1. Field of the Disclosure
The present disclosure relates to an integrated solar energy system which includes photovoltaic cells which provide solar generated electricity, solar thermal collector panels which provide solar generated hot water and a heat recovery ventilation system which can through a cooling effect, improve the performance of the photovoltaic modules year-round and provide useful heated air to a building during the heating season.
2. Description of the Prior Art
The utility and desirability of solar generated energy have been well-established on economic, political and environmental grounds. However, in spite of the nearly universal popular support for such energy, solar generated energy continues to provide only a very small portion of the energy requirements, either nationally or internationally.
The capture of the solar energy and the subsequent conversion into useful energy can take many forms. Firstly, photovoltaic cells can be used to generate electricity which can be used either in a local application such as a building or can be provided to an electrical grid for remote distributed generation. Secondly, solar energy can be used to heat water which can be used within the vicinity of the capture of the solar energy, typically within an associated structure or building. Thirdly, solar energy can be used to heat or cool air which, again, is typically used with the vicinity of the capture of the solar energy.
While attempts have been made to increase the energy output of a solar installation by combining a photovoltaic device and a fluid transport region as shown in U.S. Patent Application Publication 2010/0147347 entitled “Method and Structure for Hybrid Thermal Solar Panel”, published on Jun. 17, 2010 on behalf of Dyreby, further improvements are sought in the energy output of solar installations.
Other prior art includes U.S. Pat. No. 7,858,874 entitled “Continuous Circuit Overlay Solar Shingles”, issued on Dec. 28, 2010 to Ruskin et al.; U.S. Pat. No. 7,714,224 entitled “Photovoltaic Power Generation Module and Photovoltaic Power Generation System Employing Same”, issued on May 11, 2010 to Abe et al.; U.S. Patent Application Publication 2010/0325976 entitled “Solar Shingle System”, published on Dec. 30, 2010 on behalf of Degenfelder et al.; U.S. Patent Application Publication 2010/0275902 entitled “Photovoltaic and Thermal Energy System”, published on Nov. 4, 2010 on behalf of Fabel; U.S. Patent Application Publication 2010/0275532 entitled “Solar Roof Tile with Solar and Photovoltaic Production of Hot Water and Electrical Energy”, published on Nov. 4, 2010 on behalf of De Nardis; U.S. Patent Publication 2009/0223550 entitled “Roof Tile or Tiled Solar Thermal Collector”, published on Sep. 10, 2009 on behalf of Curtin et al; and WO 2008/073905 A2 entitled “Solar Roof Tiles and Modules with Heat Exchange” published on Jun. 19, 2008 on behalf of Corrales et al.
It is therefore an object of the present disclosure to provide solar energy equipment with a high energy output.
It is therefore a further object of the present disclosure to provide solar energy equipment which is reliable and requires minimal maintenance.
It is therefore a still further object of the present disclosure to provide solar energy equipment which is readily and easily installed on a wide range of architectural structures.
These and other advantages are obtained by providing a building-integrated solar system which provides solar generated electricity, provides solar generated hot water and which has a heat recovery ventilation system which can provide solar heated air in the winter as well as cooled air to the photovoltaic panels in the summer. The system further provides a durable long lasting roof membrane.
Further, the system typically integrates these four functions into one product while providing an architecturally pleasing, flush mounted appearance. It is expected that the combination and synergy of multiple solar strategies will typically increase the overall efficiency of the system and consequently, the economic investment return.
The system will typically include three separate renewable energy systems—solar photovoltaic panels, solar domestic hot water heating and a solar powered heat recovery system. The energy systems are typically integrated into a seamless, continuous roofing structure and will operate independently, yet synergistically.
The system will typically be provided in the form of a combination of photovoltaic panels and solar domestic hot water heating panels, and will typically be designed to be modular and adaptable to a variety of roof shapes. The system will typically utilize commercial skylight and curtain wall technology. The panels are typically mounted to a concealed aluminum frame. Further, the system will typically have a continuous air space below the panels to allow air circulation. The panels typically will be flashed into a roof that is built-up around the perimeter of the system so that the roof and panels are flush with each other. Alternatively, the entire roof surface can be designed using the present system thereby creating an aesthetic appearance.
Further objects and advantages of the invention will become apparent from the following description and from the accompanying drawings, wherein:
Referring now to the drawings in detail wherein like numerals indicate like elements throughout the several views, one sees that
The solar thermal collector panels 14 and the photovoltaic panels 16 are typically of a size of four feet by four feet (but not limited thereto) and configured as a modular grid, mounted on a suitable framing material 18, such as, but not limited to, aluminum, comprised of horizontal purlins 20 and rafters 21 following the downward diagonal slope of the roof 1002, whereby the purlins 20 are generally perpendicular to the rafters 21. The panels 14, 16 are secured to the frame 18 using structural silicone. Preferably, there are few, if any, exposed framing material or glazing pressure plates on the finished surface. Preferably, the glass and the silicone joints should be the only significant components of substantial visibility. The system 10 is typically designed and intended to be flush with adjacent surfaces of roof 1002 and unobtrusive to the architectural design of the house 1000, building, or other structure.
As best seen in
The photovoltaic panels 16 are made of conventional photovoltaic material which will generate electricity in response to sunlight. More particularly, the photovoltaic panels 16 are typically 195 watt glass-on-glass frameless laminates which contain a rear junction box and are wired together in series in order to achieve increased voltage levels. The conductors from the individual strings of photovoltaic panels 16 are combined and taken through a single pitch pocket penetrating the roof 1002 to a combiner box 36 below the roof 1002 (see
The solar thermal collector panels 14 are typically designed to fit and operate within system 10 and typically include an exterior glass surface. The solar thermal collector panels 14 use flat-plate collector technology, typically using a copper pipe welded to a copper plate 13 within an insulated collector box. The solar thermal collector panels 14 further include an anti-freeze fluid that runs through the thermal collector panels 14 and through copper tubing 15 between adjacent solar thermal collector panels 14 (or similar pipes or conduits, see
The heat recovery system has the functions of removing unwanted thermal energy from beneath the photovoltaic panels 16 during the cooling season, thereby increasing the conversion efficiency of photovoltaic panels 16 and further of providing preheated air to the house 1000 during the heating season thereby reducing the heating load and the use of conventional heating fuels. The air movement and mode of operation is controlled automatically by a “smart” microprocessor thermostat and a designed system of ducts, automatic dampers 57, 58, 59 and fans 60, 61. As shown in
The exhaust fans 60 typically operate in the cooling season when the dampers 57 and 59 are open and the return fan 61 operates during the heating season when dampers 57 and 59 are closed.
Typically, the return air duct 50 and the continuous supply duct 52 and the branch ducts 62 are placed near a lower portion of the roof 1002. Typically the continuous exhaust duct 54 and the branch ducts 63 are placed near an upper portion of the roof 1002, and typically, the vertical duct 56 runs from the basement to the continuous exhaust duct 54.
With this configuration, solar heated hot water, solar generated electricity and solar heated or cooled air can be provided simultaneously to the property owner. Additionally, a sturdy and reliable roofing structure is provided.
Thus the several aforementioned objects and advantages are most effectively attained. Although preferred embodiments of the invention have been disclosed and described in detail herein, it should be understood that this invention is in no sense limited thereby and its scope is to be determined by that of the appended claims.