disabled.
  • 4. The apparatus of claim 1, further comprising a memory storing instructions for a premises safety application configured to provide functionality associated with the premises safety feature and a premises content application configured to provide functionality associated with the one or more premises content features.
  • 5. The apparatus of claim 1, wherein the first communication component is configured to receive the first data via a communication protocol, wherein the communication protocol comprises at least one of a ZigBee protocol, a Z-Wave protocol, or a Wi-Fi protocol.
  • 6. The apparatus of claim 1, wherein the second communication component is configured to send, to the remote monitoring device and via remote communications, the second data, wherein the remote communications are via at least one of a broadband communication link, a Wi-Fi communication link, or a cellular communication link.
  • 7. The apparatus of claim 6, wherein the cellular communication link is used for remote communications based on at least one of the broadband communication link or the Wi-Fi communication link being unavailable.
  • 8. The apparatus of claim 1, wherein the premises device comprises at least one of a keypad, a mobile phone, a tablet computer, a personal computer, or a touchscreen device.
  • 9. The apparatus of claim 1, wherein the premises device comprises at least one of a sensor, a camera, a thermostat, an appliance, a light, a lock, or a device actuator.
  • 10. The apparatus of claim 1, wherein the first communication component comprises at least one of a transceiver or a Wi-Fi module.
  • 11. The apparatus of claim 1, wherein the second communication component comprises at least one of a broadband module, a telephone module, or a general packet radio service (GPRS) module.
  • 12. A system comprising: a premises security system located at a premises and comprising a premises safety feature; anda control device in communication with the premises security system and in communication with a premises device located at the premises, wherein the premises device comprises premises content features, and wherein the control device comprises: a communication subsystem configured to: receive, from the premises security system, first data associated with the premises safety feature,receive, from the premises device, second data associated with one or more of the premises content features of the premises device, andsend, to a remote monitoring device, the first data and the second data;a premises power supply configured to cause output of power to at least one of the premises security system or the premises device; anda back-up power supply configured to cause, based on failure of the premises power supply, output of power to at least one of the premises security system or the premises device;wherein the control device is configured to: determine the failure of the premises power supply; andcause, based at least on a duration of the failure of the premises power supply, selective disablement of at least one of the premises content features.
  • 13. The system of claim 12, wherein the premises device comprises at least one of a sensor, a camera, a thermostat, an appliance, a light, a lock, or a device actuator.
  • 14. The system of claim 12, wherein the control device is configured to cause selective disablement of the at least one of the premises content features by causing the back-up power supply to terminate output of power to the at least one of the premises content features.
  • 15. The system of claim 12, wherein the control device is configured to cause selective disablement of the at least one of the premises content features based at least on a determination to allocate power to at least one of the premises safety feature or another of the premises content features.
  • 16. A method comprising: determining, by a control device, failure of a premises power supply, wherein the premises power supply is configured to output power to at least one of a premises security system or a premises device, wherein the premises security system comprises a premises safety feature,wherein the premises device comprises premises content features,wherein the at least one of the premises security system or the premises device is configured to receive, from a back-up power supply and based on the failure of the premises power supply, power; andcausing, based at least on a duration of the failure of the premises power supply, selective disablement of at least one of the premises content features.
  • 17. The method of claim 16, wherein the causing selective disablement of the at least one of the premises content features is further based at least on a determination to reduce a consumption of power.
  • 18. The method of claim 16, wherein the causing selective disablement of the at least one of the premises content features is further based at least on a determination to allocate power to at least one of the premises safety feature or another of the premises content features.
  • 19. The method of claim 16, wherein the causing selective disablement of at least one of the premises content features comprises causing the back-up power supply to terminate output of power to the at least one of the premises content features.
  • 20. An apparatus comprising: one or more processors; andmemory storing instructions that, when executed by the one or more processors, cause the apparatus to: cause, by a control device, output of power from a premises power supply to at least one of a premises security system or a premises device, wherein the premises security system comprises a premises safety feature, and wherein the premises device comprises premises content features;determine, by the control device, failure of the premises power supply;cause, based at least on the failure of the premises power supply, output of power from a back-up power supply to the at least one of the premises security system or the premises device; andcause, based at least on a duration of the failure of the premises power supply, selective disablement of at least one of the premises content features.
  • 21. The apparatus of claim 20, wherein the causing selective disablement of the at least one of the premises content features is further based on a priority of the premises safety feature and the premises content features.
  • 22. The apparatus of claim 20, wherein the instructions, that when executed, cause the apparatus to cause selective disablement of the at least one of the premises content features by causing the back-up power supply to terminate output of power to the at least one of the premises content features.
  • 23. The apparatus of claim 20, wherein the instructions, when executed, cause the apparatus to cause, based at least on a determination to allocate power to at least one of the premises safety feature or another of the premises content features, selective disablement of the at least one of the premises content features.
  • 24. A system comprising: a premises device located at a premises, wherein the premises device comprises premises content features; anda control device in communication with the premises device and in communication with a premises security system located at the premises, wherein the premises security system comprises a premises safety feature, and wherein the control device is configured to: cause output of power from a premises power supply to at least one of the premises security system or the premises device;determine a failure of the premises power supply;cause, based at least on the failure of the premises power supply, output of power from a back-up power supply to the at least one of the premises security system or the premises device; andcause, based at least on a duration of the failure of the premises power supply, selective disablement of at least one of the premises content features.
  • 25. The system of claim 24, wherein the premises content features comprise a subsystem of the premises device.
  • 26. The system of claim 24, wherein the premises safety feature comprises at least one of a device of the premises security system, a function of the premises security system, or a subsystem of the premises security system.
  • 27. The system of claim 24, wherein the control device is configured to cause selective disablement of the at least one of the premises content features by causing the back-up power supply to terminate output of power to the at least one of the premises content features.
  • 28. The system of claim 24, wherein the control device is configured to cause selective disablement of the at least one of the premises content features based at least on a determination to allocate power to at least one of the premises safety feature or another of the premises content features.
  • 29. A method comprising: causing, by a control device, output of power from a premises power supply to at least one of a premises security system or a premises device, wherein the premises security system comprises a premises safety feature, andwherein the premises device comprises premises content features;determining, by the control device, a failure of the premises power supply;causing, based at least on the failure of the premises power supply, output of power from a back-up power supply to the at least one of the premises security system and the premises device; andcausing, based at least on a duration of the failure, selective disablement of at least one of the premises content features.
  • 30. The method of claim 29, wherein the causing selective disablement of the at least one of the premises content features comprises sending, to the premises device, a command to modify a state of the at least one of the premises content features.
  • 31. The method of claim 29, wherein the causing selective disablement of the at least one of the premises content features comprises causing the back-up power supply to terminate output of power to the at least one of the premises content features.
  • 32. The method of claim 29, wherein the causing selective disablement of the at least one of the premises content features is based at least on a determination to allocate power to at least one of the premises safety feature or another of the premises content features.
RELATED APPLICATIONS

This application claims the benefit of U.S. Patent Application No. 61/246,467, filed Sep. 28, 2009. This application is a continuation in part application of U.S. patent application Ser. No. 11/084,232, filed Mar. 16, 2005. This application is a continuation in part application of U.S. patent application Ser. No. 11/761,718, filed Jun. 12, 2007. This application is a continuation in part application of U.S. patent application Ser. No. 11/761,745, filed Jun. 12, 2007. This application is a continuation in part application of U.S. patent application Ser. No. 12/019,554, filed Jan. 24, 2008. This application is a continuation in part application of U.S. patent application Ser. No. 12/019,568, filed Jan. 24, 2008. This application is a continuation in part application of U.S. patent application Ser. No. 12/189,757, filed Aug. 11, 2008. This application is a continuation in part application of U.S. patent application Ser. No. 12/197,895, filed Aug. 25, 2008. This application is a continuation in part application of U.S. patent application Ser. No. 12/198,023, filed Aug. 25, 2008. This application is a continuation in part application of U.S. patent application Ser. No. 12/269,585, filed Nov. 12, 2008.

US Referenced Citations (1613)
Number Name Date Kind
686836 Appel Nov 1901 A
1738540 Replogle et al. Dec 1929 A
3803576 Dobrzanski et al. Apr 1974 A
3852541 Altenberger Dec 1974 A
4006460 Hewitt et al. Feb 1977 A
4141006 Braxton Feb 1979 A
4257038 Rounds et al. Mar 1981 A
4286331 Anderson et al. Aug 1981 A
4304970 Fahey et al. Dec 1981 A
4363031 Reinowitz Dec 1982 A
4520503 Kirst et al. May 1985 A
4559526 Tani et al. Dec 1985 A
4559527 Kirby Dec 1985 A
4574305 Campbell et al. Mar 1986 A
4581606 Mallory Apr 1986 A
4591834 Kyle May 1986 A
D284084 Ferrara, Jr. Jun 1986 S
4641127 Hogan et al. Feb 1987 A
4652859 Van Wienen Mar 1987 A
4670739 Kelly, Jr. Jun 1987 A
4683460 Nakatsugawa Jul 1987 A
4694282 Tamura et al. Sep 1987 A
4716973 Cobern Jan 1988 A
4730184 Bach Mar 1988 A
4754261 Marino Jun 1988 A
4779007 Schlanger et al. Oct 1988 A
4801924 Burgmann et al. Jan 1989 A
4812820 Chatwin, I Mar 1989 A
4818970 Natale et al. Apr 1989 A
4833339 Luchaco et al. May 1989 A
4833449 Gaffigan May 1989 A
4855713 Brunius Aug 1989 A
4860185 Brewer et al. Aug 1989 A
4887064 Drori et al. Dec 1989 A
4897630 Nykerk Jan 1990 A
4918623 Lockitt et al. Apr 1990 A
4918717 Bissonnette et al. Apr 1990 A
4951029 Severson Aug 1990 A
4959713 Morotomi et al. Sep 1990 A
4962473 Crain Oct 1990 A
4980666 Hwang Dec 1990 A
4993059 Smith et al. Feb 1991 A
4994787 Kratt et al. Feb 1991 A
5023901 Sloan et al. Jun 1991 A
5083106 Kostusiak et al. Jan 1992 A
5086385 Launey et al. Feb 1992 A
5091780 Pomerleau Feb 1992 A
5109278 Erickson et al. Apr 1992 A
5132968 Cephus Jul 1992 A
5134644 Garton et al. Jul 1992 A
5159315 Schultz et al. Oct 1992 A
5160879 Tortola et al. Nov 1992 A
5164703 Rickman Nov 1992 A
5164979 Choi Nov 1992 A
D337569 Kando Jul 1993 S
5227776 Starefoss Jul 1993 A
5237305 Ishikuro et al. Aug 1993 A
5245694 Zwern Sep 1993 A
5280527 Gullman et al. Jan 1994 A
5283816 Gomez Diaz Feb 1994 A
5299971 Hart Apr 1994 A
5319394 Dukek Jun 1994 A
5319698 Glidewell et al. Jun 1994 A
5334974 Simms et al. Aug 1994 A
5400011 Sutton Mar 1995 A
5406260 Cummings et al. Apr 1995 A
5410343 Coddington et al. Apr 1995 A
5412708 Katz May 1995 A
5414409 Voosen et al. May 1995 A
5414833 Hershey et al. May 1995 A
5428293 Sinclair et al. Jun 1995 A
5438607 Przygoda, Jr. et al. Aug 1995 A
5446445 Bloomfield et al. Aug 1995 A
5448290 Vanzeeland Sep 1995 A
5452344 Larson Sep 1995 A
5465081 Todd Nov 1995 A
5471194 Guscott Nov 1995 A
5483224 Rankin et al. Jan 1996 A
5486812 Todd Jan 1996 A
5499014 Greenwaldt Mar 1996 A
5499196 Pacheco Mar 1996 A
5510975 Ziegler, Jr. Apr 1996 A
5519878 Dolin, Jr. May 1996 A
RE35268 Frolov et al. Jun 1996 E
5525966 Parish Jun 1996 A
5526428 Arnold Jun 1996 A
5534845 Issa et al. Jul 1996 A
5541585 Duhame et al. Jul 1996 A
5543778 Stouffer Aug 1996 A
5546072 Creuseremee et al. Aug 1996 A
5546074 Bernal et al. Aug 1996 A
5546447 Skarbo et al. Aug 1996 A
5548646 Aziz et al. Aug 1996 A
5550984 Gelb Aug 1996 A
5557254 Johnson et al. Sep 1996 A
5570079 Dockery Oct 1996 A
5572438 Ehlers et al. Nov 1996 A
5578989 Pedtke Nov 1996 A
5579197 Mengelt et al. Nov 1996 A
5579221 Mun Nov 1996 A
D377034 Matsushita Dec 1996 S
5587705 Morris Dec 1996 A
5598086 Somerville Jan 1997 A
5602918 Chen et al. Feb 1997 A
5604493 Behlke Feb 1997 A
5606615 Lapointe et al. Feb 1997 A
5621662 Humphries et al. Apr 1997 A
5623601 Vu Apr 1997 A
5625338 Pildner et al. Apr 1997 A
5625410 Washino et al. Apr 1997 A
5629687 Sutton et al. May 1997 A
5630216 McEwan May 1997 A
5631630 McSweeney May 1997 A
5638046 Malinowski Jun 1997 A
5651070 Blunt Jul 1997 A
5652567 Traxler Jul 1997 A
5675321 McBride Oct 1997 A
5680131 Utz Oct 1997 A
5682133 Johnson et al. Oct 1997 A
5686885 Bergman Nov 1997 A
5686896 Bergman Nov 1997 A
5689235 Sugimoto et al. Nov 1997 A
5689708 Regnier et al. Nov 1997 A
5691697 Carvalho et al. Nov 1997 A
5694335 Hollenberg Dec 1997 A
5694595 Jacobs et al. Dec 1997 A
5696486 Poliquin et al. Dec 1997 A
5696898 Baker et al. Dec 1997 A
D389501 Mascarenas, Sr. et al. Jan 1998 S
5706191 Bassett et al. Jan 1998 A
5712679 Coles Jan 1998 A
5714933 Le Van Suu Feb 1998 A
5715394 Jabs Feb 1998 A
5717378 Malvaso et al. Feb 1998 A
5717379 Peters Feb 1998 A
5717578 Afzal Feb 1998 A
5719551 Flick Feb 1998 A
5726912 Krall et al. Mar 1998 A
5731756 Roddy Mar 1998 A
5736927 Stebbins et al. Apr 1998 A
5737391 Dame et al. Apr 1998 A
5748084 Isikoff May 1998 A
5748089 Sizemore May 1998 A
5757616 May et al. May 1998 A
5761206 Kackman Jun 1998 A
5774051 Kostusiak Jun 1998 A
5777551 Hess Jul 1998 A
5777837 Eckel et al. Jul 1998 A
5784461 Shaffer et al. Jul 1998 A
5784463 Chen et al. Jul 1998 A
5793028 Wagener et al. Aug 1998 A
5793763 Mayes et al. Aug 1998 A
5794128 Brockel et al. Aug 1998 A
5796401 Winer Aug 1998 A
5798701 Bernal et al. Aug 1998 A
5801618 Jenkins Sep 1998 A
5805056 Mueller et al. Sep 1998 A
5805064 Yorkey Sep 1998 A
5809013 Kackman Sep 1998 A
5812054 Cohen Sep 1998 A
5819124 Somner et al. Oct 1998 A
5844599 Hildin Dec 1998 A
5845070 Ikudome Dec 1998 A
5854588 Dockery Dec 1998 A
5859966 Hayman et al. Jan 1999 A
5861804 Fansa et al. Jan 1999 A
5867484 Shaunfield Feb 1999 A
5874952 Morgan Feb 1999 A
5877696 Powell Mar 1999 A
5880775 Ross Mar 1999 A
5881226 Veneklase Mar 1999 A
5886894 Rakoff Mar 1999 A
5892442 Ozery Apr 1999 A
5898831 Hall et al. Apr 1999 A
5905438 Weiss et al. May 1999 A
5907279 Bruins et al. May 1999 A
5909183 Borgstahl et al. Jun 1999 A
5914655 Clifton et al. Jun 1999 A
5924069 Kowalkowski et al. Jul 1999 A
5926209 Glatt Jul 1999 A
5933098 Haxton Aug 1999 A
5940387 Humpleman Aug 1999 A
5943394 Ader et al. Aug 1999 A
5952815 Rouillard et al. Sep 1999 A
5955946 Beheshti et al. Sep 1999 A
5958053 Denker Sep 1999 A
5959528 Right et al. Sep 1999 A
5963916 Kaplan Oct 1999 A
5967975 Ridgeway Oct 1999 A
D416910 Vasquez Nov 1999 S
5982418 Ely Nov 1999 A
5991795 Howard et al. Nov 1999 A
6002430 McCall et al. Dec 1999 A
6009320 Dudley Dec 1999 A
6011921 Takahashi et al. Jan 2000 A
6032036 Maystre et al. Feb 2000 A
6037991 Thro et al. Mar 2000 A
6038289 Sands Mar 2000 A
6040770 Britton Mar 2000 A
6049272 Lee et al. Apr 2000 A
6049273 Hess Apr 2000 A
6049598 Peters et al. Apr 2000 A
6052052 Delmonaco Apr 2000 A
6060994 Chen May 2000 A
6067346 Akhteruzzaman et al. May 2000 A
6067440 Diefes May 2000 A
6069655 Seeley et al. May 2000 A
6078253 Fowler Jun 2000 A
6078257 Ferraro Jun 2000 A
6078649 Small et al. Jun 2000 A
6085030 Whitehead et al. Jul 2000 A
6091771 Seeley et al. Jul 2000 A
6094134 Cohen Jul 2000 A
6097429 Seeley et al. Aug 2000 A
6104785 Chen Aug 2000 A
6107918 Klein et al. Aug 2000 A
6107930 Behlke et al. Aug 2000 A
6108034 Kim Aug 2000 A
6117182 Alpert et al. Sep 2000 A
6124882 Voois et al. Sep 2000 A
6134303 Chen Oct 2000 A
6134591 Nickles Oct 2000 A
6138249 Nolet Oct 2000 A
6139177 Venkatraman et al. Oct 2000 A
6140987 Stein et al. Oct 2000 A
6154133 Ross et al. Nov 2000 A
6161182 Nadooshan Dec 2000 A
6167186 Kawasaki et al. Dec 2000 A
6181341 Shinaganna Jan 2001 B1
6192418 Hale et al. Feb 2001 B1
6198475 Kunimatsu et al. Mar 2001 B1
6198479 Humpleman et al. Mar 2001 B1
6208247 Agre et al. Mar 2001 B1
6209011 Vong et al. Mar 2001 B1
6211783 Wang Apr 2001 B1
6215404 Morales Apr 2001 B1
6218938 Lin Apr 2001 B1
6219677 Howard Apr 2001 B1
6226031 Barraclough et al. May 2001 B1
6229429 Horon May 2001 B1
6239892 Davidson May 2001 B1
6243683 Peters Jun 2001 B1
6246320 Monroe Jun 2001 B1
6271752 Vaios Aug 2001 B1
6275227 Destefano Aug 2001 B1
6281790 Kimmel et al. Aug 2001 B1
6282569 Wallis et al. Aug 2001 B1
6286038 Reichmeyer et al. Sep 2001 B1
6288716 Humpleman et al. Sep 2001 B1
6289382 Bowman-Amuah Sep 2001 B1
6292766 Mattos et al. Sep 2001 B1
6292827 Raz Sep 2001 B1
6295346 Markowitz et al. Sep 2001 B1
6314425 Serbinis et al. Nov 2001 B1
6320506 Ferraro Nov 2001 B1
6323897 Kogane et al. Nov 2001 B1
D451529 Vasquez Dec 2001 S
6331122 Wu Dec 2001 B1
6332193 Glass et al. Dec 2001 B1
6347393 Alpert et al. Feb 2002 B1
6351213 Hirsch et al. Feb 2002 B1
6351595 Kim Feb 2002 B1
6351829 Dupont et al. Feb 2002 B1
6353853 Gravlin Mar 2002 B1
6353891 Borella et al. Mar 2002 B1
6359560 Budge et al. Mar 2002 B1
6363417 Howard et al. Mar 2002 B1
6363422 Hunter et al. Mar 2002 B1
6369695 Horon Apr 2002 B1
6369705 Kennedy Apr 2002 B1
6370436 Howard et al. Apr 2002 B1
6374079 Hsu Apr 2002 B1
6377861 York Apr 2002 B1
6378109 Young et al. Apr 2002 B1
6385772 Courtney May 2002 B1
6392538 Shere May 2002 B1
6400265 Saylor et al. Jun 2002 B1
6405348 Fallah-Tehrani et al. Jun 2002 B1
D460472 Wang Jul 2002 S
6418037 Zhang Jul 2002 B1
6421080 Lambert Jul 2002 B1
6430629 Smyers Aug 2002 B1
6433683 Robinson Aug 2002 B1
6434700 Alonso et al. Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6442241 Tsumpes Aug 2002 B1
6446192 Narasimhan et al. Sep 2002 B1
6452490 Garland et al. Sep 2002 B1
6452923 Gerszberg et al. Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
D464328 Vasquez et al. Oct 2002 S
D464948 Vasquez et al. Oct 2002 S
6462507 Fisher et al. Oct 2002 B2
6462663 Wilson et al. Oct 2002 B1
6467084 Howard et al. Oct 2002 B1
6476858 Ramirez et al. Nov 2002 B1
6480901 Weber et al. Nov 2002 B1
6493020 Stevenson et al. Dec 2002 B1
6496927 McGrane et al. Dec 2002 B1
6499131 Savithri et al. Dec 2002 B1
6504479 Lemons et al. Jan 2003 B1
6526581 Edson Feb 2003 B1
6529230 Chong Mar 2003 B1
6529723 Bentley Mar 2003 B1
6542075 Barker et al. Apr 2003 B2
6542992 Peirce et al. Apr 2003 B1
6553336 Johnson et al. Apr 2003 B1
6559769 Anthony et al. May 2003 B2
6563800 Salo et al. May 2003 B1
6563910 Menard et al. May 2003 B2
6567122 Anderson et al. May 2003 B1
6567502 Zellner et al. May 2003 B2
6574234 Myer et al. Jun 2003 B1
6580950 Johnson et al. Jun 2003 B1
6587046 Joao Jul 2003 B2
6587455 Ray et al. Jul 2003 B1
6587736 Howard et al. Jul 2003 B2
6591094 Bentley Jul 2003 B1
6597703 Li et al. Jul 2003 B1
6601086 Howard et al. Jul 2003 B1
6603488 Humpleman et al. Aug 2003 B2
6609127 Lee et al. Aug 2003 B1
6611206 Eshelman et al. Aug 2003 B2
6615088 Myer et al. Sep 2003 B1
6621827 Rezvani et al. Sep 2003 B1
6624750 Marman et al. Sep 2003 B1
6631416 Bendinelli et al. Oct 2003 B2
6636893 Fong Oct 2003 B1
6643652 Helgeson et al. Nov 2003 B2
6643669 Novak et al. Nov 2003 B1
6648682 Wu Nov 2003 B1
6658091 Naidoo et al. Dec 2003 B1
6661340 Saylor et al. Dec 2003 B1
6662340 Rawat et al. Dec 2003 B2
6667688 Menard et al. Dec 2003 B1
6675365 Elzinga Jan 2004 B2
6680730 Shields et al. Jan 2004 B1
6686838 Rezvani et al. Feb 2004 B1
6690411 Naidoo et al. Feb 2004 B2
6693530 Dowens et al. Feb 2004 B1
6693545 Brown et al. Feb 2004 B2
6697103 Fernandez et al. Feb 2004 B1
6704786 Gupta et al. Mar 2004 B1
6720990 Walker et al. Apr 2004 B1
6721689 Markle et al. Apr 2004 B2
6721740 Skinner et al. Apr 2004 B1
6721747 Lipkin Apr 2004 B2
6727811 Fendis Apr 2004 B1
6728688 Hirsch et al. Apr 2004 B1
6738824 Blair May 2004 B1
6741171 Palka et al. May 2004 B2
6754717 Day, III et al. Jun 2004 B1
6756896 Ford Jun 2004 B2
6756998 Bilger Jun 2004 B1
6759956 Menard et al. Jul 2004 B2
6762686 Tabe Jul 2004 B1
6778085 Faulkner et al. Aug 2004 B2
6779019 Mousseau et al. Aug 2004 B1
6781509 Oppedahl et al. Aug 2004 B1
6785542 Blight et al. Aug 2004 B1
6789147 Kessler et al. Sep 2004 B1
6795322 Aihara et al. Sep 2004 B2
6795863 Doty, Jr. Sep 2004 B1
6798344 Faulkner et al. Sep 2004 B2
6804638 Fiedler Oct 2004 B2
6810409 Fry et al. Oct 2004 B1
6826173 Kung et al. Nov 2004 B1
6826233 Oosawa Nov 2004 B1
6829478 Layton et al. Dec 2004 B1
6834208 Gonzales et al. Dec 2004 B2
6850252 Hoffberg Feb 2005 B1
6856236 Christensen et al. Feb 2005 B2
6857026 Cain Feb 2005 B1
6865690 Kocin Mar 2005 B2
6871193 Campbell et al. Mar 2005 B1
6873256 Lemelson et al. Mar 2005 B2
6885362 Suomela Apr 2005 B2
D504889 Andre et al. May 2005 S
6891838 Petite et al. May 2005 B1
6912429 Bilger Jun 2005 B1
6914533 Petite Jul 2005 B2
6918112 Bourke-Dunphy et al. Jul 2005 B2
6920502 Araujo et al. Jul 2005 B2
6920615 Campbell et al. Jul 2005 B1
6928148 Simon et al. Aug 2005 B2
6930599 Naidoo et al. Aug 2005 B2
6930730 Maxson et al. Aug 2005 B2
6931445 Davis Aug 2005 B2
6941258 Van Heijningen et al. Sep 2005 B2
6943681 Rezvani et al. Sep 2005 B2
6956477 Chun Oct 2005 B2
6957186 Guheen et al. Oct 2005 B1
6957275 Bahl Oct 2005 B1
6959341 Leung Oct 2005 B1
6959393 Hollis et al. Oct 2005 B2
6963908 Lynch et al. Nov 2005 B1
6963981 Bailey et al. Nov 2005 B1
6965294 Elliott et al. Nov 2005 B1
6965313 Saylor et al. Nov 2005 B1
6970183 Monroe Nov 2005 B1
6971076 Chen Nov 2005 B2
6972676 Kimmel et al. Dec 2005 B1
6975220 Foodman et al. Dec 2005 B1
6977485 Wei Dec 2005 B1
6983432 Hayes Jan 2006 B2
6990591 Pearson Jan 2006 B1
6993658 Engberg et al. Jan 2006 B1
6999992 Deen et al. Feb 2006 B1
7015806 Naidoo et al. Mar 2006 B2
7016970 Harumoto et al. Mar 2006 B2
7019639 Stilp Mar 2006 B2
7020697 Goodman et al. Mar 2006 B1
7020701 Gelvin et al. Mar 2006 B1
7023913 Monroe Apr 2006 B1
7023914 Furukawa et al. Apr 2006 B2
7023975 Mansfield et al. Apr 2006 B2
7024676 Klopfenstein Apr 2006 B1
7028328 Kogane et al. Apr 2006 B2
7030752 Tyroler Apr 2006 B2
7032002 Rezvani et al. Apr 2006 B1
7034681 Yamamoto et al. Apr 2006 B2
7035907 Decasper et al. Apr 2006 B1
7039391 Rezvani et al. May 2006 B2
7043537 Pratt May 2006 B1
7047088 Nakamura et al. May 2006 B2
7047092 Wimsatt May 2006 B2
7050388 Kim et al. May 2006 B2
7053764 Stilp May 2006 B2
7053765 Clark May 2006 B1
7068164 Duncan et al. Jun 2006 B1
7072934 Helgeson et al. Jul 2006 B2
7073140 Li et al. Jul 2006 B1
7075429 Marshall Jul 2006 B2
7079020 Stilp Jul 2006 B2
7080046 Rezvani et al. Jul 2006 B1
7081813 Winick et al. Jul 2006 B2
7082460 Hansen et al. Jul 2006 B2
7085814 Gandhi et al. Aug 2006 B1
7085937 Rezvani et al. Aug 2006 B1
7086018 Ito Aug 2006 B2
7099944 Anschutz et al. Aug 2006 B1
7099994 Thayer et al. Aug 2006 B2
7103152 Naidoo et al. Sep 2006 B2
7106176 La et al. Sep 2006 B2
7107322 Freeny, Jr. Sep 2006 B1
7110774 Davis et al. Sep 2006 B1
7113090 Saylor et al. Sep 2006 B1
7113099 Tyroler et al. Sep 2006 B2
7114554 Bergman et al. Oct 2006 B2
7119609 Naidoo et al. Oct 2006 B2
7119674 Sefton Oct 2006 B2
7120232 Naidoo et al. Oct 2006 B2
7120233 Naidoo et al. Oct 2006 B2
7126473 Powell Oct 2006 B1
7130383 Naidoo et al. Oct 2006 B2
7130585 Ollis et al. Oct 2006 B1
7134138 Scherr Nov 2006 B2
7136711 Duncan et al. Nov 2006 B1
7142503 Grant et al. Nov 2006 B1
7148810 Bhat Dec 2006 B2
7149798 Rezvani et al. Dec 2006 B2
7149814 Neufeld et al. Dec 2006 B2
7158026 Feldkamp et al. Jan 2007 B2
7158776 Estes et al. Jan 2007 B1
7158920 Ishikawa Jan 2007 B2
7164907 Cochran et al. Jan 2007 B2
7166987 Lee et al. Jan 2007 B2
7171466 Van Der Meulen Jan 2007 B2
7171686 Jansen et al. Jan 2007 B1
7174564 Weatherspoon et al. Feb 2007 B1
7180889 Kung et al. Feb 2007 B1
7181207 Chow et al. Feb 2007 B1
7181716 Dahroug Feb 2007 B1
7183907 Simon et al. Feb 2007 B2
7184848 Krzyzanowski et al. Feb 2007 B2
7187986 Johnson et al. Mar 2007 B2
7203486 Patel Apr 2007 B2
7209945 Hicks et al. Apr 2007 B2
7212570 Akiyama et al. May 2007 B2
7213061 Hite et al May 2007 B1
7218217 Adonailo et al. May 2007 B2
7222359 Freund et al. May 2007 B2
7237267 Rayes et al. Jun 2007 B2
7240327 Singh et al. Jul 2007 B2
7248150 Mackjust et al. Jul 2007 B2
7248161 Spoltore et al. Jul 2007 B2
7249317 Nakagawa et al. Jul 2007 B1
7250854 Rezvani et al. Jul 2007 B2
7250859 Martin et al. Jul 2007 B2
7254779 Rezvani et al. Aug 2007 B1
7262690 Heaton et al. Aug 2007 B2
7277010 Joao Oct 2007 B2
7292142 Simon et al. Nov 2007 B2
7298253 Petricoin et al. Nov 2007 B2
7305461 Ullman Dec 2007 B2
7310115 Tanimoto Dec 2007 B2
7313102 Stephenson et al. Dec 2007 B2
D558460 Yu et al. Jan 2008 S
D558756 Andre et al. Jan 2008 S
7337217 Wang Feb 2008 B2
7337473 Chang et al. Feb 2008 B2
7340314 Duncan et al. Mar 2008 B1
7343619 Ofek et al. Mar 2008 B2
7346338 Calhoun et al. Mar 2008 B1
7349682 Bennett, III et al. Mar 2008 B1
7349761 Cruse Mar 2008 B1
7349967 Wang Mar 2008 B2
7356372 Duncan et al. Apr 2008 B1
7359843 Keller et al. Apr 2008 B1
7362221 Katz Apr 2008 B2
7367045 Ofek et al. Apr 2008 B2
7370115 Bae et al. May 2008 B2
7383339 Meenan et al. Jun 2008 B1
7383522 Murgai et al. Jun 2008 B2
7403838 Deen et al. Jul 2008 B2
7409045 Naidoo et al. Aug 2008 B2
7409451 Meenan et al. Aug 2008 B1
7412447 Hilbert et al. Aug 2008 B2
7425101 Cheng Sep 2008 B2
7428585 Owens, II et al. Sep 2008 B1
7430614 Shen et al. Sep 2008 B2
7437753 Nahum Oct 2008 B2
7440434 Chaskar et al. Oct 2008 B2
7454731 Oh et al. Nov 2008 B2
7457869 Kernan Nov 2008 B2
7466223 Sefton Dec 2008 B2
7469139 Van De Groenendaal Dec 2008 B2
7469294 Luo et al. Dec 2008 B1
7469381 Ording Dec 2008 B2
7469391 Carrere et al. Dec 2008 B2
D584738 Kim et al. Jan 2009 S
D585399 Hwang Jan 2009 S
7477629 Tsirtsis et al. Jan 2009 B2
7479949 Jobs et al. Jan 2009 B2
7480713 Ullman Jan 2009 B2
7480724 Zimler et al. Jan 2009 B2
7483958 Elabbady et al. Jan 2009 B1
7493651 Vaenskae et al. Feb 2009 B2
7498695 Gaudreau et al. Mar 2009 B2
7506052 Qian et al. Mar 2009 B2
7509687 Ofek et al. Mar 2009 B2
7511614 Stilp et al. Mar 2009 B2
7512965 Amdur et al. Mar 2009 B1
7526539 Hsu Apr 2009 B1
7526762 Astala et al. Apr 2009 B1
7528723 Fast et al. May 2009 B2
7549134 Li et al. Jun 2009 B1
7551071 Bennett, III Jun 2009 B2
7554934 Abraham et al. Jun 2009 B2
7558379 Winick Jul 2009 B2
7558903 Kinstler Jul 2009 B2
7562323 Bai et al. Jul 2009 B1
7564855 Georgiou Jul 2009 B1
7568018 Hove et al. Jul 2009 B1
7571459 Ganesh et al. Aug 2009 B2
7577420 Srinivasan et al. Aug 2009 B2
7587464 Moorer et al. Sep 2009 B2
7590953 Chang Sep 2009 B2
7596622 Owen et al. Sep 2009 B2
D602014 Andre et al. Oct 2009 S
D602015 Andre et al. Oct 2009 S
D602017 Andre et al. Oct 2009 S
D602486 Andre et al. Oct 2009 S
D602487 Maskatia Oct 2009 S
7606767 Couper et al. Oct 2009 B1
7610555 Klein et al. Oct 2009 B2
7619512 Trundle et al. Nov 2009 B2
7620427 Shanahan Nov 2009 B2
7627665 Barker et al. Dec 2009 B2
7633385 Cohn et al. Dec 2009 B2
7634519 Creamer et al. Dec 2009 B2
7651530 Winick Jan 2010 B2
7653911 Doshi et al. Jan 2010 B2
7671729 Hershkovitz et al. Mar 2010 B2
7679503 Mason et al. Mar 2010 B2
7681201 Dale et al. Mar 2010 B2
7697028 Johnson Apr 2010 B1
7701970 Krits et al. Apr 2010 B2
D615083 Andre et al. May 2010 S
7711796 Gutt et al. May 2010 B2
7720654 Hollis May 2010 B2
7734020 Elliot et al. Jun 2010 B2
7734286 Almeda et al. Jun 2010 B2
7734906 Orlando et al. Jun 2010 B2
7739596 Clarke-Martin et al. Jun 2010 B2
7747975 Dinter et al. Jun 2010 B2
7751409 Carolan Jul 2010 B1
7755506 Clegg et al. Jul 2010 B1
7761275 Chopra et al. Jul 2010 B2
7787863 Groenendaal et al. Aug 2010 B2
7804760 Schmukler et al. Sep 2010 B2
D624896 Park et al. Oct 2010 S
D626437 Lee et al. Nov 2010 S
7827252 Hopmann et al. Nov 2010 B2
7847675 Thyen et al. Dec 2010 B1
7855635 Cohn et al. Dec 2010 B2
7859404 Chul et al. Dec 2010 B2
7882466 Ishikawa Feb 2011 B2
7882537 Okajo et al. Feb 2011 B2
7884855 Ortiz Feb 2011 B2
7890612 Todd et al. Feb 2011 B2
7890915 Celik et al. Feb 2011 B2
7899732 Van Beaumont et al. Mar 2011 B2
7904074 Karaoguz et al. Mar 2011 B2
7904187 Hoffberg et al. Mar 2011 B2
7911341 Raji et al. Mar 2011 B2
D636769 Wood et al. Apr 2011 S
7921686 Bagepalli et al. Apr 2011 B2
D637596 Akana et al. May 2011 S
7949960 Roessler et al. May 2011 B2
D639805 Song et al. Jun 2011 S
D640663 Arnholt et al. Jun 2011 S
7956736 Cohn et al. Jun 2011 B2
7970863 Fontaine Jun 2011 B1
D641018 Lee et al. Jul 2011 S
7974235 Ghozati et al. Jul 2011 B2
D642563 Akana et al. Aug 2011 S
8001219 Moorer et al. Aug 2011 B2
D645015 Lee et al. Sep 2011 S
D645435 Kim et al. Sep 2011 S
D645833 Seflic et al. Sep 2011 S
8022833 Cho Sep 2011 B2
8028041 Olliphant et al. Sep 2011 B2
8032881 Holmberg et al. Oct 2011 B2
8042049 Killian et al. Oct 2011 B2
8046411 Hayashi et al. Oct 2011 B2
8069194 Manber et al. Nov 2011 B1
D650381 Park et al. Dec 2011 S
8073931 Dawes et al. Dec 2011 B2
8086702 Baum et al. Dec 2011 B2
8086703 Baum et al. Dec 2011 B2
D654460 Kim et al. Feb 2012 S
D654497 Lee Feb 2012 S
8122131 Baum et al. Feb 2012 B2
8125184 Raji et al. Feb 2012 B2
D656137 Chung et al. Mar 2012 S
8140658 Gelvin et al. Mar 2012 B1
8144836 Naidoo et al. Mar 2012 B2
8159519 Kurtz et al. Apr 2012 B2
8159945 Muro et al. Apr 2012 B2
8196064 Krzyzanowski et al. Jun 2012 B2
8200827 Hunyady et al. Jun 2012 B1
8205181 Singla et al. Jun 2012 B1
8209400 Baum et al. Jun 2012 B2
D663298 Song et al. Jul 2012 S
D664540 Kim et al. Jul 2012 S
8214494 Slavin Jul 2012 B1
8214496 Gutt et al. Jul 2012 B2
D664954 Kim et al. Aug 2012 S
D666198 Van Den Nieuwenhuizen et al. Aug 2012 S
8239477 Sharma et al. Aug 2012 B2
D667395 Lee Sep 2012 S
D667396 Koh Sep 2012 S
D667397 Koh Sep 2012 S
D667398 Koh Sep 2012 S
D667399 Koh Sep 2012 S
8269376 Elberbaum Sep 2012 B1
8269623 Addy et al. Sep 2012 B2
8271881 Moorer et al. Sep 2012 B2
8272053 Markham et al. Sep 2012 B2
D668650 Han Oct 2012 S
D668651 Kim et al. Oct 2012 S
D668652 Kim et al. Oct 2012 S
D669469 Kang Oct 2012 S
D670692 Akana et al. Nov 2012 S
D671514 Kim et al. Nov 2012 S
8311526 Forstall et al. Nov 2012 B2
D671938 Hsu et al. Dec 2012 S
D672344 Li Dec 2012 S
D672345 Li Dec 2012 S
D672739 Sin Dec 2012 S
D672768 Huang et al. Dec 2012 S
8335842 Raji et al. Dec 2012 B2
8335854 Eldering Dec 2012 B2
8336010 Chang et al. Dec 2012 B1
D673561 Hyun et al. Jan 2013 S
D673948 Andre et al. Jan 2013 S
D673950 Li et al. Jan 2013 S
D674369 Jaewoong Jan 2013 S
D675203 Yang Jan 2013 S
8350694 Slavin Jan 2013 B1
D675588 Park Feb 2013 S
D675612 Andre et al. Feb 2013 S
D676443 Canizares et al. Feb 2013 S
D676819 Choi Feb 2013 S
8373313 Maurer Feb 2013 B2
D677255 McManigal et al. Mar 2013 S
D677640 Kim et al. Mar 2013 S
D677659 Akana et al. Mar 2013 S
D677660 Groene et al. Mar 2013 S
D678271 Chiu Mar 2013 S
D678272 Groene et al. Mar 2013 S
D678877 Groene et al. Mar 2013 S
8400767 Yeom et al. Mar 2013 B2
D679706 Tang et al. Apr 2013 S
D680151 Katori Apr 2013 S
D680524 Feng et al. Apr 2013 S
D681032 Akana et al. Apr 2013 S
8413204 White et al. Apr 2013 B2
D681583 Park May 2013 S
D681591 Sung May 2013 S
D681632 Akana et al. May 2013 S
D682239 Yeh et al. May 2013 S
8451986 Cohn et al. May 2013 B2
D684553 Kim et al. Jun 2013 S
D684968 Smith et al. Jun 2013 S
8456293 Trundle et al. Jun 2013 B1
8473619 Baum et al. Jun 2013 B2
D685778 Fahrendorff et al. Jul 2013 S
D685783 Bryan et al. Jul 2013 S
8478450 Lu et al. Jul 2013 B2
8478844 Baum et al. Jul 2013 B2
8478871 Gutt et al. Jul 2013 B2
8483853 Lambourne Jul 2013 B1
8493202 Trundle et al. Jul 2013 B1
8499038 Vucurevich Jul 2013 B1
8520068 Naidoo et al. Aug 2013 B2
8520072 Slavin et al. Aug 2013 B1
8525664 Hadizad et al. Sep 2013 B2
8543665 Ansari et al. Sep 2013 B2
D692042 Dawes et al. Oct 2013 S
8554478 Hartman Oct 2013 B2
8570993 Austin et al. Oct 2013 B2
8584199 Chen et al. Nov 2013 B1
D695735 Kitchen et al. Dec 2013 S
8599018 Kellen Dec 2013 B2
8612591 Dawes et al. Dec 2013 B2
8634533 Strasters Jan 2014 B2
8635350 Gutt et al. Jan 2014 B2
8635499 Cohn et al. Jan 2014 B2
8638211 Cohn et al. Jan 2014 B2
8649386 Ansari et al. Feb 2014 B2
8666560 Lu et al. Mar 2014 B2
8675071 Slavin et al. Mar 2014 B1
8713132 Baum et al. Apr 2014 B2
8730834 Marusca et al. May 2014 B2
8738765 Wyatt et al. May 2014 B2
8812654 Gelvin et al. Aug 2014 B2
8819178 Baum et al. Aug 2014 B2
8825871 Baum et al. Sep 2014 B2
8836467 Cohn et al. Sep 2014 B1
8885552 Bedingfield, Sr. et al. Nov 2014 B2
8902740 Hicks, III Dec 2014 B2
8914526 Lindquist et al. Dec 2014 B1
8935236 Morita et al. Jan 2015 B2
8937658 Hicks et al. Jan 2015 B2
8953479 Hall et al. Feb 2015 B2
8953749 Naidoo et al. Feb 2015 B2
8963713 Dawes et al. Feb 2015 B2
8976763 Shrestha et al. Mar 2015 B2
8988217 Piccolo, III Mar 2015 B2
8988221 Raji et al. Mar 2015 B2
8996665 Baum et al. Mar 2015 B2
9047753 Dawes et al. Jun 2015 B2
9059863 Baum et al. Jun 2015 B2
9100446 Cohn et al. Aug 2015 B2
9141276 Dawes et al. Sep 2015 B2
9144143 Raji et al. Sep 2015 B2
9147337 Cohn et al. Sep 2015 B2
9160784 Jeong et al. Oct 2015 B2
9170707 Laska et al. Oct 2015 B1
9172532 Fuller et al. Oct 2015 B1
9172553 Dawes et al. Oct 2015 B2
9172605 Hardy et al. Oct 2015 B2
9189934 Jentoft et al. Nov 2015 B2
9191228 Fulker et al. Nov 2015 B2
9202362 Hyland et al. Dec 2015 B2
9246921 Vlaminck et al. Jan 2016 B1
9286772 Shapiro et al. Mar 2016 B2
9287727 Egan Mar 2016 B1
9300921 Naidoo et al. Mar 2016 B2
9306809 Dawes et al. Apr 2016 B2
9310864 Klein et al. Apr 2016 B1
9412248 Cohn et al. Aug 2016 B1
9426720 Cohn et al. Aug 2016 B2
9450776 Baum et al. Sep 2016 B2
9462041 Hagins et al. Oct 2016 B1
9510065 Cohn et al. Nov 2016 B2
9529344 Hagins et al. Dec 2016 B1
9531593 Baum et al. Dec 2016 B2
9600945 Naidoo et al. Mar 2017 B2
9609003 Chmielewski et al. Mar 2017 B1
9613524 Lamb et al. Apr 2017 B1
9621408 Gutt et al. Apr 2017 B2
9729342 Cohn et al. Aug 2017 B2
9779595 Thibault Oct 2017 B2
9843458 Cronin Dec 2017 B2
9876651 Cho et al. Jan 2018 B2
9978238 Fadell et al. May 2018 B2
9979625 McLaughlin et al. May 2018 B2
10002507 Wilson et al. Jun 2018 B2
20010016501 King Aug 2001 A1
20010029585 Simon et al. Oct 2001 A1
20010030597 Inoue et al. Oct 2001 A1
20010034209 Tong et al. Oct 2001 A1
20010034754 Elwahab et al. Oct 2001 A1
20010034759 Chiles et al. Oct 2001 A1
20010036192 Chiles et al. Nov 2001 A1
20010046366 Susskind Nov 2001 A1
20010053207 Jeon et al. Dec 2001 A1
20010054115 Ferguson et al. Dec 2001 A1
20020004828 Davis et al. Jan 2002 A1
20020005894 Foodman et al. Jan 2002 A1
20020016639 Smith et al. Feb 2002 A1
20020018057 Sano Feb 2002 A1
20020026476 Miyazaki et al. Feb 2002 A1
20020026531 Keane et al. Feb 2002 A1
20020027504 Davis et al. Mar 2002 A1
20020028696 Hirayama et al. Mar 2002 A1
20020029276 Bendinelli et al. Mar 2002 A1
20020031120 Rakib Mar 2002 A1
20020037004 Bossemeyer et al. Mar 2002 A1
20020038380 Brawn et al. Mar 2002 A1
20020052719 Alexander et al. May 2002 A1
20020052913 Yamada May 2002 A1
20020055977 Nishi May 2002 A1
20020059078 Valdes et al. May 2002 A1
20020059148 Rosenhaft et al. May 2002 A1
20020059637 Rakib May 2002 A1
20020068984 Alexander et al. Jun 2002 A1
20020077077 Rezvani et al. Jun 2002 A1
20020083342 Webb et al. Jun 2002 A1
20020085488 Kobayashi Jul 2002 A1
20020091815 Anderson et al. Jul 2002 A1
20020095490 Barker et al. Jul 2002 A1
20020099809 Lee Jul 2002 A1
20020099829 Richards et al. Jul 2002 A1
20020103898 Moyer et al. Aug 2002 A1
20020103927 Parent Aug 2002 A1
20020107910 Zhao Aug 2002 A1
20020109580 Shreve et al. Aug 2002 A1
20020111698 Graziano et al. Aug 2002 A1
20020112051 Ullman Aug 2002 A1
20020112182 Chang et al. Aug 2002 A1
20020114439 Dunlap Aug 2002 A1
20020116117 Martens et al. Aug 2002 A1
20020118107 Yamamoto et al. Aug 2002 A1
20020118796 Menard et al. Aug 2002 A1
20020120696 Mousseau et al. Aug 2002 A1
20020120790 Schwalb Aug 2002 A1
20020128728 Murakami et al. Sep 2002 A1
20020131404 Mehta et al. Sep 2002 A1
20020133539 Monday Sep 2002 A1
20020133578 Wu Sep 2002 A1
20020143805 Hayes et al. Oct 2002 A1
20020143923 Alexander Oct 2002 A1
20020147982 Naidoo et al. Oct 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020156564 Preston et al. Oct 2002 A1
20020163534 Choi et al. Nov 2002 A1
20020163997 Bergman et al. Nov 2002 A1
20020165006 Haller et al. Nov 2002 A1
20020174367 Kimmel et al. Nov 2002 A1
20020174434 Lee et al. Nov 2002 A1
20020177428 Menard et al. Nov 2002 A1
20020177482 Cheong et al. Nov 2002 A1
20020178211 Singhal et al. Nov 2002 A1
20020180579 Nagaoka et al. Dec 2002 A1
20020184301 Parent Dec 2002 A1
20020184527 Chun et al. Dec 2002 A1
20020191636 Hallenbeck Dec 2002 A1
20030005030 Sutton et al. Jan 2003 A1
20030009552 Benfield et al. Jan 2003 A1
20030009553 Benfield et al. Jan 2003 A1
20030023839 Burkhardt et al. Jan 2003 A1
20030025599 Monroe Feb 2003 A1
20030028398 Yamashita et al. Feb 2003 A1
20030030548 Kovacs et al. Feb 2003 A1
20030031165 O'Brien Feb 2003 A1
20030038730 Imafuku et al. Feb 2003 A1
20030038849 Craven et al. Feb 2003 A1
20030039242 Moore Feb 2003 A1
20030041137 Horie et al. Feb 2003 A1
20030041167 French et al. Feb 2003 A1
20030051009 Shah et al. Mar 2003 A1
20030051026 Carter et al. Mar 2003 A1
20030052905 Gordon et al. Mar 2003 A1
20030052923 Porter Mar 2003 A1
20030056012 Modeste et al. Mar 2003 A1
20030056014 Verberkt et al. Mar 2003 A1
20030061344 Monroe Mar 2003 A1
20030061615 Van Der Meulen Mar 2003 A1
20030061621 Petty et al. Mar 2003 A1
20030062997 Naidoo et al. Apr 2003 A1
20030065407 Johnson et al. Apr 2003 A1
20030065757 Mentze et al. Apr 2003 A1
20030065791 Garg et al. Apr 2003 A1
20030067923 Ju et al. Apr 2003 A1
20030071724 D'Amico Apr 2003 A1
20030081768 Caminschi May 2003 A1
20030090473 Joshi May 2003 A1
20030096590 Satoh May 2003 A1
20030101459 Edson May 2003 A1
20030103088 Dresti et al. Jun 2003 A1
20030112866 Yu et al. Jun 2003 A1
20030113100 Hecht et al. Jun 2003 A1
20030115345 Chien et al. Jun 2003 A1
20030123634 Chee Jul 2003 A1
20030128114 Quigley Jul 2003 A1
20030128115 Giacopelli et al. Jul 2003 A1
20030132018 Okita et al. Jul 2003 A1
20030137426 Anthony et al. Jul 2003 A1
20030147534 Ablay et al. Aug 2003 A1
20030149671 Yamamoto et al. Aug 2003 A1
20030153325 Veerepalli et al. Aug 2003 A1
20030155757 Larsen et al. Aug 2003 A1
20030158635 Pillar et al. Aug 2003 A1
20030159135 Hiller et al. Aug 2003 A1
20030174154 Yukie et al. Sep 2003 A1
20030174648 Wang et al. Sep 2003 A1
20030177236 Goto et al. Sep 2003 A1
20030182396 Reich et al. Sep 2003 A1
20030182640 Alani et al. Sep 2003 A1
20030184436 Seales et al. Oct 2003 A1
20030187920 Redkar Oct 2003 A1
20030187938 Mousseau et al. Oct 2003 A1
20030189509 Hayes et al. Oct 2003 A1
20030197847 Shinoda Oct 2003 A1
20030200285 Hansen et al. Oct 2003 A1
20030200325 Krishnaswamy et al. Oct 2003 A1
20030201889 Zulkowski Oct 2003 A1
20030208610 Rochetti et al. Nov 2003 A1
20030210126 Kanazawa Nov 2003 A1
20030217136 Cho et al. Nov 2003 A1
20030225883 Greaves et al. Dec 2003 A1
20030230934 Cordelli et al. Dec 2003 A1
20030233155 Slemmer et al. Dec 2003 A1
20030233332 Keeler et al. Dec 2003 A1
20030234725 Lemelson et al. Dec 2003 A1
20030236841 Epshteyn Dec 2003 A1
20040003051 Krzyzanowski et al. Jan 2004 A1
20040003241 Sengodan et al. Jan 2004 A1
20040008724 Devine et al. Jan 2004 A1
20040015572 Kang Jan 2004 A1
20040024851 Naidoo et al. Feb 2004 A1
20040034798 Yamada et al. Feb 2004 A1
20040036615 Candela Feb 2004 A1
20040037295 Tanaka et al. Feb 2004 A1
20040041910 Naidoo et al. Mar 2004 A1
20040054789 Breh et al. Mar 2004 A1
20040068657 Alexander et al. Apr 2004 A1
20040086088 Naidoo et al. May 2004 A1
20040086090 Naidoo et al. May 2004 A1
20040086093 Schranz May 2004 A1
20040093492 Daude et al. May 2004 A1
20040103308 Paller May 2004 A1
20040107299 Lee et al. Jun 2004 A1
20040113770 Falk et al. Jun 2004 A1
20040113778 Script et al. Jun 2004 A1
20040113937 Sawdey et al. Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040117462 Bodin et al. Jun 2004 A1
20040117465 Bodin et al. Jun 2004 A1
20040123149 Tyroler Jun 2004 A1
20040125146 Gerlach et al. Jul 2004 A1
20040137915 Diener et al. Jul 2004 A1
20040139227 Takeda Jul 2004 A1
20040143749 Tajalli et al. Jul 2004 A1
20040155757 Litwin et al. Aug 2004 A1
20040162902 Davis Aug 2004 A1
20040163073 Krzyzanowski et al. Aug 2004 A1
20040163118 Mottur Aug 2004 A1
20040169288 Hsieh et al. Sep 2004 A1
20040170120 Reunamaki et al. Sep 2004 A1
20040170155 Omar et al. Sep 2004 A1
20040172396 Vanska et al. Sep 2004 A1
20040177163 Casey et al. Sep 2004 A1
20040181693 Milliot et al. Sep 2004 A1
20040183756 Freitas et al. Sep 2004 A1
20040189460 Heaton et al. Sep 2004 A1
20040189871 Kurosawa et al. Sep 2004 A1
20040196844 Hagino Oct 2004 A1
20040198386 Dupray Oct 2004 A1
20040199645 Rouhi Oct 2004 A1
20040201472 McGunn et al. Oct 2004 A1
20040202351 Park et al. Oct 2004 A1
20040212497 Stilp Oct 2004 A1
20040212503 Stilp Oct 2004 A1
20040213150 Krause et al. Oct 2004 A1
20040215694 Podolsky Oct 2004 A1
20040215700 Shenfield et al. Oct 2004 A1
20040215750 Stilp Oct 2004 A1
20040223605 Donnelly Nov 2004 A1
20040229569 Franz Nov 2004 A1
20040243835 Terzis et al. Dec 2004 A1
20040243996 Sheehy et al. Dec 2004 A1
20040246339 Ooshima et al. Dec 2004 A1
20040249613 Sprogis et al. Dec 2004 A1
20040249922 Hackman et al. Dec 2004 A1
20040257433 Lia et al. Dec 2004 A1
20040260407 Wimsatt Dec 2004 A1
20040260427 Wimsatt Dec 2004 A1
20040260527 Stanculescu Dec 2004 A1
20040263314 Dorai et al. Dec 2004 A1
20040266493 Bahl et al. Dec 2004 A1
20040267385 Lingemann Dec 2004 A1
20040267937 Klemets Dec 2004 A1
20050010866 Humpleman et al. Jan 2005 A1
20050015805 Iwamura Jan 2005 A1
20050021309 Alexander et al. Jan 2005 A1
20050022210 Zintel et al. Jan 2005 A1
20050023858 Bingle et al. Feb 2005 A1
20050024203 Wolfe Feb 2005 A1
20050030928 Virtanen et al. Feb 2005 A1
20050033513 Gasbarro Feb 2005 A1
20050038325 Moll Feb 2005 A1
20050038326 Mathur Feb 2005 A1
20050044061 Klemow Feb 2005 A1
20050052831 Chen Mar 2005 A1
20050055716 Louie et al. Mar 2005 A1
20050057361 Giraldo et al. Mar 2005 A1
20050060163 Barsness et al. Mar 2005 A1
20050060411 Coulombe et al. Mar 2005 A1
20050066045 Johnson et al. Mar 2005 A1
20050066912 Korbitz et al. Mar 2005 A1
20050069098 Kalervo et al. Mar 2005 A1
20050079855 Jethi et al. Apr 2005 A1
20050081161 MacInnes et al. Apr 2005 A1
20050086126 Patterson Apr 2005 A1
20050086211 Mayer Apr 2005 A1
20050086366 Luebke et al. Apr 2005 A1
20050088983 Wesslen et al. Apr 2005 A1
20050089023 Barkley et al. Apr 2005 A1
20050090915 Geiwitz Apr 2005 A1
20050091435 Han et al. Apr 2005 A1
20050091696 Wolfe et al. Apr 2005 A1
20050096753 Arling et al. May 2005 A1
20050097478 Killian et al. May 2005 A1
20050101314 Levi May 2005 A1
20050102152 Hodges May 2005 A1
20050108091 Sotak et al. May 2005 A1
20050108369 Sather et al. May 2005 A1
20050114900 Ladd et al. May 2005 A1
20050119913 Hornreich et al. Jun 2005 A1
20050120082 Hesselink et al. Jun 2005 A1
20050125083 Kiko Jun 2005 A1
20050128068 Winick et al. Jun 2005 A1
20050128083 Puzio et al. Jun 2005 A1
20050128093 Genova et al. Jun 2005 A1
20050144312 Kadyk et al. Jun 2005 A1
20050148356 Ferguson et al. Jul 2005 A1
20050149639 Vrielink et al. Jul 2005 A1
20050149746 Lu et al. Jul 2005 A1
20050154494 Ahmed Jul 2005 A1
20050155757 Paton Jul 2005 A1
20050156568 Yueh Jul 2005 A1
20050159823 Hayes et al. Jul 2005 A1
20050159911 Funk et al. Jul 2005 A1
20050169288 Kamiwada et al. Aug 2005 A1
20050174229 Feldkamp et al. Aug 2005 A1
20050184865 Han et al. Aug 2005 A1
20050188315 Campbell et al. Aug 2005 A1
20050197847 Smith Sep 2005 A1
20050200474 Behnke Sep 2005 A1
20050204076 Cumpson et al. Sep 2005 A1
20050207429 Akita et al. Sep 2005 A1
20050210532 Winick Sep 2005 A1
20050216302 Raji et al. Sep 2005 A1
20050216580 Raji et al. Sep 2005 A1
20050222820 Chung et al. Oct 2005 A1
20050222933 Wesby Oct 2005 A1
20050231349 Bhat Oct 2005 A1
20050234568 Chung et al. Oct 2005 A1
20050237182 Wang Oct 2005 A1
20050249199 Albert et al. Nov 2005 A1
20050253706 Spoltore et al. Nov 2005 A1
20050256608 King et al. Nov 2005 A1
20050260973 Van De Groenendaal Nov 2005 A1
20050262241 Gubbi et al. Nov 2005 A1
20050267605 Lee et al. Dec 2005 A1
20050270151 Winick et al. Dec 2005 A1
20050273831 Slomovich et al. Dec 2005 A1
20050276389 Hinkson et al. Dec 2005 A1
20050280964 Richmond et al. Dec 2005 A1
20050285941 Haigh et al. Dec 2005 A1
20060009863 Lingemann Jan 2006 A1
20060010078 Rezvani et al. Jan 2006 A1
20060018328 Mody et al. Jan 2006 A1
20060022816 Yukawa Feb 2006 A1
20060023847 Tyroler et al. Feb 2006 A1
20060025132 Karaoguz et al. Feb 2006 A1
20060031852 Chu et al. Feb 2006 A1
20060045074 Lee Mar 2006 A1
20060050692 Petrescu et al. Mar 2006 A1
20060050862 Shen et al. Mar 2006 A1
20060051122 Kawazu et al. Mar 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060053491 Khuti et al. Mar 2006 A1
20060063534 Kokkonen et al. Mar 2006 A1
20060064305 Alonso Mar 2006 A1
20060064478 Sirkin Mar 2006 A1
20060067344 Sakurai Mar 2006 A1
20060067356 Kim et al. Mar 2006 A1
20060067484 Elliot et al. Mar 2006 A1
20060075235 Renkis Apr 2006 A1
20060077254 Shu et al. Apr 2006 A1
20060078344 Kawazu et al. Apr 2006 A1
20060080465 Conzola et al. Apr 2006 A1
20060088092 Chen et al. Apr 2006 A1
20060092011 Simon et al. May 2006 A1
20060093365 Dybsetter et al. May 2006 A1
20060101062 Godman et al. May 2006 A1
20060103510 Chen et al. May 2006 A1
20060103520 Clark May 2006 A1
20060104312 Friar May 2006 A1
20060105713 Zheng et al. May 2006 A1
20060109113 Reyes et al. May 2006 A1
20060111095 Weigand May 2006 A1
20060129837 Im et al. Jun 2006 A1
20060132302 Stilp Jun 2006 A1
20060136558 Sheehan et al. Jun 2006 A1
20060142880 Deen et al. Jun 2006 A1
20060142968 Han et al. Jun 2006 A1
20060143268 Chatani Jun 2006 A1
20060145842 Stilp Jul 2006 A1
20060154642 Scannell, Jr. Jul 2006 A1
20060155851 Ma et al. Jul 2006 A1
20060159032 Ukrainetz et al. Jul 2006 A1
20060161270 Luskin et al. Jul 2006 A1
20060161662 Ng et al. Jul 2006 A1
20060161960 Benoit Jul 2006 A1
20060167784 Hoffberg Jul 2006 A1
20060168178 Hwang et al. Jul 2006 A1
20060181406 Petite et al. Aug 2006 A1
20060182100 Li et al. Aug 2006 A1
20060183460 Srinivasan et al. Aug 2006 A1
20060187900 Akbar Aug 2006 A1
20060190458 Mishina et al. Aug 2006 A1
20060190529 Morozumi et al. Aug 2006 A1
20060197660 Luebke et al. Sep 2006 A1
20060200845 Foster et al. Sep 2006 A1
20060206220 Amundson Sep 2006 A1
20060208872 Yu et al. Sep 2006 A1
20060208880 Funk et al. Sep 2006 A1
20060209857 Hicks, III Sep 2006 A1
20060215650 Wollmershauser et al. Sep 2006 A1
20060218593 Afshary et al. Sep 2006 A1
20060220830 Bennett, III Oct 2006 A1
20060222153 Tarkoff et al. Oct 2006 A1
20060229746 Ollis et al. Oct 2006 A1
20060230270 Goffin Oct 2006 A1
20060235963 Wetherly et al. Oct 2006 A1
20060242395 Fausak Oct 2006 A1
20060245369 Schimmelpfeng et al. Nov 2006 A1
20060246919 Park et al. Nov 2006 A1
20060250235 Astrin Nov 2006 A1
20060258342 Fok et al. Nov 2006 A1
20060265489 Moore Nov 2006 A1
20060271695 Lavian Nov 2006 A1
20060274764 Mah et al. Dec 2006 A1
20060282886 Gaug Dec 2006 A1
20060288288 Girgensohn et al. Dec 2006 A1
20060291507 Sarosi et al. Dec 2006 A1
20060294565 Walter Dec 2006 A1
20070001818 Small et al. Jan 2007 A1
20070002833 Bajic Jan 2007 A1
20070005736 Hansen et al. Jan 2007 A1
20070005957 Sahita et al. Jan 2007 A1
20070006177 Aiber et al. Jan 2007 A1
20070043478 Ehlers et al. Feb 2007 A1
20070043954 Fox Feb 2007 A1
20070047585 Gillespie et al. Mar 2007 A1
20070052675 Chang Mar 2007 A1
20070055770 Karmakar et al. Mar 2007 A1
20070058627 Smith et al. Mar 2007 A1
20070061018 Callaghan et al. Mar 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061430 Kim Mar 2007 A1
20070061878 Hagiu et al. Mar 2007 A1
20070063836 Hayden et al. Mar 2007 A1
20070063866 Webb Mar 2007 A1
20070064714 Bi et al. Mar 2007 A1
20070079151 Connor et al. Apr 2007 A1
20070079385 Williams et al. Apr 2007 A1
20070090944 Du Breuil Apr 2007 A1
20070096981 Abraham May 2007 A1
20070101345 Takagi May 2007 A1
20070103433 Katz May 2007 A1
20070106124 Kuriyama et al. May 2007 A1
20070116020 Cheever et al. May 2007 A1
20070117464 Freeman May 2007 A1
20070118609 Mullan et al. May 2007 A1
20070130286 Hopmann et al. Jun 2007 A1
20070140267 Yang Jun 2007 A1
20070142022 Madonna et al. Jun 2007 A1
20070142044 Fitzgerald et al. Jun 2007 A1
20070143440 Reckamp et al. Jun 2007 A1
20070146484 Horton et al. Jun 2007 A1
20070147419 Tsujimoto et al. Jun 2007 A1
20070150616 Baek et al. Jun 2007 A1
20070154010 Wong Jul 2007 A1
20070155325 Bambic et al. Jul 2007 A1
20070160017 Meier et al. Jul 2007 A1
20070162228 Mitchell Jul 2007 A1
20070162680 Mitchell et al. Jul 2007 A1
20070168860 Takayama et al. Jul 2007 A1
20070182543 Luo Aug 2007 A1
20070183345 Fahim et al. Aug 2007 A1
20070185989 Corbett et al. Aug 2007 A1
20070192486 Wilson et al. Aug 2007 A1
20070198698 Boyd et al. Aug 2007 A1
20070214262 Buchbinder et al. Sep 2007 A1
20070216764 Kwak Sep 2007 A1
20070216783 Ortiz et al. Sep 2007 A1
20070218895 Saito et al. Sep 2007 A1
20070223465 Wang et al. Sep 2007 A1
20070226182 Sobotka et al. Sep 2007 A1
20070230415 Malik Oct 2007 A1
20070245223 Siedzik et al. Oct 2007 A1
20070255856 Reckamp et al. Nov 2007 A1
20070256105 Tabe Nov 2007 A1
20070257986 Ivanov et al. Nov 2007 A1
20070260713 Moorer et al. Nov 2007 A1
20070263782 Stock et al. Nov 2007 A1
20070265866 Fehling et al. Nov 2007 A1
20070271398 Manchester et al. Nov 2007 A1
20070275703 Lim et al. Nov 2007 A1
20070282665 Buehler et al. Dec 2007 A1
20070283001 Spiess et al. Dec 2007 A1
20070286210 Gutt et al. Dec 2007 A1
20070286369 Gutt et al. Dec 2007 A1
20070287405 Radtke Dec 2007 A1
20070288849 Moorer et al. Dec 2007 A1
20070288858 Pereira Dec 2007 A1
20070290830 Gurley Dec 2007 A1
20070296814 Cooper et al. Dec 2007 A1
20070298772 Owens et al. Dec 2007 A1
20080001734 Stilp et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080027587 Nickerson et al. Jan 2008 A1
20080042826 Hevia et al. Feb 2008 A1
20080048861 Naidoo et al. Feb 2008 A1
20080048975 Leibow Feb 2008 A1
20080052348 Adler et al. Feb 2008 A1
20080056261 Osborn et al. Mar 2008 A1
20080059533 Krikorian Mar 2008 A1
20080059622 Hite et al. Mar 2008 A1
20080065681 Fontijn et al. Mar 2008 A1
20080072244 Eker et al. Mar 2008 A1
20080074258 Bennett et al. Mar 2008 A1
20080082186 Hood et al. Apr 2008 A1
20080084294 Zhiying et al. Apr 2008 A1
20080084296 Kutzik et al. Apr 2008 A1
20080086564 Putman et al. Apr 2008 A1
20080091793 Diroo et al. Apr 2008 A1
20080102845 Zhao May 2008 A1
20080103608 Gough et al. May 2008 A1
20080104215 Excoffier et al. May 2008 A1
20080104516 Lee May 2008 A1
20080109302 Salokannel et al. May 2008 A1
20080109650 Shim et al. May 2008 A1
20080112340 Luebke May 2008 A1
20080112405 Cholas et al. May 2008 A1
20080117029 Dohrmann et al. May 2008 A1
20080117201 Martinez et al. May 2008 A1
20080126535 Zhu et al. May 2008 A1
20080129821 Howarter et al. Jun 2008 A1
20080130949 Ivanov et al. Jun 2008 A1
20080133725 Shaouy Jun 2008 A1
20080134343 Pennington et al. Jun 2008 A1
20080141303 Walker et al. Jun 2008 A1
20080141341 Vinogradov et al. Jun 2008 A1
20080144884 Habibi Jun 2008 A1
20080147834 Quinn et al. Jun 2008 A1
20080155470 Khedouri et al. Jun 2008 A1
20080163355 Chu Jul 2008 A1
20080168404 Ording Jul 2008 A1
20080170511 Shorty et al. Jul 2008 A1
20080180240 Raji et al. Jul 2008 A1
20080181239 Wood et al. Jul 2008 A1
20080183483 Hart Jul 2008 A1
20080183842 Raji et al. Jul 2008 A1
20080189609 Larson et al. Aug 2008 A1
20080204219 Cohn et al. Aug 2008 A1
20080209505 Ghai et al. Aug 2008 A1
20080209506 Ghai et al. Aug 2008 A1
20080215450 Gates et al. Sep 2008 A1
20080219239 Bell et al. Sep 2008 A1
20080221715 Krzyzanowski et al. Sep 2008 A1
20080235326 Parsi et al. Sep 2008 A1
20080235600 Harper et al. Sep 2008 A1
20080239075 Mehrotra et al. Oct 2008 A1
20080240372 Frenette Oct 2008 A1
20080240696 Kucharyson Oct 2008 A1
20080253391 Krits et al. Oct 2008 A1
20080261540 Rohani et al. Oct 2008 A1
20080266080 Leung et al. Oct 2008 A1
20080266257 Chiang Oct 2008 A1
20080271150 Boerger et al. Oct 2008 A1
20080284587 Saigh et al. Nov 2008 A1
20080297599 Donovan et al. Dec 2008 A1
20080313316 Hite et al. Dec 2008 A1
20080316024 Chantelou et al. Dec 2008 A1
20090007596 Goldstein et al. Jan 2009 A1
20090019141 Bush et al. Jan 2009 A1
20090036142 Yan Feb 2009 A1
20090041467 Carleton et al. Feb 2009 A1
20090042649 Hsieh et al. Feb 2009 A1
20090049488 Stransky Feb 2009 A1
20090055760 Whatcott et al. Feb 2009 A1
20090063582 Anna et al. Mar 2009 A1
20090066534 Sivakkolundhu Mar 2009 A1
20090066788 Baum et al. Mar 2009 A1
20090066789 Baum et al. Mar 2009 A1
20090067395 Curtis et al. Mar 2009 A1
20090070436 Dawes et al. Mar 2009 A1
20090070473 Baum et al. Mar 2009 A1
20090070477 Baum et al. Mar 2009 A1
20090070681 Dawes et al. Mar 2009 A1
20090070682 Dawes et al. Mar 2009 A1
20090070692 Dawes et al. Mar 2009 A1
20090074184 Baum et al. Mar 2009 A1
20090076211 Yang et al. Mar 2009 A1
20090077167 Baum et al. Mar 2009 A1
20090077622 Baum et al. Mar 2009 A1
20090077623 Baum et al. Mar 2009 A1
20090077624 Baum et al. Mar 2009 A1
20090079547 Oksanen et al. Mar 2009 A1
20090086660 Sood et al. Apr 2009 A1
20090100329 Espinoza Apr 2009 A1
20090100492 Hicks, III et al. Apr 2009 A1
20090113344 Nesse et al. Apr 2009 A1
20090119397 Neerdaels May 2009 A1
20090125708 Woodring et al. May 2009 A1
20090128365 Laskin May 2009 A1
20090134998 Baum et al. May 2009 A1
20090138600 Baum et al. May 2009 A1
20090138958 Baum et al. May 2009 A1
20090146846 Grossman Jun 2009 A1
20090158189 Itani Jun 2009 A1
20090158292 Rattner et al. Jun 2009 A1
20090161609 Bergstrom Jun 2009 A1
20090165114 Baum et al. Jun 2009 A1
20090172443 Rothman et al. Jul 2009 A1
20090177906 Paniagua, Jr. et al. Jul 2009 A1
20090187297 Kish et al. Jul 2009 A1
20090193373 Abbaspour et al. Jul 2009 A1
20090202250 Dizechi et al. Aug 2009 A1
20090204693 Andreev et al. Aug 2009 A1
20090221368 Yen et al. Sep 2009 A1
20090224875 Rabinowitz et al. Sep 2009 A1
20090228445 Gangal Sep 2009 A1
20090240730 Wood Sep 2009 A1
20090240787 Denny Sep 2009 A1
20090240814 Brubacher et al. Sep 2009 A1
20090240946 Yeap et al. Sep 2009 A1
20090256708 Hsiao et al. Oct 2009 A1
20090259515 Belimpasakis et al. Oct 2009 A1
20090260052 Bathula et al. Oct 2009 A1
20090260430 Zamfes Oct 2009 A1
20090265042 Mollenkopf et al. Oct 2009 A1
20090265193 Collins et al. Oct 2009 A1
20090289787 Dawson et al. Nov 2009 A1
20090303100 Zemany Dec 2009 A1
20090307255 Park Dec 2009 A1
20090313693 Rogers Dec 2009 A1
20090322510 Berger et al. Dec 2009 A1
20090324010 Hou Dec 2009 A1
20100000791 Alberty Jan 2010 A1
20100001812 Kausch Jan 2010 A1
20100008274 Kneckt et al. Jan 2010 A1
20100023865 Fulker et al. Jan 2010 A1
20100026487 Hershkovitz Feb 2010 A1
20100030578 Siddique et al. Feb 2010 A1
20100030810 Marr Feb 2010 A1
20100052612 Raji et al. Mar 2010 A1
20100066530 Cohn et al. Mar 2010 A1
20100067371 Gogic et al. Mar 2010 A1
20100074112 Derr et al. Mar 2010 A1
20100077111 Holmes et al. Mar 2010 A1
20100082744 Raji et al. Apr 2010 A1
20100095111 Gutt et al. Apr 2010 A1
20100095369 Gutt et al. Apr 2010 A1
20100100269 Ekhaguere et al. Apr 2010 A1
20100102951 Rutledge Apr 2010 A1
20100121521 Kiribayashi May 2010 A1
20100122091 Huang et al. May 2010 A1
20100138758 Mizumori et al. Jun 2010 A1
20100138764 Hatambeiki et al. Jun 2010 A1
20100145485 Duchene et al. Jun 2010 A1
20100153853 Dawes et al. Jun 2010 A1
20100159898 Krzyzanowski et al. Jun 2010 A1
20100159967 Pounds et al. Jun 2010 A1
20100164736 Byers et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100177750 Essinger et al. Jul 2010 A1
20100185857 Neitzel et al. Jul 2010 A1
20100197219 Issa et al. Aug 2010 A1
20100204839 Behm et al. Aug 2010 A1
20100210240 Mahaffey et al. Aug 2010 A1
20100212012 Touboul et al. Aug 2010 A1
20100218104 Lewis Aug 2010 A1
20100238286 Boghossian et al. Sep 2010 A1
20100241711 Ansari et al. Sep 2010 A1
20100245107 Fulker et al. Sep 2010 A1
20100248681 Phills Sep 2010 A1
20100267390 Lin et al. Oct 2010 A1
20100274366 Fata et al. Oct 2010 A1
20100277300 Cohn et al. Nov 2010 A1
20100277302 Cohn et al. Nov 2010 A1
20100277315 Cohn et al. Nov 2010 A1
20100280635 Cohn et al. Nov 2010 A1
20100280637 Cohn et al. Nov 2010 A1
20100281135 Cohn et al. Nov 2010 A1
20100281161 Cohn et al. Nov 2010 A1
20100281312 Cohn et al. Nov 2010 A1
20100298024 Choi Nov 2010 A1
20100321151 Matsuura et al. Dec 2010 A1
20100325107 Kenton et al. Dec 2010 A1
20100332164 Aisa et al. Dec 2010 A1
20110000521 Tachibana Jan 2011 A1
20110029875 Milch Feb 2011 A1
20110030056 Tokunaga Feb 2011 A1
20110040415 Nickerson et al. Feb 2011 A1
20110040877 Foisy Feb 2011 A1
20110051638 Jeon et al. Mar 2011 A1
20110093799 Hatambeiki et al. Apr 2011 A1
20110096678 Ketonen Apr 2011 A1
20110102588 Trundle et al. May 2011 A1
20110125333 Gray May 2011 A1
20110125846 Ham et al. May 2011 A1
20110128378 Raji Jun 2011 A1
20110156914 Sheharri et al. Jun 2011 A1
20110197327 McElroy et al. Aug 2011 A1
20110200052 Mungo et al. Aug 2011 A1
20110230160 Felgate Sep 2011 A1
20110234392 Cohn et al. Sep 2011 A1
20110257953 Li et al. Oct 2011 A1
20110283006 Ramamurthy Nov 2011 A1
20110286437 Austin et al. Nov 2011 A1
20110302497 Garrett et al. Dec 2011 A1
20110309929 Myers Dec 2011 A1
20120016607 Zolkiewski Jan 2012 A1
20120023151 Bennett, III et al. Jan 2012 A1
20120062026 Dawes Mar 2012 A1
20120062370 Feldstein et al. Mar 2012 A1
20120066608 Fulker Mar 2012 A1
20120066632 Fulker Mar 2012 A1
20120081842 Ewing et al. Apr 2012 A1
20120154126 Kitchen Jun 2012 A1
20120154138 Cohn et al. Jun 2012 A1
20120172027 Partheesh et al. Jul 2012 A1
20120182245 Hutton Jul 2012 A1
20120209951 Enns et al. Aug 2012 A1
20120214502 Qiang Aug 2012 A1
20120232788 Diao Sep 2012 A1
20120242788 Chuang et al. Sep 2012 A1
20120257061 Edwards et al. Oct 2012 A1
20120260184 Dawes et al. Oct 2012 A1
20120265892 Ma et al. Oct 2012 A1
20120278877 Wood Nov 2012 A1
20120296486 Marriam et al. Nov 2012 A1
20120307646 Xia et al. Dec 2012 A1
20120309354 Du Dec 2012 A1
20120315848 Smith et al. Dec 2012 A1
20120324566 Wood Dec 2012 A1
20120327242 Barley et al. Dec 2012 A1
20120331109 Wood Dec 2012 A1
20130007871 Meenan et al. Jan 2013 A1
20130038800 Yoo Feb 2013 A1
20130062951 Dawes Mar 2013 A1
20130073746 Singh et al. Mar 2013 A1
20130082835 Shapiro et al. Apr 2013 A1
20130085620 Lu et al. Apr 2013 A1
20130115972 Ziskind et al. May 2013 A1
20130120134 Hicks, III May 2013 A1
20130136102 MacWan et al. May 2013 A1
20130154822 Kumar et al. Jun 2013 A1
20130163491 Singh et al. Jun 2013 A1
20130174239 Kim et al. Jul 2013 A1
20130183924 Saigh Jul 2013 A1
20130191755 Balog et al. Jul 2013 A1
20130218959 Kodama Aug 2013 A1
20130222133 Schultz et al. Aug 2013 A1
20130223279 Tinnakornsrisuphap et al. Aug 2013 A1
20130261821 Lu et al. Oct 2013 A1
20130266193 Tiwari et al. Oct 2013 A1
20130314542 Jackson Nov 2013 A1
20130318231 Gutt Nov 2013 A1
20130318443 Bachman et al. Nov 2013 A1
20130331109 Dhillon et al. Dec 2013 A1
20130344875 Chowdhury Dec 2013 A1
20140032034 Raptopoulos et al. Jan 2014 A1
20140035726 Schoner et al. Feb 2014 A1
20140075464 McCrea Mar 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140112405 Jafarian et al. Apr 2014 A1
20140126425 Dawes May 2014 A1
20140136936 Patel et al. May 2014 A1
20140140575 Wolf May 2014 A1
20140143695 Fulker May 2014 A1
20140143851 Dawes May 2014 A1
20140143854 Lopez et al. May 2014 A1
20140146171 Brady et al. May 2014 A1
20140153695 Yanagisawa et al. Jun 2014 A1
20140167928 Burd Jun 2014 A1
20140172957 Dawes Jun 2014 A1
20140176797 Silva et al. Jun 2014 A1
20140180968 Song et al. Jun 2014 A1
20140201291 Russell Jul 2014 A1
20140218517 Kim et al. Aug 2014 A1
20140278281 Vaynriber et al. Sep 2014 A1
20140282934 Miasnik et al. Sep 2014 A1
20140289384 Kao et al. Sep 2014 A1
20140293046 Ni Oct 2014 A1
20140316616 Kugelmass Oct 2014 A1
20140340216 Puskarich Nov 2014 A1
20140355588 Cho et al. Dec 2014 A1
20140359101 Wales Dec 2014 A1
20140359524 Sasaki et al. Dec 2014 A1
20140368331 Quain Dec 2014 A1
20140369584 Fan et al. Dec 2014 A1
20140372599 Gutt Dec 2014 A1
20140372811 Cohn et al. Dec 2014 A1
20150009325 Kardashov Jan 2015 A1
20150054947 Dawes Feb 2015 A1
20150074206 Baldwin Mar 2015 A1
20150077553 Dawes Mar 2015 A1
20150082414 Dawes Mar 2015 A1
20150088982 Johnson et al. Mar 2015 A1
20150097949 Ure et al. Apr 2015 A1
20150097961 Ure et al. Apr 2015 A1
20150106721 Cha et al. Apr 2015 A1
20150116108 Fadell et al. Apr 2015 A1
20150142991 Zaloom May 2015 A1
20150161875 Cohn et al. Jun 2015 A1
20150205465 Robison et al. Jul 2015 A1
20150222517 McLaughlin et al. Aug 2015 A1
20150261427 Sasaki Sep 2015 A1
20150325106 Dawes et al. Nov 2015 A1
20150331662 Lambourne Nov 2015 A1
20150334087 Dawes Nov 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150350031 Burks et al. Dec 2015 A1
20150365217 Scholten et al. Dec 2015 A1
20150373149 Lyons Dec 2015 A1
20160012715 Hazbun Jan 2016 A1
20160019763 Hazbun Jan 2016 A1
20160019778 Raji et al. Jan 2016 A1
20160023475 Bevier et al. Jan 2016 A1
20160036944 Kitchen Feb 2016 A1
20160042637 Cahill Feb 2016 A1
20160062624 Sundermeyer et al. Mar 2016 A1
20160065413 Sundermeyer et al. Mar 2016 A1
20160065414 Sundermeyer et al. Mar 2016 A1
20160100348 Cohn et al. Apr 2016 A1
20160107749 Mucci Apr 2016 A1
20160116914 Mucci Apr 2016 A1
20160127641 Gove May 2016 A1
20160164923 Dawes Jun 2016 A1
20160171853 Naidoo et al. Jun 2016 A1
20160180719 Wouhaybi et al. Jun 2016 A1
20160183073 Saito et al. Jun 2016 A1
20160189509 Malhotra et al. Jun 2016 A1
20160189527 Peterson et al. Jun 2016 A1
20160189549 Marcus Jun 2016 A1
20160191265 Cohn et al. Jun 2016 A1
20160191621 Oh et al. Jun 2016 A1
20160226732 Kim et al. Aug 2016 A1
20160231916 Dawes Aug 2016 A1
20160232780 Cohn et al. Aug 2016 A1
20160234075 Sirpal et al. Aug 2016 A1
20160260135 Zomet et al. Sep 2016 A1
20160261932 Fadell et al. Sep 2016 A1
20160266579 Chen et al. Sep 2016 A1
20160267751 Fulker et al. Sep 2016 A1
20160269191 Cronin Sep 2016 A1
20160274759 Dawes Sep 2016 A1
20160364089 Blackman et al. Dec 2016 A1
20160373453 Ruffner et al. Dec 2016 A1
20170004714 Rhee Jan 2017 A1
20170005818 Gould Jan 2017 A1
20170006107 Dawes et al. Jan 2017 A1
20170019644 K et al. Jan 2017 A1
20170039413 Nadler Feb 2017 A1
20170052513 Raji Feb 2017 A1
20170054571 Kitchen et al. Feb 2017 A1
20170054594 Dawes Feb 2017 A1
20170063967 Kitchen et al. Mar 2017 A1
20170063968 Kitchen et al. Mar 2017 A1
20170068419 Sundermeyer et al. Mar 2017 A1
20170070361 Sundermeyer et al. Mar 2017 A1
20170070563 Sundermeyer et al. Mar 2017 A1
20170078298 Vlaminck et al. Mar 2017 A1
20170103646 Naidoo et al. Apr 2017 A1
20170109999 Cohn et al. Apr 2017 A1
20170118037 Kitchen et al. Apr 2017 A1
20170154507 Dawes et al. Jun 2017 A1
20170155545 Baum et al. Jun 2017 A1
20170180198 Dawes Jun 2017 A1
20170180306 Gutt Jun 2017 A1
20170185277 Sundermeyer et al. Jun 2017 A1
20170185278 Sundermeyer et al. Jun 2017 A1
20170192402 Karp et al. Jul 2017 A1
20170227965 Decenzo et al. Aug 2017 A1
20170244573 Baum et al. Aug 2017 A1
20170255452 Barnes et al. Sep 2017 A1
20170257257 Dawes Sep 2017 A1
20170279629 Raji Sep 2017 A1
20170289360 Baum et al. Oct 2017 A1
20170301216 Cohn et al. Oct 2017 A1
20170302469 Cohn et al. Oct 2017 A1
20170310500 Dawes Oct 2017 A1
20170331781 Gutt Nov 2017 A1
20170337806 Cohn et al. Nov 2017 A1
20170353324 Baum et al. Dec 2017 A1
20180004377 Kitchen et al. Jan 2018 A1
20180019890 Dawes Jan 2018 A1
20180054774 Cohn et al. Feb 2018 A1
20180063248 Dawes et al. Mar 2018 A1
20180083831 Baum et al. Mar 2018 A1
20180092046 Egan et al. Mar 2018 A1
20180096568 Cohn et al. Apr 2018 A1
Foreign Referenced Citations (133)
Number Date Country
2005223267 Dec 2010 AU
2005223267 Dec 2010 AU
2010297957 May 2012 AU
2011250886 Jan 2013 AU
2011250886 Jan 2013 AU
2011305163 May 2013 AU
2013284428 Feb 2015 AU
2010297957 Oct 2016 AU
2011305163 Dec 2016 AU
2017201365 Mar 2017 AU
2017201585 Mar 2017 AU
1008939 Oct 1996 BE
2203813 Jun 1996 CA
2174482 Oct 1997 CA
2346638 Apr 2000 CA
2389958 Mar 2003 CA
2878117 Jan 2014 CA
2559842 May 2014 CA
2559842 May 2014 CA
2992429 Dec 2016 CA
2976682 Feb 2018 CA
2976802 Feb 2018 CA
102834818 Dec 2012 CN
102985915 Mar 2013 CN
0295146 Dec 1988 EP
0308046 Mar 1989 EP
0591585 Apr 1994 EP
1117214 Jul 2001 EP
1119837 Aug 2001 EP
0978111 Nov 2001 EP
2112784 Oct 2009 EP
2868039 May 2015 EP
3031206 Jun 2016 EP
1738540 Oct 2017 EP
3285238 Feb 2018 EP
3308222 Apr 2018 EP
2584217 Jan 1987 FR
2661023 Oct 1991 FR
2793334 Nov 2000 FR
2222288 Feb 1990 GB
2273593 Jun 1994 GB
2286423 Aug 1995 GB
2291554 Jan 1996 GB
2319373 May 1998 GB
2320644 Jun 1998 GB
2324630 Oct 1998 GB
2325548 Nov 1998 GB
2335523 Sep 1999 GB
2349293 Oct 2000 GB
2370400 Jun 2002 GB
2442628 Apr 2008 GB
2442633 Apr 2008 GB
2442640 Apr 2008 GB
2428821 Jun 2008 GB
452015 Nov 2015 IN
042016 Jan 2016 IN
63-033088 Feb 1988 JP
05-167712 Jul 1993 JP
06-339183 Dec 1993 JP
8227491 Sep 1996 JP
10-004451 Jan 1998 JP
2000-006343 Jan 2000 JP
2000-023146 Jan 2000 JP
2000-278671 Oct 2000 JP
2001-006088 Jan 2001 JP
2001-006343 Jan 2001 JP
2001-069209 Mar 2001 JP
2002055895 Feb 2002 JP
2002-185629 Jun 2002 JP
2003085258 Mar 2003 JP
2003141659 May 2003 JP
2004192659 Jul 2004 JP
2007-529826 Oct 2007 JP
20060021605 Mar 2006 KR
340934 Sep 1998 TW
I239176 Sep 2005 TW
I480839 Apr 2015 TW
I480840 Apr 2015 TW
I509579 Nov 2015 TW
I517106 Jan 2016 TW
WO-8907855 Aug 1989 WO
8911187 Nov 1989 WO
WO-9403881 Feb 1994 WO
9513944 May 1995 WO
WO-9636301 Nov 1996 WO
9713230 Apr 1997 WO
9825243 Jun 1998 WO
9852343 Nov 1998 WO
WO-9849663 Nov 1998 WO
9859256 Dec 1998 WO
WO-9934339 Jul 1999 WO
0021053 Apr 2000 WO
0036812 Jun 2000 WO
0072598 Nov 2000 WO
0111586 Feb 2001 WO
WO-0152478 Jul 2001 WO
0171489 Sep 2001 WO
WO-0199078 Dec 2001 WO
0211444 Feb 2002 WO
WO-0221300 Mar 2002 WO
2002100083 Dec 2002 WO
WO-02097584 Dec 2002 WO
2003026305 Mar 2003 WO
WO-03040839 May 2003 WO
WO-2004004222 Jan 2004 WO
WO-2004098127 Nov 2004 WO
WO-2004107710 Dec 2004 WO
WO-2005091218 Sep 2005 WO
WO-2005091218 Jul 2006 WO
WO-2007038872 Apr 2007 WO
WO-2007124453 Nov 2007 WO
2008056320 May 2008 WO
WO-2009006670 Jan 2009 WO
2009023647 Feb 2009 WO
2009029590 Mar 2009 WO
2009029597 Mar 2009 WO
2009064795 May 2009 WO
WO-2009145747 Dec 2009 WO
2010019624 Feb 2010 WO
2010025468 Mar 2010 WO
2010127009 Nov 2010 WO
2010127194 Nov 2010 WO
2010127200 Nov 2010 WO
2010127203 Nov 2010 WO
2011038409 Mar 2011 WO
2011063354 May 2011 WO
2011143273 Nov 2011 WO
2012040653 Mar 2012 WO
20141004911 Jan 2014 WO
2015021469 Feb 2015 WO
2015134520 Sep 2015 WO
2016201033 Dec 2016 WO
201302668 Jun 2014 ZA
Non-Patent Literature Citations (274)
Entry
Alarm.com—Interactive Security Systems, Elders [retrieved on Nov. 4, 2003], 1 page.
Alarm.com—Interactive Security Systems, Frequently Asked Questions [retrieved on Nov. 4, 2003], 3 pages.
Alarm.com—Interactive Security Systems, Overview [retrieved on Nov. 4, 2003], 2 pages.
Alarm.com—Interactive Security Systems, Product Advantages [retrieved on Nov. 4, 2003], 3 pages.
Australian Patent App. No. 2010297957.
Australian Patent App. No. 2011250886.
Australian Patent App. No. 2011305163.
Canadian Patent App. No. 2559842.
Chinese Patent App. No. 201080053845.7.
Chinese Patent App. No. 201180034090.0.
Control Panel Standard—Features for False Alarm, Reduction, The Security Industry Association, SIA 2009, pp. 1-48.
Co-pending U.S. Appl. No. 11/761,745, filed Jun. 12, 2007.
Co-pending U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Co-pending U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Co-pending U.S. Appl. No. 12/189,765, filed Aug. 11, 2008.
Co-pending U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/197,946, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/198,039, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/198,051, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/198,060, filed May 28, 2008.
Co-pending U.S. Appl. No. 12/198,066, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/269,735, filed Nov. 12, 2008.
Co-pending U.S. Appl. No. 12/539,537, filed Aug. 11, 2009.
Co-pending U.S. Appl. No. 12/568,718, filed Sep. 29, 2009.
Co-pending U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Co-pending U.S. Appl. No. 12/691,992, filed Jan. 22, 2010.
Co-pending U.S. Appl. No. 12/718,385, flled Mar. 5, 2010.
Co-pending U.S. Appl. No. 12/732,879, filed Mar. 26, 2010.
Co-pending U.S. Appl. No. 12/750,470, filed Mar. 30, 2010.
Co-pending U.S. Appl. No. 12/770,253, filed Apr. 29, 2010.
Co-pending U.S. Appl. No. 12/770,365, filed Apr. 29, 2010.
Co-pending U.S. Appl. No. 12/771,071, filed Apr. 30, 2010.
Co-pending U.S. Appl. No. 12/771,372, filed Apr. 30, 2010.
Co-pending U.S. Appl. No. 12/771,471, filed Apr. 30, 2010.
Co-pending U.S. Appl. No. 12/771,624, filed Apr. 30, 2010.
Co-pending U.S. Appl. No. 12/892,303, filed Sep. 28, 2010.
Co-pending U.S. Appl. No. 12/892,801, filed Sep. 28, 2010.
Co-pending U.S. Appl. No. 12/952,080, filed Nov. 22, 2010.
Co-pending U.S. Appl. No. 12/970,313, filed Dec. 16, 2010.
Co-pending U.S. Appl. No. 12/971,282, filed Dec. 17, 2010.
Co-pending U.S. Appl. No. 12/972,740, filed Dec. 20, 2010.
Co-pending U.S. Appl. No. 13/099,293, filed May 2, 2011.
Co-pending U.S. Appl. No. 13/104,932, filed May 10, 2011.
Co-pending U.S. Appl. No. 13/104,936, filed May 10, 2011.
Co-pending U.S. Appl. No. 13/153,807, filed Jun. 6, 2011.
Co-pending U.S. Appl. No. 13/244,008, filed Sep. 23, 2011.
Co-pending U.S. Appl. No. 13/311,365, filed Dec. 5, 2011.
Co-pending U.S. Appl. No. 13/334,998, filed Dec. 22, 2011.
Co-pending U.S. Appl. No. 13/335,279, filed Dec. 22, 2011.
Co-pending U.S. Appl. No. 13/400,477, filed Dec. 22, 2011.
Co-pending U.S. Appl. No. 13/406,264, filed Feb. 27, 2012.
Co-pending U.S. Appl. No. 13/486,276, filed Jun. 1, 2012.
Co-pending U.S. Appl. No. 13/531,757, filed Jun. 25, 2012.
Co-pending U.S. Appl. No. 13/718,851, filed Dec. 18, 2012.
Co-pending U.S. Appl. No. 13/725,607, filed Dec. 21, 2012.
Co-pending U.S. Appl. No. 13/925,181, filed Jun. 24, 2013.
Co-pending U.S. Appl. No. 13/929,568, filed Jun. 27, 2013.
Co-pending U.S. Appl. No. 13/932,816, filed Jul. 1, 2013.
Co-pending U.S. Appl. No. 13/932,837, filed Jul. 1, 2013.
Co-pending U.S. Appl. No. 29/419,628, filed Apr. 30, 2012.
Co-pending U.S. Appl. No. 29/420,377, filed May 8, 2012.
European Patent App. No. 05725743.8.
European Patent App. No. 08797646.0.
European Patent App. No. 08828613.3.
European Patent App. No. 09807196.2.
European Patent App. No. 10819658.5.
European Patent App. No. 11781184.4.
European Patent App. No. 11827671.6.
Examination Report under Section 18(3) re for UK Patent Application No. GB0620362.4, dated Aug. 13, 2007.
Examination Report under Section 18(3) re for UK Patent Application No. GB0724248.0, dated Jun. 4, 2008.
Examination Report under Section 18(3) re for UK Patent Application No. GB0724248.0, dated Jan. 30, 2008.
Examination Report under Section 18(3) re for UK Patent Application. No. GB0724760.4, dated Jan. 30, 2008.
Examination Report under Section 18(3) re for UK Patent Application No. GB0800040.8, dated Jan. 30, 2008.
Faultline, “AT&T Targets Video Home Security as Next Broadband Market,” The Register, Nov. 2, 2006. 2 pages.
Final Office Action dated Aug. 1, 2011 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Final Office Action dated Jun. 1, 2009 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Final Office Action dated Jun. 5, 2012 for U.S. Appl. No. 12/771,071, filed Apr. 30, 2010.
Final Office Action dated May 9, 2013 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Final Office Action dated May 9, 2013 for U.S. Appl. No. 12/952,080, filed Nov. 22, 2010.
Final Office Action dated Jan. 10, 2011 for U.S. Appl. No. 12/189,785, filed Aug. 11, 2008.
Final Office Action dated Jun. 10, 2011 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Final Office Action dated Jul. 12, 2010 for U.S. Appl. No. 12/019,554, filed Jan. 24, 2008.
Final Office Action dated Jan. 13, 2011 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Final Office Action dated Sep. 14, 2011 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Final Office Action dated Feb. 16, 2011 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Final Office Action dated Oct. 17, 2012 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009.
Final Office Action dated Sep. 17, 2012 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Final Office Action dated Mar. 21, 2013 for U.S. Appl. No. 12/691,992, filed Jan. 22, 2010.
Final Office Action dated Jul. 23, 2013 for U.S. Appl. No. 13/531,757, filed Jun. 25, 2012.
Final Office Action dated Feb. 26, 2013 for U.S. Appl. No. 12/771,471, filed Apr. 30, 2010.
Final Office Action dated Jun. 29, 2012 for U.S. Appl. No. 12/539,537, filed Aug. 11, 2009.
Final Office Action dated Dec. 31, 2012 for U.S. Appl. No. 12/770,365, filed Apr. 29, 2010.
Final Office Action dated Oct. 31, 2012 for U.S. Appl. No. 12/771,624, filed Apr. 30, 2010.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US05/08766,” May 23, 2006, 2 pages.
Form PCT/ISA/210, “PCT international Search Report for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/74246,” dated Nov. 14, 2008, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 2 pages.
Form PCT/ISA/210, “PCT international Search Report for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 2 pages.
Form PCT/ISA/210, “PCT international Search Report for the Application No. PCT/US11/34858,” dated Oct. 3, 2011, 2 pages.
Form PCT/ISA/210, “PCT international Search Report for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/53136,” dated Jan. 5, 2012, 2 pages.
Form PCT/ISA/210, “PCT International Search Report of the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 2 pages.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” 1 pg.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US05/08766,” dated May 23, 2006, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/74246” dated Nov. 14, 2008, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration of the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 1 page.
Form PCT/ISA/237, “PCT Written Opinion ofthe International Searching Authority for the Application No. PCT/US05/08766,” dated May 23, 2006, 5 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority,” 6 pgs.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/74246,” dated Nov. 14, 2008, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 8 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 7 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/34858,” dated Oct. 3, 2011, 8 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 11 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/53136,” dated Jan. 5, 2012.
Form PCT/ISA/237, “PCT Written Opinion ofthe International Searching Authority of the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 7 pages.
Gutierrez J.A., “On the Use of IEEE 802.15.4 to Enable Wireless Sensor Networks in Building Automation,” Personal, Indoor and Mobile Radio Communications (PIMRC), 15th IEEE International Symposium, 2004, vol. 3, pp. 1865-1869.
Indian Patent App. No. 10698/DELNP/2012.
Indian Patent App. No. 3687/DELNP/2012.
International Patent Application No. PCT/US2013/048324.
International Search Report for Application No. PCT/US13/48324, dated Jan. 14, 2014, 2 pages.
International Search Report for Application No. PCT/US2014/050548, dated Mar. 18, 2015, 4 pages.
Lagotek Wireless Home Automation System, May 2006 [retrieved on Aug. 22, 2012].
Non-Final Office Action dated Apr. 4, 2013 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Non-Final Office Action dated Mar. 4, 2013 for U.S. Appl. No. 13/400,477, filed Feb. 20, 2012.
Non-Final Office Action dated Jan. 5, 2010 for U.S. Appl. No. 12/019,554, filed Jan. 24, 2008.
Non-Final Office Action dated May 5, 2010 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Non-Final Office Action dated May 5, 2010 for U.S. Appl. No. 12/189,785, filed Aug. 11, 2008.
Non-Final Office Action dated Feb. 7, 2012 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009.
Non-Final Office Action dated Feb. 7, 2013 for U.S. Appl. No. 12/970,313, filed Dec. 16, 2010.
Non-Final Office Action dated Feb. 8, 2012 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Apr. 9, 2012 for U.S. Appl. No. 12/771,624, filed Apr. 30, 2010.
Non-Final Office Action dated Dec. 9, 2008 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Non-Final Office Action dated Aug. 10, 2012 for U.S. Appl. No. 12/771,471, filed Apr. 30, 2010.
Non-Final Office Action dated Oct. 11, 2012 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Apr. 12, 2012 for U.S. Appl. No. 12/770,365, filed Apr. 29, 2010.
Non-Final Office Action dated Jul. 12, 2012 for U.S. Appl. No. 12/691,992, filed Jan. 22, 2010.
Non-Final Office Action dated Oct. 12, 2012 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Sep. 12, 2012 for U.S. Appl. No. 12/952,080, filed Nov. 22, 2010.
Non-Final Office Action dated Apr. 13, 2010 for U.S. Appl. No. 11/761,745, filed Jun. 12, 2007.
Non-Final Office Action dated Jul. 13, 2010 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Nov. 14, 2012 for U.S. Appl. No. 13/531,757, filed Jun. 25, 2012.
Non-Final Office Action dated Sep. 14, 2010 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Non-Final Office Action dated Sep. 16, 2011 for U.S. Appl. No. 12/539,537, filed Aug. 11, 2009.
Non-Final Office Action dated Sep. 17, 2012 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Non-Final Office Action dated Aug. 18, 2011 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Non-Final Office Action dated Feb. 18, 2011 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Jan. 18, 2012 for U.S. Appl. No. 12/771,071, filed Apr. 30, 2010.
Non-Final Office Action dated Feb. 21, 2013 for U.S. Appl. No. 12/771,372, filed Apr. 30, 2010.
Non-Final Office Action dated Jul. 21, 2010 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Dec. 22, 2010 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Non-Final Office Action dated Jul. 22, 2013 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated May 23, 2013 for U.S. Appl. No. 13/104,932, filed May 10, 2011.
Non-Final Office Action dated May 23, 2013 for U.S. Appl. No. 13/104,936, filed May 10, 2011.
Non-Final Office Action dated Jan. 26, 2012 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Nov. 26, 2010 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Non-Final Office Action dated Jun. 27, 2013 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Dec. 30, 2009 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Non-Final Office Action dated May 30, 2008 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Notice of Allowance dated May 14, 2013 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009.
Notice of Allowance dated Oct. 25, 2012 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Requirement for Restriction/Election dated Jan. 22, 2013 for U.S. Appl. No. 13/104,932, filed May 10, 2011.
Requirement for Restriction/Election dated Jan. 22, 2013 for U.S. Appl. No. 13/104,936, filed May 10, 2011.
Requirement for Restriction/Election dated Oct. 24, 2012 for U.S. Appl. No. 12/750,470, filed Mar. 30, 2010.
Security for the Future, Introducing 5804BD—Advanced two-way wireless remote technology, Advertisement, ADEMCO Group, Syosset, NY, circa 1997.
South African Patent App. No. 2013/02668.
Supplemental European Search Report for Application No. EP05725743.8 dated Sep. 14, 2010, 2 pages.
Supplementary European Search Report for Application No. EP10819658, dated Mar. 10, 2015, 2 pages.
Supplementary European Search Report for Application No. EP11827671, dated Mar. 10, 2015, 2 pages.
Supplementary European Search Report for Application No. EP2191351, dated Jun. 23, 2014, 2 pages
Supplementary Non-Final Office Action dated Oct. 28, 2010 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Supplementary Partial European Search Report for Application No. EP09807196, dated Nov. 17, 2014; 5 pages.
Taiwanese Patent App. No. 99113848.
Taiwanese Patent App. No. 99113853.
Taiwanese Patent App. No. 99113855.
Taiwanese Patent App. No. 99113856.
Topalis E., et al., “A Generic Network Management Architecture Targeted to Support Home Automation Networks and Home Internet Connectivity, Consumer Electronics, IEEE Transactions,” 2000, vol. 46 (1), pp. 44-51.
United Kingdom Patent No. 2428821.
United Kingdom Patent No. 2442628.
United Kingdom Patent No. 2442633.
United Kingdom Patent No. 2442640.
Wireless, Battery-Powered Smoke Detectors, Brochure, SafeNight Technology, Inc. Roanoke, VA, 1995.
WLS906 Photoelectric Smoke Alarm, Data Sheet, DSC Security Products, Ontario, Canada, Jan. 1998.
X10—ActiveHome, Home Automation Made Easy [retrieved on Nov. 4, 2003], 3 pages.
Valtchev, D., and I. Frankov. “Service gateway architecture for a smart home.” Communications Magazine, IEEE 40.4 (2002): 126-132.
Network Working Group, Request for Comments H.Schulzrinne Apr. 1998.
J. David Eisenberg, SVG Essentials: Producing Scalable Vector Graphics with XML. O'Reilly & Associates, Inc., Sebastopol, CA 2002.
Gong, Li, A Software architecture for open service gateways, Internet Computing, IEEE 5.1, Jan.-Feb. 2001, 64-70.
Gateway Registry Methods and Systems, U.S. Appl. No. 13/486,276.
EP examination report issued in EP08797646.0, dated May 17, 2017, 11 pages.
Diaz, Redondo R P et al., Enhancing Residential Gateways: OSGI Service Composition, IEEE Transactions on Consumer Electronics, IEEE Service Center, New York, NY, US, vol. 53, No. 1, Feb. 1, 2007 (Feb. 1, 2007), pp. 87-95, XP011381790.
CorAccess Systems, Companion 6 User Guide, Jun. 17, 2002.
Condry M et al., Open Service Gateway architecture overview, Industrial Electronics Society, 1999, IECON '99 Proceedings, The 25th Annual Conference of the IEEE, San Jose, CA, USA, Nov. 29-Dec. 3, 1999, Piscataway, NJ, USA, IEEE, US, vol. 2, Nov. 29, 1999 (Nov. 29, 1999), pp. 735-742, XP010366642.
6270 Touch Screen Keypad Notes, Honeywell, Sep. 2006.
“Modular programming”, The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000.
“Application” The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000.
Wilkinson, S: “Logitech Harmony One Universal Remote” Ultimate AV magazine May 2008 (May 2008), XP002597782 Retrieved from the Internet : Original URL: http://www.ultimateavmag.com/remotecontrols/508logi) [retrieved on Aug. 23, 2010] the whole document; Updated URL: https://www.soundandvision.com/content/logitech-harmony-one-universal-remote, Retrieved from internet on Jan. 11, 2018.
Visitalk, Communication with Vision, http://www.visitalk.jimbo.com; website accessed Jan. 10, 2018.
GrayElectronics, http://www.grayelectronics.com; webpage accessed on Jan. 10, 2018.
Genex Technologies, Genex OmniEye, www.av-iq.com/avcat/images/documents/pdfs/omnieye%20nightwatch_brochure.pdf; webpage accessed Jan. 10, 2018.
Yanni Zhai et al., Design of Smart Home Remote Monitoring System Based on Embedded System, 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, vol. 2, pp. 41-44.
visitalk.com—communication with vision, http://www.visitalk.com.
U.S. Patent Application filed Nov. 30, 2017, entitled “Controller and Interface for Home Security, Monitoring and Automation Having Customizable Audio Alerts for SMA Events”, U.S. Appl. No. 15/828,030.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,084.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,077.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,685.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,627.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,592.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,573.
U.S. Patent Application filed Mar. 7, 2014, entitled “Security System Integrated With Social Media Platform”, U.S. Appl. No. 14/201,133.
U.S. Patent Application filed Mar. 7, 2014, entitled “Integrated Security and Control System With Geofencing”, U.S. Appl. No. 14/201,189.
U.S. Patent Application filed Mar. 7, 2014, entitled “Device Integration Framework”, U.S. Appl. No. 14/201,227.
U.S. Patent Application filed Mar. 7, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/200,921.
U.S. Patent Application filed Mar. 7, 2014, entitled “Activation of Gateway Device”, U.S. Appl. No. 14/201,162.
U.S. Patent Application filed Nov. 28, 2017, entitled “Forming a Security Network Including Integrated Security System Components”, U.S. Appl. No. 15/824,503.
U.S. Patent Application filed Oct. 27, 2017, entitled “Security System With Networked Touchscreen”, U.S. Appl. No. 15/796,421.
U.S. Patent Application filed Oct. 13, 2017, entitled “Notification of Event Subsequent to Communication Failure With Security System”, U.S. Appl. No. 15/783,858.
U.S. Patent Application filed Aug. 9, 2016, entitled “Controller and Interface for Home Security, Monitoring and Automation Having Customizable Audio Alerts for SMA Events”, U.S. Appl. No. 15/232,135.
U.S. Patent Application filed Aug. 8, 2016, entitled “Security, Monitoring and Automation Controller Access and Use of Legacy Security Control Panel Information”, U.S. Appl. No. 15/231,273.
U.S. Patent Application filed Jul. 28, 2016, entitled “Method and System for Automatically Providing Alternate Network Access for Telecommunications”, U.S. Appl. No. 15/222,416.
U,S, Patent Application filed Mar. 10, 2014, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 14/202,579.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 14/202,505.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,219.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,141.
U.S. Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,128.
GrayElectronics, http://www.grayelectronics.com/default.htm.
GrayElectronics, “Digitizing TV cameras on TCP/IP Computer Networks,” http://www.grayelectronics.com/default.htm, printed on Oct. 12, 1999 (2 pages).
Genex OmniEye, http://www.genextech.com/prod01.htm.
EP application filed on Aug. 16, 2017, entitled, “Automation System User Interface”, 17186497.8.
EP application filed on Jun. 9, 2016, entitled, “Data Model for Home Automation”, 16808247.7.
Elwahab et al.; Device, System and . . . Customer Premises Gateways; Sep. 27, 2001; WO 01/71489.
CA application filed on Aug. 16, 2017, entitled “Automation System User Interface”, 2976802.
CA application filed on Aug. 15, 2017, entitled “Automation System User Interface”, 2976682.
AU application filed on Mar. 8, 2017, entitled “Integrated Security Network with Security Alarm Signaling System”, 2017201585.
AU application filed on Feb. 28, 2017, entitled “Control System User Interface”, 2017201365.
U.S. Patent Application filed Mar. 2, 2017, entitled “Generating Risk Profile Using Data of Home Monitoring and Security System”, U.S. Appl. No. 15/447,982.
Shang, Wei-lai, Study on Application of Embedded Intelligent Area System, Journal of Anyang Institute of Technology, vol. 9, No. 6, pp. 56-57 and 65.
PCT Application filed on Nov. 17, 2016, entitled “Mobile Premises Automation Platform”, PCT/US2016/062519.
PCT Application filed on Oct. 13, 2016, entitled “Coordinated Control of Connected Devices in a Premise”, PCT/US2016/056842.
PCT Application filed on Aug. 17, 2016, entitled “Automation System User Interface”, PCT/US2016/047262.
PCT Application filed on Aug. 16, 2016, entitled “Automation System User Interface”, PCT/US2016/047172.
PCT Application filed on Jul. 7, 2016, entitled “Automation System User Interface with Three-Dimensional Display”, PCT/US2016/041353.
PCT Application filed on Jun. 30, 2016, entitled “Integrated Cloud System with Lightweight Gateway for Premises Automation”, PCT/US2016/040451.
PCT Application filed on Jun. 29, 2016, entitled “Integrated Cloud System for Premises Automation”, PCT/US2016/040046.
PCT Application filed on Jun. 9, 2016, entitled “Virtual Device Systems and Methods”, PCT/US2016/036674.
GTI Genex Technologies, Inc. OmniEye.(Trademark). Product Brochure, Sep. 14, 1999 (5 pages).
U.S. Patent Application filed May 23, 2018, entitled “Networked Touchscreen With Integrated NTERFACES”, U.S. Appl. No. 15/987,638.
U.S. patent application filed May 2, 2018, entitled “Automation System With Mobile Interface”, U.S. Appl. No. 15/969,514.
U.S. Patent Application filed Feb. 2, 2018, entitled “Three-Way Switch”, U.S. Appl. No. 15/887,535.
Foreign communication from a related counterpart application—International Search Report, App No. PCT/US02/14450, dated Dec. 17, 2002, 6 pgs.
Foreign communication from a related counterpart application—International Preliminary Examination Report, App No. PCT/US02/14450, dated Mar. 2, 2004, 4 pgs.
US Patent Application filed Jul. 12, 2018, entitled “Integrated Security System with Parallel Processing Architecture”, U.S. Appl. No. 16/034,132.
US Patent Application filed Jul. 3, 2018, entitled “WiFi-To-Serial Encapsulation in Systems”, U.S. Appl. No. 16/026,703.
US Patent Application filed Jun. 27, 2018, entitled “Activation of Gateway Device”, U.S. Appl. No. 16/020,499.
US Patent Application filed Sep. 11, 2018, entitled “Premises Management Networking”, U.S. Appl. No. 16/128,089.
US Patent Application filed Sep. 6, 2018, entitled “Takeover of Security Network”, U.S. Appl. No. 16/123,695.
US Patent Application filed Aug. 21, 2018, entitled “Premises System Management Using Status Signal” U.S. Appl. No. 16/107,568.
US Patent Application filed Aug. 9, 2018, entitled “Method and System for Processing Security Event Data”, U.S. Appl. No. 16/059,833.
US Patent Application filed Jul. 20, 2018, entitled “Cross-Client Sensor User Interface in an Integrated Security Network”, U.S. Appl. No. 16/041,291.
“Windows”. Newton's Telecom Dictionary, 21st ed., Mar. 2005.
Related Publications (1)
Number Date Country
20160027295 A1 Jan 2016 US
Continuations (1)
Number Date Country
Parent 12892801 Sep 2010 US
Child 14666493 US