This invention relates to a heat exchange and ventilation system with a raised floor supported by a hollow core concrete floor and includes the method of conditioning air through a hollow core medium supporting a raised floor.
Many prior art devices and methods have heretofore been designed for heating, ventilating and air conditioning (HVAC) systems.
Some of the HVAC systems have been designed for raised access floor systems. Other HVAC systems have been designed for hollow core slab systems.
Raised access floor systems generally comprise a series of spaced apart pedestals which are supported at the lower end thereof on a concrete floor while the upper end thereof supports a series of panels defining a raised floor. The space between the said raised floor and concrete floor defines a cavity or floor plenum. For example, U.S. Pat. No. 4,775,001 relates to the design of air terminal devices used in raised floor air supply plenum systems while U.S. Pat. No. 6,209,330 relates to an air handler based on chilled water as the cooling source for cooling computer rooms.
Under floor air distribution systems using the floor plenum of the raised access floor as a supply air pathway is a proven technology and growing significantly in the North America market place. The most current versions of raised access floors utilize infloor air terminals which are either manually or automatically adjustable and control the amount of air delivered to the occupancy above the floor from a lightly pressurized infloor plenum. The terminals or diffusers are generally pressure dependent and deliver predictable air flow based on stable infloor pressure whereby the volume of air to the occupied space is a function of the floor plenum air pressure and the number of infloor terminals and their open status. This pressure is maintained as a constant by infloor pressure sensors providing information to the building control system to control the speed of the fan delivering air to the floor plenum all in a manner well known to persons skilled in the art. The fan volume generally varies to keep the pressure maintained.
Hollow core/slab integrated ventilation air conditioning and heating technology and applications are also well known and widely used in Scandinavian countries. For example U.S. Pat. No. 4,124,062 relates to a system of passing air from outside a building through channels in a concrete floor so as to cool the concrete thereby storing the coolness which is then transferred to the room in the following day. Furthermore U.S. Pat. No. 4,830,275 relates to temperature control of buildings having prefabricated hollow concrete slabs or concrete floor structures with cast in ducts where cooled supply air flows through the floor structure before it is supplied by way of supply air device to the room unit on the floor.
Generally speaking these hollow core slab structures are thermally charged by running warm or cold air through the hollow cores to set their thermal mass at a temperature capable of radiating or absorbing heat to and from the occupied space. In addition, the air running through the slab is released into the space to further support heating or more often a cooling mode of operation. The majority of these systems are applied with the active hollow core located above the occupancy at the ceiling. At the ceiling and in the cooling mode the slab provides a cold radiant effect to the space below as well as absorbing heat build up from the space through convection between room air and the hollow core slabs. Such systems have good thermal inertial and mass thermal storage/absorption capabilities.
Furthermore it is known that the under floor and hollow core technologies have been combined. However, such combination did not allow the hollow core slab supporting the raised floor to release the air carried through its core into the raised floor supply air plenum.
It is an object of this invention to provide an improved heat exchange and ventilating system.
It is an aspect of this invention to provide a heat exchange and ventilation system comprising a hollow core concrete floor having an air passage therethrough with an inlet and outlet for receiving air and permitting relative heat exchange therebetween; a raised floor supported by said hollow core concrete floor, defining a floor plenum between said hollow core concrete floor and said raised floor, said floor plenum communicating with said outlet so as to receive air from said air passage through said hollow core concrete floor; and adjustable terminal means carried by said raised floor for delivering a portion of said air from said floor plenum into a space above said floor.
Another aspect of this invention relates to a thermally charged slab in an occupied space above the raised floor; either as a repeat of said slab plenum system from a floor above, or a thermally charged hollow core roof slab, or another form of thermally charged roof structure.
It is a further aspect of this invention to provide an air conditioning system for at least one room on at least one floor in a building, comprising: at least one hollow core concrete floor section having an air passage therethrough with an inlet and outlet; at least one raised floor section supported by said at least one hollow core concrete floor section; at least one floor plenum defined between said at least one hollow core concrete floor section and said at least one raised floor section for communicating with said outlet; fan means communicating with said inlet for blowing said air through said passage, outlet, and floor plenum and permitting relative heat exchange between said air and said at least one hollow core concrete floor section; at least one terminal means disposed in said at least one raised floor section for presenting a selected volume of air from said floor plenum to a space above said raised floor segment in said room, said terminal means responsive to pressure.
It is yet another aspect of this invention to provide a method of conditioning air through a hollow core medium supporting a raised floor comprising passing said air through said hollow core medium to effect relative heat exchange therebetween; releasing said air from said hollow core medium into a floor plenum defined between said hollow core medium and said raised floor.
In the description which follows, like parts are marked throughout the specification and the drawings with the same respective reference numerals. The drawings are not necessarily to scale and in some instances proportions may have been exaggerated in order to more clearly depict certain features of the invention.
The most commonly used hollow core medium 2 comprises a hollow core concrete floor slab 4 as shown in
A plurality of hollow core concrete floor slabs 4 can be joined together in a manner well known to those persons skilled in the art so as to fabricate the floor 3 of a building 5 as shown in
The upper ends 26 of the pedestals 22 generally speaking support a plurality of panels 28 so as to define a floor surface 30. An air or floor plenum 40 is defined between the hollow core concrete floor slab 4 and the raised floor 30. The floor plenum 40 communicates with the outlet 14 of the concrete slab 4 so as to receive air from the air passage 8 passing through the hollow core concrete floor slab 4.
As the air passes through the passage 8 in the hollow core concrete floor slab 4 relative heat exchange occurs there between. For example, the hollow core concrete floor slab 4 could act as a heat sink absorbing heat during the day generated in the occupied space 62 and thereby heating the cooler air as it passes through the passage 8 therethrough. Alternatively, the hollow core concrete floor slab 4 can act as a heat source giving off heat to a cooler occupied space 62 and thereby absorbing heat in warmer air as it passes through the passage 8.
The raised floor 30 can include a plurality of terminal means 50 for delivering a portion 60 of air from said floor plenum 40 into a space 62 above the floor surface 30 as shown in
Accordingly the heat exchange and ventilating system 70 comprises a hollow core concrete floor slab 4 having an air passage 8 therethrough with an inlet 12 and an outlet 14 for receiving air and permitting relative heat exchange there between; a raised floor 20 supported by the hollow core concrete floor slabs 4 defining a floor plenum 40 between the hollow core concrete floor slabs 4 and the raised floor 20, whereby the floor plenum 40 communicates with the outlet 14 so as to receive air from the air passage 8 through the hollow core concrete floor slab 4; and the adjustable terminal means 50 which are carried by the raised floor 30 for delivering a portion 60 of the air from the floor plenum 40 into a space 62 above the floor surface 30. Any portion 60 of air from 0% to 100% can be delivered to the space 62. Generally speaking however, 50% to 90% is delivered to the occupied space 62.
The heat exchange and ventilating system 70 also includes an air handler 80. The air handler 80 can include a fan, cooling coils or other devices known to people skilled in the art. The air handler 80 can be located anywhere and connected by means of supply and return ductwork. One example of an air handler 80 is shown in
The heat exchange and ventilating system 70 includes a return damper assembly 90. The return damper assembly 90 is generally disposed vertically relative to the floor surface 30 and includes an upper opening 92 for receiving the portion of air from 60 in the space 62 above the floor surface 30. The return damper assembly 90 also includes a lower opening 94 for receiving the remaining air 64 in the floor plenum 40. The upper and lower opening can include a damper or moveable baffle that is displaceable so as to selectively open or close the opening any selected degree in a manner well known to persons skilled in the art. The remaining air 64 is the air that remains in the plenum 40 (excess air) after the portion of air 60 has been vented to the space 62 above the floor surface 30.
The return damper assembly means 90 communicates with the air handler 80 so as to recirculate the portion of air 60 and the remaining air 64 back to the air handler 80 that will supply it back to the hollow core concrete floor slab 4.
The return damper assembly means 90 may be a stand alone unit located in a mechanical room 82 which communicates with a standard HVAC unit as shown in
The return damper assembly 90 includes the upper opening 92 as previously described for receiving the portion 60 of air in the space 62 above the floor surface 30.
The return damper assembly 90 also includes lower openings 94 as shown in
The compartment unit air handling equipment 120 can also include a fan (shown in diagrammatic fashion and labelled SF [supply fan]) configured for under floor air design as typically known by those persons skilled in the art and with a discharge opening 126 for blowing air (combination of the portion of air 60 plus the remaining air 64) to the hollow core slabs 4 by means of a supply air plenum box 125 below the compartment units which is connected to conduits or ducts 140. The conduits or ducts 140 communicate with the fan means 80 and the inlet 12 of the slabs 4 for delivering of air through the passage 8 as previously described.
Alternatively just as the compartment unit 120 in
The floor plan shown in
While one can subdivide the building floor plate one does not need to take the partitions down to the surface of the hollow core to establish separate room control.
Temperature control of existing prior art systems include the management of the cooling capacity against the heat gains generated in the building. Typically these management systems consist of varying the amount of overhead supply air maintained at an appropriate temperature for cooling through use of a VAV box. In current generation underfloor air buildings, the adjustable but relatively constant cool temperature lightly pressurized plenum provides a reservoir for controlled groupings of automatic infloor terminals to open in an incremental or modulating fashion to deliver the quantity of cool air as necessary to balance the heat gains and maintain a set point temperature.
The invention described herein incorporates such features in the infloor terminals but in addition there is a combined radiant cooling effect and convective heat transfer absorptive capability of the hollow core slab above the space. Accordingly, temperature control can be done by adjustments to either or both the temperature and volume of the air from the floor plenum and/or the temperature of the slab above the room.
In one embodiment the surface temperature of the slab above the space could be kept relatively constant at for example 20° C. while the more quickly responding airstream aspect of the invention as described herein can be used for temperature control.
Accordingly, the individual room control can in one embodiment be accomplished from automatic infloor terminals that do not require partitioning down to the structural floor to separate the airstream of a given duct such as duct 160. In another embodiment however, a duct 160 could be utilized to serve a section such as section 165. The invention described herein allows for modulating damper 163 in the open position (normally closed). The air that would normally go through slabs in section 165 serves to take the path of least resistance and not go through the slab thereby reducing the airflow and charge of the slab but maintaining the airflow rate in the plenum.
Alternatively each floor may be conditioned as one unit whereby the air 60 being delivered to the space 62 on the floor 3 from all of the ducts 160, 170, 180, 190, 200, 210, 220, 230 and 240, is delivered to the entire floor ( without sectioning ) as one unit and recirculated back to the fan 80 as previously described. However, if the floor 3 is partitioned into a plurality of rooms as previously described, each of the hollow core concrete floor sections will support at least one raised one floor section, and at least one floor plenum will be defined between the at least one hollow core concrete floor sections and the at least one raised floor sections for communicating with the outlets 14 of each of the slabs 4 in the sections as previously described. In this way each of the at least one raised floor sections will include the terminal means 50 as previously described.
The terminal means 50 may include a manually adjustable type of terminal or diffuser 51 or automatic type of adjustable terminals 53. Adjustable terminals 53 are automatic control terminals being adjusted by a control system. The adjustable terminals 53 may be adjusted by motorized damper 55 on them which can open or close the diffuser or terminal in a manner well known to those persons skilled in the art so as to meet temperature set points by the Building Automation System (BAS). The motor operator 55 associated with the terminal 53 modulates in response via the control system to temperature in the space 62, opening or closing when above or below a temperature set point respectively. The motorized damper 55 of the automatic terminal 53 may receive an electric current signal from its controller to affect its open/closed portion. This is integrated into a typical monitoring and control Building Automation System (BAS) all known and familiar to persons skilled in the art.
Generally speaking the plenum pressure is operated at a relatively constant condition. Even with the plenum 40 pressure stable, opening adjustable terminal 53 will provide more air. If the plenum pressure is increased, the same degree of opening will give more air. An analog output from the Building Automation System (BAS) in volts or amps to the terminal 53 or motor operator 55 adjusts the degree of opening in a manner well known to people skilled in the art.
Furthermore, as shown in
Upon start up the system, the following sequence of operations can occur by way of an example:
The system 70 can be charged at any time but preferably during non-office operating hours. If the system 70 is to be used to load cooling into the hollow core slabs 4, the following sequence can occur by way of example:
The invention described herein provides equipment to allow a continuous volume of supply air through the hollow core slab 4 to optimize its thermal charge and convective and radiant cooling effect while at the same time allow the pressure control variable volume for the plenum 40 supply delivery as to be required of a current under floor air design. The invention described herein also allows maximum continuous mass thermal storage in the hollow core slab 4 while providing a variable air flow capability for proper control of the in floor supply plenum air released into the space to address varying cooling loads. The invention described herein is an advance over previous designs since:
The system 70 described herein can be used in combination in either:
The invention described herein teaches a design where:
Moreover the invention described herein exhibits
By utilizing the invention described herein one is able to reduce the size of the HVAC equipment and achieve improved energy efficiency.
The duct work and damper assembly is sized for the volumes of air applicable in a manner known to persons skilled in the art. The form of control systems that can be used typically comprise of Direct Digital Control (DDC) providing controlled manipulation of the dampers. The dampers 163 in return air damper assembly 90 (allows for bypass of the hollow core, as previously discussed) are set to modulate to maintain the pressure set point in the floor plenum. The combined quantity of air returned from the floor plenum (unused by the occupied volume) and the return air plenum, as controlled by the respective dampers represents the total volume delivered by the fan.
The equipment described herein can be applied to the combined application of integrated air flow hollow core structural slab type designs when applied in conjunction with integrated access floor (HVAC) system mounted above the slab 4 and the air flow in the hollow core slab 4 is released to the raised floor supply air plenum 40 above the hollow core structure.
Accordingly the design described herein illustrates a method of conditioning air through a hollow core medium supporting a raised floor comprising:
Also the apparatus, system and method can not only control or condition the temperature of the space 62 but can also be used to control and monitor other parameters or characteristics such as humidity and pressure .
Various embodiments of the invention have now been described in detail. Since changes in and/or additions to the above-described best mode may be made without departing from the nature, spirit or scope of the invention, the invention is not to be limited to said details.
Number | Name | Date | Kind |
---|---|---|---|
4227566 | Stilber | Oct 1980 | A |
4775001 | Ward | Oct 1988 | A |
5121789 | Scharfe | Jun 1992 | A |
5468184 | Collier | Nov 1995 | A |
6033301 | Suwa | Mar 2000 | A |
6209330 | Timmerman | Apr 2001 | B1 |
6361432 | Walker | Mar 2002 | B1 |
20030150231 | Spinazzola | Aug 2003 | A1 |
20030209023 | Spinazolla | Nov 2003 | A1 |
20040118137 | Patel | Jun 2004 | A1 |
20040141542 | Sharma | Jul 2004 | A1 |
20040198214 | Karidis | Oct 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20080142610 A1 | Jun 2008 | US |