The present invention relates to the shipping and installation of photovoltaic power systems, photovoltaic concentrator modules, and related devices and methods. In certain embodiments, the present invention relates to photovoltaic systems made of panels that are larger or bulkier (e.g., panels including photovoltaic concentrator modules) than traditional flat plate solar panels.
Solar panels are generally well known (see, e.g., U.S. Pub. No. 2006/0283497 (Hines) and U.S. Pub. No. 2010/0018570 (Cashion et al.)). Installing a system of solar panels on a rooftop can present a number of logistical challenges.
One challenge is to create a structure that will hold the panels in place on the rooftop given wind, seismic and roof weight capacity requirements. Many systems are presently available in the market and there are many years of industry experience, specifically with traditional flat plate solar panels. Traditional rooftop mounting structures are typically shipped to the job site in pieces and generally installed on the roof before solar panels arrive.
Racking system 40 includes two mounting rails 41 positioned on round cross rails 43. The round cross rails are supported above the surface of roof 50 via posts 42. Each of the panels 10, 20, and 30 are coupled to rails 41.
Another challenge can be to merely get the product and balance of system from the factory to the rooftop in an efficient manner. One traditional approach with flat panels is to palletize the solar panels in a box roughly 48″ cube and fill a container and take it to the job site to be craned to the roof. Another method used by some, to save on expensive rooftop labor, is to build an array of multiple solar panels into one large framework. These are then delivered to a jobsite on an open flatbed truck and craned directly to the roof as shown in
Concentrating photovoltaic (CPV) panels are generally bigger and bulkier than flat plate solar panels. This is because they typically require some distance in order to focus the light onto solar cells. This can be a bigger logistical challenge to ship product to jobsites. More specifically, flat plate solar panels can be stacked on each other in a compact manner while CPV panels generally cannot. This is true because CPV panels typically track the sun in two axes and generally have a shape somewhat complicated and non-conducive to stacking.
One approach is to create a box or packaging that can be used to ship product in a container 70, as shown in
This packaging (racking system 73 plus panels 71) can also be craned to the rooftop where the panels 71 are removed from the packaging. The packaging is not used to install the panels to the rooftop. Such a package can be inherently expensive to make so the packaging is typically returned and reused. Being returnable can create a logistic and freight cost issue to stack these at a jobsite and return them. The packaging can be made collapsible to mitigate some of the freight cost. However, it can also create a significant amount of capital investment in the returnable packaging because enough of these are typically made to ensure all jobsites can have them and that the factory never runs out. This could be a supply equal to months of manufacturing capacity.
The present invention is an adjustable racking system that forms part of (is integrated with) the permanent framing of one or more solar panels.
Advantageously, the racking system is built remotely from an installation site and can be used to transport and mount solar panels to, for example, a rooftop.
According to one aspect of the present invention, a solar panel racking system includes at least one solar panel (preferably panels of photovoltaic concentrator modules) comprising a plurality of photovoltaic concentrator modules and a racking structure attached to the at least one solar panel such that the racking structure can help provide structural integrity of the solar panel during transportation. The racking structure can attach to a mounting structure during installation of the at least one solar panel.
The present invention also relates to methods of transporting and installing solar panel racking systems.
The present invention is a shipping rack that converts to the installation racking for mounting on a surface such as a rooftop. Preferably, a racking system according to the present invention is shipped in a compact form and then the racking structure is expanded to a desired installed condition.
For example
Frame 105 can be a single frame member or composed of multiple individual frame members attached to each other to form a frame. As shown, racking structure 105 includes two frame members 117, two frame members 109, and four posts 107.
As shown in
Each frame member 109 has a portion 110 and a portion 111 that can slidingly engage tube member 113 so as to telescope in and out within tube member 113 as described below.
While suspended by a crane or when placed on the ground, the frame of the racking structure 105 can be transformed as necessary from the shipping position shown in
Leg(s) 140 can rest on the roof 150 and are preferably designed to slide to any location, for example, so as to land on a roof beam or avoid roof top obstacles etc. Leg(s) 140 can slide, fold, or pivot into position and can contain some type of easy to use locking feature or nut and bolt set-up. Optionally, additional support legs (not shown) can be included along frame members 117.
This racking structure 105 is designed such that it can be stacked on top of other racking systems similar to racking system 105 and/or be stacked upon by other racking systems similar to racking system 105 as shown in
To help provide the ability to stack in such a manner, posts 107 include rounded ends 108 that can mate with corresponding bottom portions 120 of another racking system 105. Preferably, bottom portions 120 have a widened base to provide stability when installed on a surface such as a rooftop.
This racking structure 105 is also designed to be lifted by crane (not shown) to the rooftop. An example of the crane lifting features 115 are shown in
In addition various features can be added to the rack 105 to help support the load during shipment. These could be foam pieces to stop vibrations, features that accept plastic or metal bands to secure the load, etc.
Also, the racking structure 105 can include additional structure at various points along its perimeter to permit racking system 105 to be attached to adjacent racking systems (not shown).
Racking system 105 can be made out of any material suitable for supporting and securing panels 101 to rooftop 150. Exemplary materials are well known and include extruded aluminum, galvanized steel, u-channel and the like.
Racking systems 105 can be made using well-known techniques such as welding, molding, clamping, and the like.
The present nonprovisional patent application claims priority under 35 U.S.C. §119(e) from U.S. Provisional patent application having Ser. No. 61/392,073, filed on Oct. 12, 2010, by Johnson, Jr. et al. and titled INTEGRATED SHIPPING AND INSTALLATION RACKING, wherein the entirety of said provisional patent application is incorporated herein by reference.
The present invention was made with Government support under Cooperative Agreement No. DE-FC36-07G017044 awarded by the U.S. Department of Energy. The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
3690080 | Dillard | Sep 1972 | A |
20060283497 | Hines | Dec 2006 | A1 |
20080000515 | Lin et al. | Jan 2008 | A1 |
20100018570 | Cashion et al. | Jan 2010 | A1 |
20120085390 | Johnson et al. | Apr 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20120085390 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61392073 | Oct 2010 | US |