Not Applicable.
Not Applicable.
Not Applicable.
The present invention relates to a method for downloading binary files to a customer premises telecommunications hub, and more particularly to a method of automatically testing a new binary file before designating it as the current binary file for the hub.
Traditionally, telephony communications within the United States were handled by the public switched telecommunications network (PSTN). The PSTN can be characterized as a network designed for voice communications, primarily on a circuit-switched basis, with full interconnection among individual networks. The PSTN network is largely analog at the local loop level, digital at the backbone level, and generally provisioned on a wireline, rather than a wireless, basis. The PSTN includes switches that route communications between end users. Circuit switches are the devices that establish connectivity between circuits through an internal switching matrix. Circuit switches set connections between circuits through the establishment of a talk path or transmission path. The connection and the associated bandwidth are provided temporarily, continuously, and exclusively for the duration of the session, or call. While developed to support voice communications, circuit switches can support any form of information transfer (e.g., data and video communications).
In a traditional PSTN environment, circuit switches include central office (CO) exchanges, tandem exchanges, access tandem exchanges, and international gateway facilities. Central offices, also known as exchanges, provide local access services to end users via local loop connections within a relatively small area of geography known as an exchange area. In other words, the CO provides the ability for a subscriber within that neighborhood to connect to another subscriber within that neighborhood. Central offices, also known as end offices, reside at the terminal ends of the network. In other words, COs are the first point of entry into the PSTN and the last point of exit. They are also known as class 5 offices, the lowest class in the switching hierarchy. A class 5 telephone switch communicates with an analog telephone using the analog telephony signals in the well-known analog format. The class 5 telephone switch provides power to the telephone; detects off-hook status of the telephone and provides a dial tone in response; detects dual-tone multi-frequency signals from the caller and initiates a call in the network; plays a ringback tone to the caller when the far-end telephone is ringing; plays a busy tone to the caller when the far-end telephone is busy; provides ring current to the telephone on incoming calls; and provides traditional telephone services such as call waiting, call forwarding, caller ID, etc.
In an effort to increase the amount and speed of information transmitted across networks, the telecommunications industry is shifting toward broadband packet networks which are designed to carry a variety of services such as voice, data, and video. For example, asynchronous transfer mode (ATM) networks have been developed to provide broadband transport and switching capability between local area networks (LANs) and wide area networks (WANs). The Sprint ION network is a broadband network that is capable of delivering a variety of services such as voice, data, and video to an end user at a residential or business location. The Sprint ION network has a wide area IP/ATM or ATM backbone that is connected to a plurality of local loops via multiplexors. Each local loop carries ATM over ADSL (asymmetric digital subscriber line) traffic to and from a plurality of integrated service hubs (ISHs), which may be at either residential or business locations.
An ISH is a hardware component that links business or residential user devices such as telephones and computers to the broadband, wide area network through a plurality of user interfaces and at least one network interface. A suitable ISH is described in U.S. Pat. No. 6,272,553 entitled “Multi-Services Communications Device,” issued on Aug. 7, 2001, which is incorporated by reference herein in its entirety. The network interface typically is a broadband network interface such as ADSL, T1, or HDSL-2. Examples of user interfaces include telephone interfaces such as plain old telephone system (POTS) ports for connecting telephones, fax machines, modems, and the like to the ISH; computer interfaces such as Ethernet ports for connecting computers and local area networks to the ISH; and video ports such as RCA jacks for connecting video players, recorders, monitors, and the like to the ISH.
In providing telephony services over a broadband network, the ISH communicates with a service manager. This connection between the telephone and the network element is typically an ATM connection, which is much different than the traditional analog line to the local switch. ATM connections usually do not support analog telephony signals, such as off-hook, dial tone, and busy signals. Therefore, the ISH must provide many of the telephony functions traditionally provided by the telephone provider central office such as detecting off-hook conditions, on-hook connections, and digits as well as providing the telephones with dial tone, ring voltage (sometimes referred to as ring current), ringback, and busy signals. The terms off-hook and off-hook condition as used herein are generic terms meaning that a user device (whether telephone, facsimile machine, modem, etc.) connected to a telephone line is attempting to access and use the line.
The ISH includes a processing core or central processing unit, CPU, which controls these functions. It must exchange data with numerous peripheral devices within and external to the ISH itself. As with any CPU, it must have appropriate software, i.e. binary files, in order to perform the many required functions. As the controller for the ISH, it requires configuration files to deal with the various interfaces for the POTS ports, Ethernet ports, etc. However, the necessary configuration and binary files are not known until the ISH is installed in a customer premises, such as a private residence. The selection of appropriate files depends on the particular model of ISH which has been installed and the particular set of services which have been ordered by the customer. It is not practical to expect or require individual customers to know how to configure the ISH after it is physically installed. It would be quite expensive to have a trained service technician visit each residence for initializing the system, i.e. loading the necessary software. There is a need for a method for automatically initializing an ISH when it is installed and powered up for the first time.
Systems have been developed for automatically downloading, through the Internet, appropriate configuration and binary code files upon initial startup of a hub or upon a later reboot event which may be for the purpose of upgrading the binary files to a new release. The binary file may need to be upgraded to provide newly developed functions or services or to simply provide different functions as requested by the customer or to correct errors in the file. In any case, the basic purpose of the process is to replace the then operating software with new software.
It is possible for binary code to operate correctly in a test lab and on most commercial units, but to fail to run on some units. The ISHs are not all identical, e.g. they may have various interface options and various revisions of each option. If new code is downloaded into ISH memory and designated as the currently bootable version, but fails when the system is reset or rebooted, the ISH may not work and it may not be possible to automatically replace it. The system may have to be physically removed and returned to the factory for repair. It would be desirable to have a failsafe method of replacing binary code.
The present invention provides a system and method for downloading binary files which tests new binary files for functionality before locking the new file as the current binary file. A newly downloaded binary file is written into flash memory. The ISH is then restarted with the new file and a verification process is run to be sure the file operates properly. Upon verification of functionality, the new file is designated as the current binary file. If the verification fails, the ISH is restarted with the previous binary file which remains designated as the current file.
In a preferred embodiment, the trial run process includes writing a trial run message into a volatile memory, e.g. an SDRAM, after storing the new binary file in flash memory. Then the system is rebooted. The trial run message survives normal, or soft, rebooting. The boot block software first looks for the trial run message in the volatile memory and, upon finding it, deletes the message and starts the system using the new binary file and runs the verification process. In the event of trial run failure, the system is rebooted. Upon reboot, the boot software will not find a trial run message and will use the old binary file which will still be designated the current binary file in flash memory. In the event of a complete failure or system lock up, the trial run message can be removed by powering down the system which will delete all information in the volatile memory, including the trial run message. Upon reapplication of power the system reboots with the old binary file.
In a preferred form, the verification process uses the ability of the binary file to communicate with a central office server as an indication of successful operation. Receipt of a DHCP server ACK message, or actual downloading of a configuration file may be accepted as proof of successful operation. Successful communication provides the ability to correct errors in a newly downloaded binary file or to replace it if necessary.
Referring to
Telephones 32 are connected by telephone lines 34 to POTS interface 15 by telephone jacks 36, for example industry standard RJ-11 jacks. While four telephones are shown in
In addition to telephone jacks 36, POTS interface 15 further comprises subscriber line interface circuits (SLICs) 38, subscriber line access circuit (SLAC) 40, and digital signal processor (DSP) 45. SLICs 38 are connected to telephone jacks 36 by connections 37 on a one-to-one basis. In other words, each telephone connected to the ISH by a telephone jack has a separate and corresponding SLIC. Alternatively, SLICs may incorporate more than one channel each, that is to say a SLIC may be connected to more than one telephone line. The SLICs convert relatively high power, two-line analog signals (also referred to as a tip and ring phone circuit) received from the telephone into relatively low power, four-line analog signals (also referred to as a transmit signal circuit and a receive signal circuit). Furthermore, the SLIC serves as the amplifier that drives power (i.e., voltage and current) onto its corresponding telephone line. Examples of suitable SLICs are integrated circuit chip numbers AM79R79 and AM79R241 produced by Legerity, the former communications division of Advanced Micro Devices (AMD), Inc.
SLAC 40 is connected to SLICs 38 by connections 39. Generally, a SLAC performs three functions: line supervision, signal filtering and manipulation, and analog/digital conversions. The SLAC supervises the lines (and the SLIC corresponding to each line), which includes execution of various protocols for detecting and recognizing an off-hook condition. While a preferred embodiment shown in
SLAC 40 transmits and receives control data such as line status and signaling to the central processing unit (CPU) 50 by connection 41. The CPU 50 controls the overall function of the ISH and has initialization, management, configuration, and control responsibilities for all of the components and interfaces comprising the ISH. Control software, i.e. the binary code, is stored in flash memory 54. Upon start up or reboot of the ISH, the CPU 50 loads the control software into random access memory, e.g. SDRAM 53, from which it is executed by the CPU 50. Upon execution of the control software, the CPU 50 interacts with various memory mapped peripherals (for example, WAN interface 25). The CPU 50 control software includes a) a POTS control module 51 that controls the telephony functions during operation of the ISH under primary power; b) a polling control module 52 that controls the POTS telephony functions when primary power fails; c) a power supply control module 83 which monitors, either continuously or periodically, the power supply; and d) ATM control module 55 that controls the communications with the network. An example of a suitable CPU is integrated circuit chip number MPC8260 Power QUICC II Communications Processor produced by Motorola, Inc.
Digital signal processor (DSP) 45 compresses (i.e., packetizes) data, typically voice data, received from SLAC 40 by connection 46. DSP 45 transmits compressed data to CPU 50 via connection 47 for transmission to CO 30 by ATM control module 55. An example of a suitable DSP is integrated circuit chip number TMS320VC5402 produced by Texas Instruments, Inc. ATM control module 55 provides the ATM and ML (ATM adaptation layer) layers of the ATM Protocol, which are necessary for ATM-formatted communications with CO 30. In a preferred embodiment, ATM control module 55 is a software module on CPU 50.
Computers 60, for example personal computers located on a residential premises, are connected by connections 62 to LAN interface 20 by LAN connectors 63. LAN connectors 63 are preferably RJ-45 jacks, but any suitable computer connection means may be employed, for example a universal serial bus (USB). While two computers are shown in
LAN interface 20 further comprises a LAN physical layer (PHY) device 65 connected to LAN connectors 63 by connections 64. LAN PHY device 65 is preferably an Ethernet PHY, and more specifically a MII transceiver. CPU 50 contains an Ethernet control module 67, which serves as a media access control (MAC) device and is connected to LAN PHY device 65 by connection 66. The Ethernet PHY and MAC devices support a 10/100 Mbit industry standard MII Ethernet connection.
The CO 30 is connected by connection 72 to WAN interface 25 by WAN connector 73. WAN connector 73 is preferably a RJ-11 jack for ADSL. WAN interface 25 is preferably a universal, xDSL interface, and more preferably an ATM over ADSL interface. xDSL is a generic term encompassing all known varieties of digital subscriber lines (DSL) such as ADSL, U-ADSL, SDSL, HDSL2, RADSL, etc. Other types of WAN interfaces could be used such as T1, cable modem, wireless broadband modem, or ATM-25.
WAN interface 25 further comprises WAN controller 75 connected to WAN connector 73 by connection 74. WAN controller 75 is connected to ATM control module 55 by connection 76. WAN controller 75 is preferably Globespan's G7000 multimode chip set, which further comprises an analog front end (AFE) chip (Globespan GS707X) and a multimode xDSL downloadable DSP and framer chip (Globespan GS707X). The AFE chip provides analog to digital and digital to analog signal conversions. The DSP and framer chip provides digital signal processing and signal transmission framing functions.
POTS interface 15, LAN interface 20, WAN interface 25, CPU 50, and ATM controller 55 are mounted on motherboard 80, which is a printed circuit board (also referred to as a logic board) that provides the various connections between ISH components as discussed above. The motherboard may include expansion slots to accept expansion cards such as an additional POTS card, an ATM-25 interface, a cable modem, etc. Motherboard 80 is connected to power supply 85 and battery pack 90, thereby providing power to the ISH components, the attached analog telephones, and the battery monitoring and charge circuitry. CPU 50 contains a power supply control module 83 connected to power supply 85 by connection 84. A preferred power supply is a universal-input (40-400 Hz, 90-270V AC RMS) switch mode lead/acid battery float charger with a current-limited output of nominally 13.8 V, and provides charging current to battery pack 90 as represented by connection 86. A preferred battery is a 12 volt DC, 2.5A gel cell (lead-acid) battery, and preferably battery pack 90 comprises two such batteries housed within the ISH.
The power supply is plugged into a standard electrical outlet 87 and serves as the primary power source for the ISH. In the event of a power failure to the electrical outlet, the ISH operates under backup power provided by its battery pack 90 and basic telephone services remain available to the customer for emergency calls.
The controllers illustrated as being part of the CPU 50 are actually software stored as binary code in flash memory 54. Flash memory 54 includes two partitions, labeled A and B in
In
The process described with reference to
Step 100 in
In step 102, the ISH 10 broadcasts a DHCP request to the DHCP server 92 in CO 30. The request includes the MAC ID of the ISH. This request is sent through WAN 25 and over the xDSL lines connecting the ISH 10 to the CO 30. In response to this request, the DHCP server 92 sends back to the ISH 10 an acknowledgment (ACK), a unique IP address to identify the ISH 10, an IP Address of a domain name server (DNS), a TFTP domain name (in this case, the name of TFTP server 94) and a configuration file name, which may be the same as the MAC ID of the ISH. In a preferred embodiment, the response includes IP addresses of multiple DNSs, all of which can provide TFTP server IP addresses. Since the ISH now has its own IP address, it can send data packets to and receive data packets from any other site on the Internet.
In step 104, the ISH uses a DNS IP address which it received from DHCP server 92 to send a request to domain name server 94 to obtain the IP address of the TFTP server 96. In a preferred embodiment where ISH 10 has received multiple DNS IP addresses, the ISH will automatically cycle through the addresses if it does not receive a TFTP IP address within a preselected timeout period or after a preselected number of retries. The DNS server 94 responds by sending to ISH 10 an IP address for the TFTP server 96. In a preferred embodiment, the response from DNS server 94 will include IP addresses for multiple servers associated with the TFTP domain name.
In step 106, the ISH uses a TFTP server IP address which it received from DNS 94 to send a request to TFTP server 96 for the configuration file which was identified by DHCP server 92. In a preferred embodiment where ISH has received multiple TFTP server IP addresses, the ISH will automatically cycle through the addresses if it does not receive a configuration file after a preselected number of retries or within a preselected timeout period. The TFTP server 96 responds by sending the requested configuration file to ISH 10.
In step 108 the ISH 10 receives the configuration file from TFTP server 96 and parses the configuration file. The configuration file contains the name of a binary file. Binary file names consist of three parts. One part, usually a prefix, is a model ID which identifies the model, e.g. C100, of the ISH for which the file is intended. The end of the prefix is identified by the underscore symbol, i.e. “_”. The second part is version name which has as the first letter a numeric digit, e.g. 1.23.45.67 or 5version2.0. This second part primarily identifies the release number of the binary files, but each release has different versions intended for different ISH models. The last part of the file name is a-suffix identifying the file type, in this case “.bin” identifying the file as a binary file. Thus a complete binary file name may have the form C100—1.23.45.67.bin. It is important that the binary file be the appropriate one for the model of the ISH which downloads the file. To avoid downloading errors, the ISH renames the binary file. It replaces the model ID part of the binary file name with its own model ID. Thus with reference to the example file name above, if the ISH is a model C50, it deletes the prefix “C100” and replaces it with the prefix “C50”. The ISH also checks to be sure that the suffix “.bin” is present at the end of the file name, and, if not, it adds the suffix.
At step 110, after renaming the binary file, the ISH compares the binary file name to the name of the binary file which is stored in the active partition of flash memory 54, either Flash A or Flash B. If the names match, the hub goes into the run state as indicated at 112. In some cases, a reboot may be required at this point because of changes which occurred in the configuration file, even though the correct binary file is in the active flash memory partition.
At step 110, there are several possible reasons why the binary file name may not match the binary file stored in the active flash memory 54 partition. For example, at the time of manufacture, a basic binary file is loaded into Flash A and Flash A is designated the active partition. The basic binary file is not suitable for running the telephony functions of the ISH. It is suited for running the initial reboot process described herein. As a result, on initial start up, the file names will not match. At other times, the file names may not match because the purpose of a reboot was to upgrade to a new release of binary code.
In step 110, if the binary file names do not match, the ISH sends a request, indicated by arrow 114, to the TFTP server 96 for the binary file. The binary file name requested is the name which was generated by the ISH in the renaming process in step 108. As noted above, the ISH 10 has a list of TFTP IP addresses and will retry and cycle through the list if its requests are not answered promptly. It is not necessary to obtain the configuration file and the binary file from the same TFTP server. Multiple servers are normally available for redundancy and quality of service purposes. The TFTP server 96 responds by sending the requested binary file to ISH 10.
At step 116, the ISH 10 receives the requested binary file from TFTP server 96. The file is temporarily stored in its compressed form in SDRAM 53 in processor 50 until certain checks are made. The model ID in the file name is checked to be sure the model ID is correct. This is a double check in conjunction with the renaming process of step 108. If the model ID is correct, the ISH performs a CRC, cyclical redundancy check.
If the file fails to pass either the model check or the CRC check, the ISH goes into error state and, as indicated by arrow 118, goes back to the reboot step 100. The process described herein will then be repeated until a good binary file has been received.
If the file passes both the model and CRC checks, the compressed binary file is moved into the inactive partition of flash memory 54 at step 120. On initial startup, Flash A will be active, and the new file will be moved into Flash B. Once the transfer is completed successfully, the ISH performs a “lock image” on that partition, in this case Flash B. At that point, Flash B becomes the active partition and Flash A becomes the inactive partition of flash memory 54.
When step 120 has been completed, the ISH will send a reboot signal as indicated by arrow 122. This is needed because, at that point in the process, the binary file which is operating the processor 50 is still the file which was stored in the active partition of flash memory 54, e.g. Flash A, when the process started. Upon reboot, the new binary file, e.g. in Flash B, will be loaded into RAM and the system will operate with the new binary file. When the ISH gets to step 110, it should find that the designated binary file name matches the file in the active flash memory 54 partition, e.g. Flash B, and the system will move into the run state 112.
In the above description, an initial startup sequence has been described. In that sequence, the factory loaded binary file was in Flash A and Flash A was the designated active partition. After successful startup, a new binary file was stored in Flash B and Flash B was designated the active partition. When a new binary file, e.g. a new release, is to be downloaded into the ISH, it will be written over Flash A and Flash A will become the active partition again. Successive updates will be written into the then inactive partition, which will become the active partition when the file has been successfully saved to flash memory 54. This process avoids loss of all valid binary files in the event of power loss or other interruption during the process of writing a new binary file to flash memory. That is, any unsuccessful binary file download attempt can be started over with the same binary file as it started with.
The above description assumes that each step of the process works as intended on the first try. The ISH may desirably provide some additional steps when the process does not work smoothly. One is an overall timeout for the startup process. If the ISH does not reach the run state 112 within the set time, the ISH will reset and start the process over. The ISH may retry a given DNS 94 or TFTP server 96 a limited number of times before the system tries another domain name server or TFTP server. If the parsing operation in step 108 fails, the system may also reset and start the process over.
Another mode of failure in a binary file download process has been discovered and is addressed by the present invention. Even if the binary file has the correct model number and passes the CRC test and has been successfully downloaded to flash memory 54, it may not work correctly. The particular ISH may contain various options, or old versions of options, which were not available for testing when the latest version of binary code was developed. In that event, it is possible that the new binary file locked into flash memory will not function properly. The failure may lock up the system or at least prevent it from communicating with the external servers 92, 94 and 96 as it would need to do to obtain a good binary file. If this happens, a technician may be required to visit the installation site and the ISH 10, or at least motherboard 80, will probably have to be removed and returned to the factory for repair.
At step 304 a trial image parameter is written into the configuration database in flash memory 54. The parameter may have the form “trial_image=<binary file name>”. This identifies the fact that a trial run of the new binary file having the identified binary file name is to occur.
At step 306 a trial message is written into a designated or reserved location in SDRAM 53. This message identifies either Flash A or Flash B as the location of a binary file which is to be tested with a trial run. In the preferred embodiment, this message may be of the form RUNIMAGE[A or B]. In the present example where the currently locked image is in Flash A, the message may be RUNIMAGE[B]. At this point, a flag still exists in flash memory 54 indicating that Flash A contains the current active binary file, which is at this point operating the system.
At step 308 a reboot command is issued. Except for the differences described below, the system repeats the process of
SDRAM 53 is normally considered to be volatile memory. As a result, it would be expected that the trial run message stored in step 304 would not survive the reboot process. However, we have found that an automatic or soft reboot normally occurs in less than one second and that data stored in SDRAM survives for at least that long without the normal refresh cycle. In the unusual case, where for some reason the trial run message does not survive, it is a failsafe occurrence. The system will simply restart with the “old” binary file which remains flagged in flash memory 54 as the currently active binary file.
If at step 310, the RUNIMAGE[B] message was found in SDRAM 53, then at step 312 the system deletes the RUNIMAGE[B] message from the designated location in SDRAM 53. This avoids an endless loop operation in the event that the trial image fails to operate correctly. At step 314, the system loads the trial image from FLASH B and proceeds with the reboot process of
Part of the standard reboot process of
At step 316, the ISH performs a verification of the proper operation of the new binary file or trial image. This occurs as the system performs the reboot process of
If the verification process of step 316 indicates that the new binary file is functional in the ISH 10, then at step 318 the trial run parameter is deleted from the configuration file in Flash memory 54. At step 320, the new file is locked in flash 54 as the current active binary file, i.e. in this example FLASH B will be flagged as the currently active section. As a result, upon the next reboot, the system will restart with the newly downloaded binary file. Since the new file passed the trial run, no reboot is needed and the system continues to operate with the new binary file.
At step 322, the system checks the new binary file to see if the boot block has changed. If it has, then the system updates the boot block to the new boot block.
If at step 316 the new file fails the verification test, e.g. cannot receive an ACK message from the DHCP server, then the system issues a reboot command, i.e. goes back to step 308, and the process of
After loading the old binary file at step 324, the system will of course perform the reboot process of
If for any reason the system failure caused by a faulty new binary file is so complete that the verification process step 316 and steps 324 and 326 cannot function, there is a simple and fail safe method for restarting the system. If power is removed from the system for a short period of time, but more than about one second, the trial run message is SDRAM 53 will be erased. When power is reapplied, the reboot process of
While the present invention has been illustrated and described with reference to particular equipment and methods of operation, it is apparent that various changes and substitution of equivalent parts can be made within the scope of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5128995 | Arnold et al. | Jul 1992 | A |
5268928 | Herh et al. | Dec 1993 | A |
5388267 | Chan et al. | Feb 1995 | A |
5452339 | Siu et al. | Sep 1995 | A |
5701492 | Wadsworth et al. | Dec 1997 | A |
5717887 | Leslie | Feb 1998 | A |
5781921 | Nichols | Jul 1998 | A |
5787288 | Nagata et al. | Jul 1998 | A |
5819087 | Le et al. | Oct 1998 | A |
5872967 | DeRoo et al. | Feb 1999 | A |
5878256 | Bealkowski et al. | Mar 1999 | A |
5881142 | Frankel et al. | Mar 1999 | A |
5922072 | Hutchinson et al. | Jul 1999 | A |
5935242 | Madany et al. | Aug 1999 | A |
5963620 | Frankel et al. | Oct 1999 | A |
5987625 | Wolff | Nov 1999 | A |
6055632 | Deegan et al. | Apr 2000 | A |
6075784 | Frankel et al. | Jun 2000 | A |
6141339 | Kaplan et al. | Oct 2000 | A |
6154838 | Le et al. | Nov 2000 | A |
6223284 | Novoa et al. | Apr 2001 | B1 |
6237091 | Firooz et al. | May 2001 | B1 |
6275931 | Narayanaswamy et al. | Aug 2001 | B1 |
6314532 | Daudelin et al. | Nov 2001 | B1 |
6324692 | Fiske | Nov 2001 | B1 |
6584559 | Huh et al. | Jun 2003 | B1 |
6594723 | Chapman et al. | Jul 2003 | B1 |
6598057 | Synnestvedt et al. | Jul 2003 | B1 |
6615404 | Garfunkel et al. | Sep 2003 | B1 |
6640334 | Rasmussen | Oct 2003 | B1 |
6732267 | Wu et al. | May 2004 | B1 |
6834384 | Fiorella et al. | Dec 2004 | B2 |
6854054 | Kavanagh | Feb 2005 | B1 |
6895463 | Oga et al. | May 2005 | B2 |
6904457 | Goodman | Jun 2005 | B2 |
6928579 | Aija et al. | Aug 2005 | B2 |
6944854 | Kehne et al. | Sep 2005 | B2 |
6965989 | Strange et al. | Nov 2005 | B1 |
6993648 | Goodman et al. | Jan 2006 | B2 |
7055148 | Marsh et al. | May 2006 | B2 |
20020087668 | San Martin et al. | Jul 2002 | A1 |
20020144187 | Morgan et al. | Oct 2002 | A1 |
20030061604 | Elcock et al. | Mar 2003 | A1 |
20030182414 | O'Neil | Sep 2003 | A1 |
20040015941 | Sekine | Jan 2004 | A1 |